Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колебания правила отбора для спектров комбинационного рассеяния и инфракрасных спектров

    Теория групп является разделом математики, который применяется к некоторым задачам, удовлетворяющим определенным требованиям. Есть много проблем, представляющих интерес для химика, к которым можно подойти с помощью этого метода. Сюда относятся описание молекулярных колебаний, классификация молекулярных электронных орбиталей, вывод правил отбора для переходов в инфракрасных спектрах и спектрах комбинационного рассеяния и электронных переходов, составление гибридных и молекулярных орбиталей, вывод расщеплений в кристаллическом поле и многочисленные другие применения. Мы изложим здесь вкратце основные понятия, необходимые для правильного использования таблиц характеров в спектроскопии. Более подробное изложение можно найти в книгах Коттона [2], Джаффе и Орчина [3]. [c.128]


    Колебание Vj, активное в спектре комбинационного рассеяния (КР), настолько слабо, что обнаружено лишь у жидкого СН (у = 1529 см ) [427]. Приведенные значения получены D0 инфракрасным спектрам газа 137, 288] полосы наблюдаются в спектре поглощения вследствие кориолисова взаимодействия с К4, снимающего запрет правил отбора. [c.514]

    Единственным типом составных частот, характерным лишь для кристаллов, являются составные частоты колебаний молекулы с колебаниями решетки, по которым имеется ряд экспериментальных данных. Частоты колебаний решетки наблюдаются иногда как достаточно интенсивные линии в спектре комбинационного рассеяния при низких частотах (довольно близко к возбуждающей линии). В нескольких случаях составные частоты, активные в инфракрасном спектре, были сопоставлены с частотами решетки в спектре комбинационного рассеяния [24, 47, 63]. В общем составная частота (если она имеется) не подчиняется таким строгим правилам отбора для колебаний кристалла, как основная частота к волновым векторам кристалла предъявляется в этом случае требование (к + 6) = О, где к — волновой вектор экситона (внутримолекулярный), а 6 — волновой вектор ветви колебаний решетки, входящей в составное колебание, или вектор вторичного внутримолекулярного возбуждения. Таким образом, огибающая составной полосы может представлять сумму контуров двух (или более) образующих ее полос. Однако экспериментально было найдено, что составные полосы имеют примерно ту же ширину, что и основные, и что правила отбора для фактор-группы приблизительно выполняются. К сожалению, эти опыты были выполнены грубо и нуждаются в дальнейшей проверке. В частности, кажущееся приблизительное равенство по ширине основных и составных полос может быть обусловлено недостатками прибора, так как в более поздних работах существует тенденция показать, что по крайней мере основные полосы чрезвычайно узки. [c.588]

    Более сложный случай представляет собой молекула двуокиси углерода, для которой правило 3 — 5 предсказывает четыре нормальных колебания. В молекуле СОг двум вырожденным колебаниям (уг на рис. 7-6) отвечает одна полоса. Эти колебания деформационные и происходят под прямыми углами друг к другу. В дальнейшем мы увидим, какую пользу в предсказании числа ожидаемых вырожденных полос оказывают соображения симметрии. У более сложных молекул некоторые из нормальных колебаний случайно могут быть вырожденными, когда две частоты колебаний оказываются равными. Такое вырождение предсказать трудно, и оно часто вызывает дальнейшие осложнения. Отнесение полос СОг более затруднительно, чем для 50г, поскольку в инфракрасном спектре и спектре комбинационного рассеяния возникает большее число полос. Полосы при 2349, 1340 и 667 см относятся соответственно к Уз, VI и что детально обосновано в книге Герцберга [1]. В рассмотренном примере основные частоты — три наиболее интенсивные полосы в спектре. В некоторых случаях при колебании происходит лишь небольшое изменение дипольного момента и основная частота слабая (см. в тексте первое правило отбора). [c.214]


    В спектрах комбинационного рассеяния (КР), как и в инфракрасных спектрах, проявляются колебательные переходы молекул [17—21]. Однако правила отбора для обоих типов спектров различны, поэтому в зависимости от симметрии колебания переход может быть разрешен только в спектре комбинационного рассеяния или только в инфракрасном спектре. Некоторые колебания могут проявляться в обоих спектрах или же могут быть в обоих запрещены. Совместное рассмотрение ИК- и КР-спектров чрезвычайно эффективно для установления типов симметрии многих молекул. Согласно правилам отбора, для мо.чекулы, обладающей центром симметрии, все переходы, разрешенные в КР, будут запрещены в ИК, и наоборот, переходы, разрешенные в ИК, будут запрещены в КР. Л [c.186]

