Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергетические явления при химических реакциях

    Связные диаграммы совмещенных физико-химических явлений (химические реакции и диффузия в неподвижной среде). Напомним, что в терминах энергетических переменных движущей силой диффузии является не градиент концентрации, а градиент химического потенциала. Для примера рассмотрим случай простой реакции А г В, протекающей в идеальном растворе при наличии одномерной ди( к )узии компонентов в направлении оси ох. Диффузионный поток каждого компонента определяется законом Фика [c.131]


    Химическая термодинамика использует положения, законы и теоретические методы общей термодинамики в применении к разнообразным химическим проблемам учение о тепловых эффектах химических реакций (термохимия), учение о химическом и фазовом равновесии, учение о растворах, теория электродных процессов, термодинамика поверхностных явлений и др. На основании законов термодинамики проводятся все энергетические расчеты химических процессов и химического равновесия, что имеет особое значение для химии и химической технологии. [c.7]

    Позднее, с открытием и исследованием электрической, лучи стой, химической и других форм энергии, постепенно в круг рассматриваемых термодинамикой вопросов включается и изучение этих форм энергии. Быстро расширялась и область практического применения термодинамических методов исследования. Уже не только паровая машина и процессы превращения механической энергии в теплоту исследуются на основе законов термодинамики, но и электрические машины, холодильные машины, компрессоры, двигатели внутреннего сгорания, реактивные двигатели. Гальванические элементы, а также процессы электролиза, различные химические реакции, атмосферные явления, некоторые процессы, протекающие в растительных и животных организмах, и многие другие исследуются не только в отношении их энергетического баланса, но и в отношении возможности, направления и предела самопроизвольного протекания процесса в данных условиях. Они исследуются также в отношении установления условий равновесия, определения максимального количества полезной работы, которая может быть получена при проведении рассматриваемого процесса в тех или иных условиях, или, наоборот, минимального количества [c.175]

    В основу динамики Шилова положен принцип причинной зависимости элементарных химических реакций друг от друга. Каждая элементарная реакция может индуцировать одно или целый ряд аналогичных химических превращений. Например, реакция между двумя молекулами А -л В может индуцировать реакцию между двумя другими молекулами СиО, которая при отсутствии первой реакции была бы вообще невозможной. В частном случае это будет иметь место, если вторая реакция поглощает при своем развитии некоторое количество энергии, освобождающееся в результате первой реакции. Это явление химической индукции и положено в основу динамики Шилова. Для количественного выражения пространственно-временной взаимосвязи между элементарными химическими реакциями Шиловым было применено понятие индуктора. В приведенном выше примере индуктор имеет энергетическую природу. Могут иметь место также случаи, когда роль индуктора играют те или иные устойчивые или неустойчивые частицы промежуточных соединений . Например, может иметь место следующая система реакций. Из исходных продуктов А -л В первоначально образуются некоторые промежуточные продукты А и В, т. е. [c.25]


    Окисление органических веществ молекулярным кислородом почти всегда сопровождается излучением света - хемилюминесценцией. Явление связано со свечением, когда элементарным актом образования эммитера (источника излучения) является химическая реакция или перенос энергии с химически возбужденного продукта реакции процесс может протекать самопроизвольно или под влиянием специального энергетического воздействия. [c.85]

    Как известно, в основе химических и физических явлений лежит также закон сохранения и превращения энергии. Поэтому в уравнение химической реакции могут входить значение теплового эффекта или теплоты реакции (Q) и другие энергетические характеристики, с помощью которых более полно описывают изменение внутренней энергии системы. Как установлено Гессом (закон Гесса), тепловой эффект реакции зависит только от состояния исходных веществ и конечных продуктов, но не зависит от пути перехода. [c.53]

    Как известно, в основе химических и физических явлений лежит также закон сохранения и превращения энергии. Поэтому в уравнение химической реакции могут входить значение теплового эффекта или теплоты реакции ((Э) и другие энергетические характеристики, с помощью которых более полно описывают изменение внутренней энергии системы. Как установлено Гессом (закон Гесса), [c.73]

    Изучением энергетических эффектов химических реакций, химических и физико-химических явлений занимается наука, называемая химической термодинамикой. Собственно термодинамика — это наука о температуре, теплоте и работе (от греч. терме — теплота и динамис — сила, работа). С появлением и развитием энергетического подхода к химическим реакциям стало возможным предсказывать их направление, математически оценивать различия в химических свойствах веществ. Знание термодинамических закономерностей позволяет избежать постановки химических экспериментов, заранее обреченных на неудачу. [c.114]