    Полные таблицы характеров, подобные табл. 8, уже получены для всех точечных групп. Поэтому на практике нет необходимости в таком подробном рассмотрении, какое проведено здесь. В приложении I даны полные таблицы характеров представлений для тех точечных групп, которые часто встречаются в этой книге. Из этих таблиц непосредственно получается правило отбора для инфракрасных спектров и спектров комбинационного рассеяния колебание активно в инфракрасном спектре или в спектре комбинационного рассеяния, если оно относится к тому же типу симметрии, к которому принадлежит одна из компонент соответственно дипольного момента или поляризуемости. Например, из таблицы характеров представлений точечной группы Он непосредственно следует, что в инфракрасном спектре активны только колебания типа а в спектре комбинационного рассеяния активны только колебания типов Aig, Eg и F2g, так как в случае этой точечной группы компоненты дипольного момента или поляризуемости относятся соответственно к этим типам симметрии. Из рассмотрения таблиц характеров представлений видно, что 1) в случае любой точечной группы полносимметричное колебание является активным в спектре комбинационного рассеяния и 2) в случае точечных групп, имеющих центр симметрии, колебания, активные в инфракрасном спектре и спектре комбинационного рассеяния, относятся всегда соответственно к и- и g-типам. [c.68]

    В качестве примера применения правил отбора для установления симметрии молекул рассмотрим случай молекул типа XY3. Для таких молекул возможны две модели пирамидальная с симметрией Сз и плоская с симметрией Оън- Полное число колебаний равно шести. Из рассмотрения модели молекулы группы Сз,- (см. рис. 28) легко указать два полносимметричных колебания в одном из них три атома Y колеблются вдоль связей XY, во втором симметрично изменяются три угла YXY. Эти колебания относятся к классу А . Остальные колебания относятся к классу дважды вырожденных Е (см. табл. 7). Оба типа колебаний разрешены и в комбинационном спектре и в инфракрасном, т. е. в каждом спектре можно ожидать появления четырех линий, из которых две поляризованы. При симметрии имеем одно полносимметричное колебание Ai (атом X неподвижен, треугольник из трех атомов Y симметрично расширяется и сжимается), причем это колебание запрещено в инфракрасном спектре (см. табл. 7). Второе колебание класса Al, антисимметричное к плоскости молекулы (атом X колеблется по оси, перпендикулярной к плоскости молекулы, три атома Y — в противоположном направлении), неактивно в комбинационном рассеянии. Два вырожденных колебания класса Е разрешены в обоих спектрах. Таким образом, для этой модели можно ожидать появления трех линий в комбинационном рассеянии (одна поляризована) и трех в инфракрасном спектре. [c.158]

    В двух предыдущих параграфах было показано, что колебательные спектры комбинационного рассеяния дают обширную информацию о строении молекул. В спектрах КР весьма отчетливо проявляется симметрия молекул. В соответствии с симметрией колебания молекулы распадаются на ряд классов. Для каждого класса колебаний существуют правила отбора, определяющие возможность для данного колебания проявиться в инфракрасном спектре или спектре комбинационного рассеяния. Класс колебаний определяет также (качественно) интенсивность линий и состояние их поляризации. Число колебаний каждого класса симметрии и число соответствующих им линий в спектре может быть легко подсчитано на основе теории групп. Таким образом, колебательные спектры позволяют сделать выбор между несколькими возможными моделями некоторой молекулы и установить истинную модель (см. 9). [c.220]

    Последнее замечание, которое следует сделать в связи с таблицами характеров, относится к их использованию для определения правил отбора при различных колебаниях. Все колебания, относящиеся к тому же представлению, как и одно или несколько вращений, активны в инфракрасном поглощении. В крайней правой графе таблицы характеров для группы приведены некоторые произведения координат. Это компоненты тензора, и они помещены в строчки, соответствующие представлениям, передающим трансформационные свойства этих произведений. Любое колебание, принадлежащее представлению, к которому относятся также один или несколько компонентов тензора, активно в спектре комбинационного рассеяния. В случае HgO легко видеть, что все три колебания активны как в инфракрасном спектре, так и в спектре комбинационного рассеяния. [c.290]


    Деформационные колебания С — М — С активны только в инфракрасном спектре и не наблюдаются непосредственно, так как их частоты очень малы. Приведенные в табл. 53 частоты выведены из положения составных полос с учетом правил отбора. Полученные таким образом частоты попадают в ту область, где и должны находиться частоты таких колебаний, появляющиеся иногда и при еще меньших значениях (см. ниже карбонилы металлов). Непосредственное наблюдение этих колебаний возможно только в спектрах комбинационного рассеяния, и то только в тех случаях, когда они дают достаточно интенсивные линии, поскольку эти линии близки к возбуждающим линиям, обычно довольно широким. [c.310]

    Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Оба эти метода дают возможность установить характеристические частоты колебаний молекулы. Для большинства молекул полная совокупность колебательных частот может быть получена только при совместном использовании и ИК-спектра, и спектра КР. Это связано с различием интенсивности полос в этих спектрах для разных типов колебаний. Такое различие особенно велико у молекул, обладающих высокой симметрией. В этих случаях некоторые полосы в ИК-спектрах могут иметь коэффициент поглощения, близкий к нулю, а другие — сравнительно низкую интенсивность в спектре КР. Говоря более строго, симметрия молекулы может привести к появлению правил отбора. Для переходов в ИК-спектре и спектре КР они различны, так как интенсивность полосы в обоих случаях зависит от различных электрических свойств молекулы. Для ИК-переходов необходимо изменение дипольного момента при колебании, для переходов в спектре КР—изменение поляризуемости. Отсюда следует, что в двух спектрах одновременно могут проявиться лишь немногие частоты, и потому нужны оба спектра. [c.68]

    Следует также остановиться на возможных изменениях интенсивности полос поглощения при адсорбции вследствие нарушения под влиянием адсорбционного поля так называемого правила отбора. Как уже было отмечено, интенсивность полос в инфракрасном спектре определяется изменением дипольного момента молекулы при колебании по соответствующей нормальной координате. Однако, особенно в случае симметричных молекул, возможно существование колебаний, и не приводящих к изменению дипольного момента (рис. 3). Такие колебания в основном приводят к изменению поляризуемости молекул и проявляются в спектрах комбинационного рассеяния. [c.57]

    Таблица корреляций является просто выражением того, что в подгруппе (локальная группа Сг) частично сохраняется симметрия группы (или пространственной группы Очн, или точечной группы молекулы Ови)-Таким образом, все те классы симметрии, которые при выполнении операции инверсии в имеют характер +1, коррелируют с локальной группы, так же как и классы симметрии фактор-группы которые симметричны по отношению к операции инверсии, и так далее. Симметрией молекулы в кристалле фактически является локальная симметрия, и поэтому можно просто коррелировать каждое колебание молекулы с соответствующим ему классом рассматриваемой группы Сг и предсказать его спектральную активность, применяя правила отбора, соответствующие группе Сг (т. е. колебания, которые относятся к типу Аи, будут активны в инфракрасном спектре, в то время как колебания, относящиеся к типу Ag, будут активны в спектре комбинационного рассеяния). Эта процедура называется анализом локальной симметрии [44]. [c.585]

    Идеальный случай такого закономерного распределения частот схематично показан на рис. 9,Л [59, 95]. Вся сумма значений частот представляет схематичное решение механической задачи о колебаниях, но появление этих частот в реальных спектрах зависит также от того, что при некоторых колебаниях происходят изменения дипольного момента (активны в инфракрасном спектре), а при некоторых — поляризуемости (активны в спектре комбинационного рассеяния). На рис. 9, А соответствующими символами показаны также правила отбора в отношении маятниковых колебаний СНз, а на рис. 9,Б представлено фактическое распределение полос, наблюдаемых в инфракрасных спект- [c.382]

    Как уже указывалось выше, правила отбора в спектрах комбинационного рассеяния отличаются от правил отбора в инфракрасных спектрах. Чтобы колебание было активным в спектре комбинационного рассеяния, необходимо следуюи ее условие изменение поляризуемости молекулы при колебательном движении в равновесном положении нормального колебания должно быть отличным от нуля, т. е. [c.220]

    Инфракрасные спектры и спектры комбинационного рассеяния любой системы определяются ее нормальными колебаниями и совокупностью правил отбора. Система, состоящая из /У-атомов, имеет ЗN нормальных колебаний (включая трансляции и вращения системы как целого), тогда как число колебаний, активных в ИК- и КР-спектрах, может быть много меньше. Активность колебаний можно вывести из свойств симметрии системы, и во многих случаях наблюдаемые частоты можно приписать соответствующим нормальным колебаниям. Обычно такой анализ весьма прост для небольших высокосимметричных молекул, но для больших несимметричных молекул эта задача фактически неразрешима. Однако в случае кристаллических систем задача упрощается благодаря так называемой трансляционной симметрии. Теоретико-групповой анализ таких систем составляет предмет данной главы. Сначала мы введем некоторые элементы теории групп, ограничиваясь объемом, который требуется в дальнейшем. Затем мы кратко остановимся на хорошо известном теоретико-групповом анализе простых многоатомных молекул, применим его к кристаллическим системам и, в частности, к цепным молекулам. [c.54]

    Как было отмечено выше, многоатомные молекулы нмеют ЗN — 6 или ЗМ — 5 ( в случае линейных молекул) нормальных колебаний. Однако для каждой данной молекулы в инфракрасном спектре и спектре комбинационного рассеяния проявляются только те колебания, которые разрешены правилами отбора для этой молекулы. А так как правила отбора определяются симметрией молекулы, она и должна быть рассмотрена в первую очередь. [c.30]