    Наиболее полно влияние состояния поверхности на кинетику химических реакций было рассмотрено в гетерогенном химическом катализе. Теория каталитических процессов на неоднородных поверхностях была развита в работах М. И. Темкина и С. В. Рогинского. Изучая причины возникновения неоднородности и изменения энергетического состояния поверхности, необходимо учитывать структуру поверхности и взаимодействие поверхностных частиц с примесями или продуктами реакции. Побочные явления могут привести к образованию поверхностных соединений, вероятность возникновения которых зависит от способности катализатора образовывать с реагирующими веществами химические соединения. [c.523]

    Статистический закон распределения энергии. Протекание любых химических реакций, в том числе и реакций горения, должно подчиняться основным химическим закономерностям и в первую очередь — закону действующих масс. Однако чересчур прямое, упрощенное приложение этих закономерностей далеко не всегда дает возможность правильно описать механизм сложных явлений, в которых нас интересует прежде всего скорость процесса, зависящая от ряда особенностей в свойствах реагирующих веществ и в создаваемых режимных условиях. Химические превращения одних молекул в другие происходят не изолированно с каждой молекулой (или с небольшой группой молекул) в отдельности, а в огромном сборище находящихся в тепловом движении молекул, несущих различные энергетические заряды ( медленные и быстрые молекулы), и через взаимные столкновения, непрерывно воздействующие на распределение энергии в общей массе по закону Максвелла—Больцмана. Согласно этому закону, если общее число столкновений молекул равно х , а относительное число молекул, несущих энергии и. будет соответственно равно  [c.48]

    Хотя реакция кислорода с графитом энергетически выгодна, графит тем не менее существует, поскольку эта реакция протекает очень медленно кинетически. Многие природные соединения находятся вне равновесия с их окружающей средой и вступают в реакции крайне медленно. Эти вещества метастабильны. Метастабильность можно проиллюстрировать, используя энергетический график химической системы, в которой вещества А и В взаимодействуют с образованием веществ С и (рис. 1). Для осуществления реакции А и В должны войти в тесный контакт, что обычно требует притока энергии (энергия активации). В холодных условиях (низкая энергия) лишь у небольшого числа молекул А и В случайно окажется энергия, достаточная для преодоления энергии активации, но это редкое явление, и реакция будет протекать медленно. Если повысить энергию реагентов (например, повысив температуру), реакция сможет протекать быстрее, поскольку большее число молекул А и В будут иметь требуемую энергию активации. [c.86]


    В то же время очевидно, что в биологии мы встречаемся со сложным комплексом термодинамических и кинетических явлений. Различие термодинамики и кинетики иллюстрируется течением химической реакции. Реакция принципиально возможна, лишь если она сопровождается понижением свободной энергии, ДС < 0. Это необходимое, однако еще недостаточное условие для протекания реакции. Если начальное и конечное состояния системы разделены высоким активационным барьером, константа к скорости реакции, зависящая экспоненциально от высоты энергетического барьера Е , согласно закону Аррениуса [c.19]

    Поверхностные явления при массопередаче связаны с различного рода нарушениями поверхности контакта фаз, с предварительной адсорбцией или хемосорбцией компонента на поверхности контакта, приводящей к изменению общего сопротивления массопередачи [74]. К поверхностным явлениям относятся межфазовая-турбулентность (гидродинамическая неустойчивость поверхности контакта фаз) и межфазовый (энергетический) барьер переходу вещества через границу раздела фаз при медленной химической реакции или наличии поверхностно-активного вещества (ПАВ) в жидкости..  [c.105]

    Исходя из современных представлений о механизмах химических реакций и концепции сверхсопряжения, легко объяснить аномальные на первый взгляд явления, перечисленные выше. Присоединение молекулы реагента по двойной связи в полимере изменяет энергетическое состояние соседних двойных связей, они становятся более реакционноспособными. Вероятность присоединения других молекул реагента по таким активированным связям возрастает, и процесс присоединения становится избирательным реагирует не случайная двойная связь, а та, которая расположена рядом с прореагировавшей. Так создаются условия для развития реакции вдоль макромолекулярной цепи, и процесс приобретает кооперативный характер [136]. Вообще, вопрос [c.43]

    Во-вторых, учтем особенности строения так называемых гибких молекул. Гибкие молекулы можно определить как структуры, имеющие более одной конфигурации, свободная энергия которых различается не больше чем на 3 к2 Хорошим примером гибких молекул являются молекулы нормальных парафинов [19]. Может показаться удивительным, что в явлениях внутреннего трения [20, 21] и диффузии [22, 231 такие молекулы часто проявляют себя почти как сферические, свернутые в клубок структуры. Причина такого свертывания была приписана различным энергетическим факторам [24]. Об одной особенности этих молекул, связанной с гибкостью, упоминалось уже выше при обсуждении возможного влияния искажающих столкновений на активность молекулы как катализатора передачи энергии. Другой особенностью, проявляющейся в диффузии гибких молекул, является водородный эффект, или увеличенный диаметр столкновения с водородом. Оказалось, что этот эффект [22, 23, 25, 26] обусловлен богатым, почти непрерывным спектром внутренней энергии, получающимся из многочисленных колебательных уровней, искаженных и уширенных при скручивании молекулы. Обе эти особенности гибких молекул имеют место при относительно низком среднем значении поступательной энергии. Иначе, по-видимому, ведет себя горячая гибкая молекула, появившаяся в газе вследствие статистических флуктуаций или как результат химической реакции. В частности, при быстром вращении она может выпрямиться под действием центробежных сил. Полностью распрямленная молекула будет вести себя в дальнейших столкновениях как гибкий стержень. Такой эффект должен сильно увеличить диаметр столкновения для богатых энергией гибких молекул, образующихся в результате реакции. [c.125]

    Энергетические явления при химических реакциях. Химические процессы сопровождаются выделением или поглощением энергии, чаще всего в форме теплоты. [c.24]

    Мы уже упоминали, что по электропроводности можно различать растворы. Однако химику необходимо знать гораздо больше об электрической природе материи. Понимание свойств веществ, связанных с их электрической природой, явится ключом к объяснению химических свойств. Мы увидим, что знание природы электрических явлений позволяет предсказывать молекулярные формулы, объяснять течение химических реакций и понимать энергетические изменения, которые происходят при этих реакциях. [c.111]

    Для того чтобы ясно разбираться в химических процессах, нужно прежде всего знать, с каким материалом имеешь в них дело. Поэтому первая часть книги посвящена изучению свойств веществ в их взаимной связи и отчасти в связи со строением. После этого рассматривается течение химических реакций сточки зрения их скоростей. В этом разделе применяется главным образом статистический метод. Дальнейшие разделы книги посвящены энергетическим явлениям, сопутствующим химическим процессам, и одной из важнейших задач физической химии — подробному рассмотрению стационарного состояния химического равновесия, чему предшествует изложение основ химической термодинамики. Химическое равновесие не представляет собой, как могло бы казаться при одном лишь термодинамическом рассмотрении, обособленного состоянии, а оказывается на самом деле суммарным результатом двух взаимно противоположных процессов. Для фотохимических процессов термодинамический метод слишком груб, последние для своего изучения требуют пять-таки той же статистики с широким использованием квантовых представлений о лучистой энергии. [c.16]

    Первоначальный интерес к колебательному возбуждению в химических реакциях был обусловлен новизной самого явления. Главная цель исследований, проводимых в настоящее время, заключается в определении детальных распределений по различным энергетическим состояниям возбужденных молекул, в измерении доли теплоты реакции, приходящейся на колебательное возбуждение, и, наконец, в изучении дальнейших превращений возбужденных молекул. Полученные данные используются при построении поверхностей потенциальной энергии, которые в свою очередь необходимы для расчетов динамики реакций. Коротко говоря, эти исследования занимают все большее место в химической кинетике. По мере того как интерес к возбужденным частицам возрастал, больше внимания уделялось различным прикладным аспектам химическим лазерам и реакциям возбужденных молекул. [c.136]

    Промежуточные соединения. Как указывалось выше, ряд затруднений при объяснении явлений гетерогенного катализа с точки зрения коллективных свойств электронов твердого тела, а также успехи в идентификации поверхностных адсорбированных соединений привели к возрождению чисто химических концепций в теории катализа, в обш,ем аналогичных первоначальной теории промежуточных соединений. Особое значение приобретают при этом индивидуальные свойства атомов и ионов в твердом теле, т. е. свойства, опредоляемые положением элемента в периодической системе элементов. Соответственно, как и в обш,ей теории химических реакций в.елика роль энергетических параметров самого превраш,ения.  [c.30]

    В последующем изложении мы будем снова упоминать об этих явлениях, поскольку состояния кристаллов, при которых образуются новые фазы, являются очень существенными во многих случаях. Следует, однако, отметить, что в настоящее время еще мало известно о структурных и энергетических свойствах поверхностных слоев, несмотря на большое значение такого рода сведений не только при изучении каталитических процессов, которые протекают на поверхности, но и химических реакций вообще. [c.6]

    Первоначальный интерес к этим реакциям был обусловлен предположением академика Н. Н. Семенова, что твердофазная полимеризация может осуществляться по механизму энергетических цепей, что движение по матрице твердого мономера квапта возбуждения — экситона — может оставлять за собой след в виде цепочки полимера 8]. Хотя эта гипотеза и не подтвердилась (а энергетические цепные химические реакции были вскоре открыты в ИХФ на совсем других примерах — в газофазных реакциях фторирования), но великолепная интуиция Н. И. Семенова все же оправдалась — именно исследования радиационной твердофазной полимеризации при низких температурах привели в конечном счете к открытию явления молекулярного туннелирования, к зарождению квантовой химической кинетики реакций в конденсированной фазе. [c.305]

    Рассмотрим простой случай соединений бериллия. Электронная конфигурация атома бериллия имеет вид ls 2s и характеризуется отсутствием неспаренных электронов, т. е. ожидаемая валентность бериллия в таком состоянии равна нулю. Однако элементарный бериллий вступает в химические реакции и образует соединения типа BeXj с линейной формой молекул в газовой фазе. Чтобы объяснить подобные явления, приходится, во-первых, предположить, что атом бериллия распаривает свои 2s -элeктpoны, переходя в состояние 2s2p. Энергетическая затрата при переводе промотировании) одного электрона на 2р-уровепь с избытком компенсируется энергией, выделяющейся в результате образования двух связей Ве—X. Однако как объяснить линейную конфигурацию молекулы ВеХа  [c.180]

    Современная неорганическая химия состоит из многих самостоятельных разделов, например химии комплексных соединений, химии неорганических полимеров, химии полупроводников, металлохимии, физико-химического анализа, химии редких металлов, радиохимии и т. п. Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое второе рождение в результате широкого привлечения квантовохимических методов, зонной модели энергетического спектра электронов, открытия валентнохимических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу создание новых неорганических веи еств с заданными свойствами. Неорганическая химия, как и любая естественная наука, руководствуется методологией диалектического материализма, следовательно, опирается на ленинскую теорию отражения От живого созерцания к абстрактному мышлению и от него к практике... . Живое созерцание осуществляется, как правило, при помощи эксперимента — наблюдения явлений в искусственно созданных условиях. Из экспериментальных методов важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Аналитическая химия использует химические реакции для установления качественного и количественного состава вещества. Кроме того, но химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез достиг большого успеха, особенно в получении особочистых соединений в виде монокристаллов. Этому способствовало применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов синтеза и т. п. [c.7]

    В дальнейшем круг вопросов, изучаемых термодинамикой, значительно расширился. В настоящее время термодинамика рассматривает большое количество физических и химических явлений, сопровождающихся энергетическими эффектами. На основе законов термодинамики изучаются, например, работа холодильных машин, процессы в компрессорах, в двигателях внутреннего сгорания, в реактивных двигателях, процессы при электролизе, работе гальванических элементов, при проведении различных химических реакций. Исследования методами термодинамики по.чволяют не только подводить энергетические балансы, но также определять, в каком направлении и до какого предела могут протекать процессы при заданных условиях. Термодинамика, таким образом, дает" возможность сознательно управлять различными физико-химическими процессами производств. [c.71]

    Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое "второе рождение" в результате широкого привлечения квантово-химических методов, зонной модели энергетического спектра электронов, открытия валентно-химических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу — создание новых неорганических веществ с заданными свогютвами. Из экспериментальных методов химии важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического ст(юения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Кроме того, по химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на исполь зо-вании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез дос- [c.6]

    Однако накопление знаний о химических реакциях показало, что достаточно распространены и эндотермические реакции, особенно прн высоких температурах. Вообще, во все.х явлениях, в которых участвуют не макроскопические тела как едииое целое, а большие количества малых частиц (молекулы, атомы, ионы), направление самопроизвольно протекающего процесса нельзя однозначно предсказать только по знаку энергетического эффекта, т. е, по изменению запаса энергии в системе. [c.37]

    Общепризнано, что катализ — явление химическое. Из учения о строении вещества известно, что радиус действия валентно-химических сил очень мал. Поэтому атомы реагируют практически при своем соприкосновении. Это служит основным положением мультиплетной теории. Эта теория на основании величин валентных углов, длин и энергии связей позволяет строить модели промежуточного мультиплетного комплекса и рассчитывать энергию его образования и разложения, а исходя из этого, предсказывать легкость протекания конкретных реакций. Длины и энергии связей являются устойчивым комплексом свойств они могут быть определены из опыта и поэтому более доступны, чем трудно осуществимый сложный квантово-механический расчет взаимодействия ядер и электронов, хотя, конечно, последнее, в принципе, и определяет длины и энергии связей. Кроме электронной теории, мультинлетная теория катализа связана и с теорией абсолютных скоростей реакций. Эта последняя теория развивается дедуктивным путем, тогда как мультинлетная — индуктивным, обобщая фактический материал с учетом данных теории строения вещества. Мультинлетная теория устанавливает существование двух принципов — структурного и энергетического соответствия между реагирующими молекулами и катализаторами. [c.5]

    Зарегистри зовано открытие П. Н. Семеновым (в соавторстве с А. Е. Шиловым и сотрудниками) явления энергетического разветвления ценей в химических реакциях . [c.699]

    Теории диффузии обычно предполагают, что в процессе миграции диффузионных единиц должен преодолеваться некоторый барьер, что требует энергии активации. Согласно этой концепции экспериментально получена зависимость между О и 1/Т, которая в некоторых случаях близка к линейной и которая была интерпретирована по аналогии с уравнением Аррениуса для химических реакций. Из наклона зависимости была вычислена энергия активации. Однако Хильде-брандтом с сотр. [56в] было отмечено, что в простых жидкостях, состоящих из сферических молекул, и в газах, плотность которых выше критической, явление диффузии можно объяснить без предположения о энергетическом барьере, создаваемом квазикристаллической структурой. Согласно теории Хильдебрандта, в таких жидкостях все молекулы участвуют в тепловом движении. Это приводит к максимальному беспорядку. Среднее смещение молекул в таких жидкостях частично зависит от температуры, частично от отношения межмолекулярного объема V к объему сжатой жидкости Уо, в которой молекулы упакованы плотно и диффузия становится невозможной. Даймонд [56г] на основе молекулярно-динамических представлений показал, что отношение можно точно вычислить из коэффициентов самодиффузии систем, состоящих из жестких сфер. [c.219]

    Подобно атомным ядрам, электроны в молекулах так же занимают два энергетических зеемановских уровня, так же могут находиться в состоянии равновесной и неравновесной поляризации, которая может быть индуцирована во время химической реакции образования данной молекулы. Такую именно поляризацию и наблюдали впервые Фессенден и Шулер (1963), о работе которых шла речь выше. Спустя пять лет Смоллер и сотр. сообщили об аналогичном наблюдении в спектре ЭПР радикалов, образующихся при импульсном радиолизе жидких углеводородов. Несмотря на появившиеся затем другие работы, посвященные тому же вопросу, можно сделать вывод, что в отличие от химической поляризации ядер, механизм которой достаточно ясен, электронная поляризация остается,еш е мало исследованным и мало понятным явлением. Экспериментальные данные немногочисленны и неполны, поэтому теоретический анализ явления также затруднен [134, с. 228]. [c.275]

    Число образованных при этом ионов всегда очень мало по сравнению с числом прореагировавших молекул. Вопрос о роли этого явления в механизме химических процессов остается пока открытым. Комптон и Лэнгмюр пришли к выводу, что эмиссия электронов при действии таких газов, как H S, H l, СО , НгО, СОС , S l,, О,, lj и ВГг, на электроположительные металлы, как например натрий, калий и амальгамированный алюминий, является отчасти термоионной, а отчасти фотоэлектрической, связанной с явлениями хемилюминесценции. Однако наблюдалось много других случаев эмиссии ионов и электронов, где образование электронов следует повидимому отнести за счет испускания их активными молекулами, энергетически способными к такой эмиссии и образующимися в качестве промежуточных продуктов при химической реакции О. В. Ричардсон (Ri hardson) и Линд дали в своих книгах превосходный обзор работ об ионизации яри химических процессах. Более позднее исследование Брюйером окисления NO, термического распада NOj, N Og и О3 и окисления NO, посредством Og привело к выводу, что отношение числа образующихся при реакции ионов к числу прореагировавших молекул порядка 10 . [c.53]

    Однако названные выше авторы односторонне, а некоторые из них и весьма пристрастно подходили к решению вопроса о механизме ингибирования. Большинство из них не связывали замедление реакций с вероятностью зарождения и обрыва цепей. Некоторые исследователи высказывались отрицательно о зарождающейся теории цепных реакций, не сумев оценить ее важность для объяснения явлений торможения реакций. Например, Дар считал, что высокий квантовый выход в фотохимических процессах вполне объясним с точки зрения генерации ионов в термических окислительных реакциях отрицательный катализатор фактически замедляет химические изменения посредством захвата кислорода, а сам при этом окисляется [29, стр. 570]. Мурё и Дюфресс, со своей стороны, соглашались принять любую другую энергетическую теорию [30, стр. 713], которая могла бы заменить теорию, разработанную ими. Но предложенный механизм действия катализатора на равновесную концентрацию активных молекул, по мнению его авторов, уже объясняет наблюдаемые факты и с успехом выступает в роли гида не только в их собственных экспериментах, но также и в экспериментах многочисленных других авторов . Поэтому, нет необходимости стремиться к какой-либо другой энергетической теории. В частности, теория ценных реакций... не является обязательной [30, стр. 714]. [c.295]

    Представление о том, что хемосорбция требует энергии активации, вполне естественно её требует Т5ольшинство химических реакций. Как указывает Полани свободные валентности поверхности не притягивают молекул до тех гор, пока они не перескочат через потенциальный барьер той или иной высоты поэтому химически соединяться с поверхностью могут только молекулы, обладающие определённой энергией. С другой стороны, Полани указывает также, что реакции, в которых принимают участие атомы — как в качестве реагентов, так и в виде конечных продуктов — обычно имеют весьма малую истинную энергию активации,, т. е. энергию, необходимую в дополнение к той, которая поглощается в эндотермических реакциях, как, например, при диссоциации водорода на поверхности. Если это верно, то при хемосорбции, связанной с диссоциацией молекул у поверхности на атомы, значительна энергия активации не обязательна. Вопрос о тем, насколько экспериментальные факты подтверждают взгляд, что явления адсорбции — в особенности её скорость — контролируются этой энергией активации, вызывал много разногласий. Этот вопрос до сих пор не разрешён, и величина энергетического барьера, затрудняющего адсорбцию, если он существует, в большинстве случаев, повидимому, точно не известна. [c.350]

    Детонационное горение. Детонационное горение возникает во взрывоопасной среде при прохождении по ней достаточно сильно ударной волны (или волны ударного сжатия). Например, если в сосуде с горючей газовбздушной смесью взорвать точечный заряд взрывчатого вещества, то по газовой смеси от точки расположения заряда начнет распространяться ударная волна. В ударной волне происходит внезапное (скачкообразное) повышение параметров состояния газа — давления, те.мперату-ры, плотности. Повышение температуры газа при сжатии в ударной волне значительно больше, че.м при аналогичном сравнительно медленном адиабатическо.м сжатии.. Абсолютная температура газа, сжатого ударной волной, пропорциональна давлению ударной волны. Следовательно, если ударная волна достаточно сильная, то температура газа под действием ударного сжатия может повыситься до температуры са.мовоспламенения. Так как смесь реакционноспособна, произойдет химическая реакция. Выделившееся тепло пойдет частично на энергетическое развитие и усиление ударной волны, поэтому она будет перемещаться по смеси, не ослабевая. Этот комплекс, представляющий собой ударную волну и зону химической реакции, называется детонационной волной, а само явление — детонацией. Так как химическая реакция при детонации протекает по тому же уравнению, что при самовоспламенении, определяюще.м процесс горения, то детонацию можно считать детонационным горением. [c.132]

    Тепловым излучением называется излучение, происходящее в системе, в которой различные участвующие в процессе испускания квантовые состояния находятся в термодинамическом )авновесии, т. е. распределены по закону Максвелла-Больцмана уравнение (3.2)]. Тепловое излучение следует отличать от хемилюминесценции — излучения активных молекул, образуемых в ходе элементарных химических реакций и присутствующих в концентрациях, превышающих равновесные. Тепловое излучение следует также отличать и от излучения, вызываемого электрическими разрядами в газах и другими внешними способами возбуждения. Согласно статистической механике, температура тела определяется количеством поступательной энергии, прихоа,ящейся на моль в идеальном газе, находящемся в энергетическом равновесии с телом. [Соотношение между поступательной энергией и уравнением состояния идеального газа выражено формулами (3. 8) и (3.23).] Излучение от пламени горящего газа будет тепловым, если между поступательными степенями свободы и квантовыми состояниями, обусловливающими излучение, имеется энергетическое равновесие. Это означает, что как те, так и другие распределены согласно закону Максвелла-Больцмана, но при этом нет необходимости, чтобы все квантовые состояния системы находились в статистическом равновесии. Так, можло представить себе газ, в котором, наряду с тепловым излуче ием, наблюдаются явления задержки возбуждения или другие изменения (например, охлаждение), однако, настолько медленные, что они не нарушают названного равновесия. Можно также представить себе, чго для одной части спектра излучение газа является тепловым, в то время как для другой части спектра имеет место хемилюминес-денция. [c.353]

    Недавно В. И. Гольданский с сотр. при изучении низкотемпературной полимеризации формальдегида обнаружил интересное и необычное явление квантового низкотемпературного предела скорости химической реакции [326, 327]. Экспериментальные данные и их трактовку можно найти в работах [172, 173, 328, 329]. Кинетику низкотемпературной радиационной полимеризации эти авторы изучали в широком интервале температур [от 180 К вплоть до температуры кипения гелия (4,2 К)] калориметрическим методом на установках собственной конструкции [ 328, 329]. Была получена зависимость времени роста полимерных цепей т от температуры, а также температурная зависимость длительности элементарного акта приращения одного звена к полимерной цепи (TO) в предположении, что отсутствует передача цепей и радиационный выход инициирования цепей равен единице. В интервале 80—150 К то (величина, обратно пропорциональная скорости реакции) растет с понижением температуры и ее зависимость от температуры описывается уравнением Аррениуса со значением энергии активации ЯактЛ 8—10 кДж/моль. Однако ниже 80 К найденные зависимости т и то не подчиняются закону Аррениуса, а величина TO, вместо того чтобы ряста до бесконечности, стремится к постоянному сравнительно небольшому значению, равному примерно 10 2 с (при 80 К т0 10-5 с). (Экстраполяция по уравнению Аррениуса для температуры 10 К дает значение то 1030 лет, а при 4,2 К—10100 лет.) Одним из возможных объяснений низкотемпературного предела может служить гипотеза о так называемых энергетических цепях, предложенная Н. Н. Семеновым для объяснения кинетических особенностей полимеризационных процессов в твердой фазе [298]. Согласно гипотезе, безактивацион-ные процессы полимеризации в твердой фазе могут развиваться по механизму энергетических цепей, как движение экситона (кванта возбуждения) вдоль растущей цепи [298]. Скорость роста цепи в этом случае должна иметь порядок величины скорости звука в твердом теле ( 105 см/с) [173]. Однако анализ процессов тепловыделения и теплопередачи показывает, что такое объяснение не подходит, поскольку присоединение "следующего звена полимерной цепи в результате избирательной локализации теплоты через время 10 5—10 2 с после предыдущего маловероятно. Явление низкотемпературного предела скорости химической реакции, обнаруженное для радиационно-инициированной твердофазной полимеризации формальдегида, по мнению авторов, может иметь только кваитовохимическое происхождение и не должно наблюдаться для эндотермических реакций. [c.82]


Смотреть страницы где упоминается термин Энергетические явления при химических реакциях: [c.132]    [c.6]    [c.283]    [c.456]    [c.160]    [c.394]    [c.41]    [c.152]    [c.125]   
Смотреть главы в:

Учебник неорганической химии -> Энергетические явления при химических реакциях

Учебник неорганической химии Издание 2 -> Энергетические явления при химических реакциях




ПОИСК





Смотрите так же термины и статьи:

Явления химические



© 2024 chem21.info Реклама на сайте