    Для определения активности колебаний в инфракрасном спектре и в спектре комбинационного рассеяния к каждому нормальному колебанию следует применить правило отбора. С квантовомеханической точки зрения П—4] колебание активно в инфракрасном спектре, если при колебании изменяется дипольный момент молекулы, и колебание активно в спектре комбинационного рассеяния, если при колебании изменяется поляризуемость молекулы. Из рассмотрения форм нормальных колебаний многоатомных молекул непосредственно не следует вывод об изменении дипольного момента или поляризуемости. Как будет показано ниже, однозначное решение этого вопроса дает применение теории групп. [c.41]

    Изложенное выше справедливо для гипотетического изолированного ферроцианид-иопа. Однако реальный ферроцианид-ион никогда не бывает изолированным в кристаллах он окружен катионами и молекулами кристаллизационной воды, а в растворах — сольватированными катионами и молекулами растворителя. Если силовое поле, создаваемое вокруг ферроцианид-иопа внешнесферными ионами и молекулами, в растворах более или менее равномерно во всех направлениях (по крайней мере, в не слишком концентрированных растворах, когда отсутствуют заметные флуктуации концентраций и не образуются прочные ассоциаты), то в кристаллах симметрия этого силового поля может быть низкой, вследствие чего симметрия самого ферроцианид-иопа также понизится. Поэтому для кристаллических ферроцианидов правила отбора иные, чем для правильного октаэдра [Ре(СК)в] ". В соответствии с этим частоты, неактивные для правильного октаэдра в инфракрасных спектрах поглощения или в спектрах комбинационного рассеяния, становятся активными в спектрах кристаллических солей, а для вырожденных колебаний — снимается вырождение. Все это приводит к тому, что в колебательных спектрах кристаллических ферроцианидов проявляется значительно большее число частот, чем это соответствует ферроцианид-иону с конфигурацией правильного октаэдра, а полосы поглощения (или линии в спектрах комбинационного рассеяния), относящиеся к вырожденным колебаниям правильного октаэдра [Ре(СК)б] , расщепляются на несколько компонент. [c.143]

    Следует отметить, что для каждой данной молекулы в инфракрасном спектре и в спектре комбинационного рассеяния проявляются только те колебания, которые разрешены правилами отбора этой молекулы. Правила отбора определяются симметрией молекулы, которая зависит от пространственного расположения ядер в молекулах. [c.10]

    Стюарт и Нильсен [3865] на приборах с дифракционными решетками Вуда разрешили вращательную структуру полос v , Vg, v,, Vg и Vg молекулы H2F2 и определили положение центров этих полос. Вследствие частичного перекрывания полос v и Vg другими полосами положение их центров Стюарт и Нильсен определили менее точно. Частоты Vg = 1262 и V2 = 1508 см" в работе [3865] приняты на основании данных [3383] о спектре комбинационного рассеяния, так как в инфракрасном спектре соответствующие полосы не наблюдались. Полоса при 1508 см , отнесенная на основании поляризационных измерений Ранка, Шалла и Пейса [3383] к полносимметричному колебанию, должна быть активной в инфракрасном спектре. Плайлер и Бенедикт [3277] отмечают, что эта полоса, вероятно, в инфракрасном спектре малоинтенсивна и маскируется в этой области поглощением водяного пара. Линия 1262 см в спектре комбинационного рассеяния [3383] сильно деполяризована и отнесена к частоте Vg, неактивной в инфракрасном спектре. Плайлер и Бенедикт [3277] наблюдали слабую полосу при 1262 см и объяснили это нарушением правила отбора либо из-за кориолисова взаимодействия Vg и V7, либо из-за сильного межмолекулярного взаимодействия. Отнесение частот, принятое в работах [3277, 3383], подтверждается расчетом частот H2F2 по силовым постоянным [2848]. [c.509]

    Эффекты поляризации также обнаружены для спектров комбинационного рассеяния. В общем случае сильные линии, связанные с симметричными колебаниями, поляризуются наиболее сильно. Хиббен [62] и другие исследователи [50] детально обсудили эффект поляризации и его связь с молекулярной структурой, а также правила отбора, определяющие взаимосвязь между молекулярными колебаниями и частотами комбинационного рассеяния и инфракрасными частотами. [c.279]

    Буквы КР и ИК означают, что колебание активно соответстЕснно в спектрах комбинационного рассеяния или в инфракрасном спектре. Для колебании, активных в инфракрасном спектре, дается тип полосы параллельный ( ) или перпендикулярный ( ] ). Для частот, активных в спектрах комбинационного рассеяния, даются также правила отбора для квантового числа К- [c.173]

    Как указывалось выше, активность колебаний в инфракрасном спектре и степень вырождения колебаний в значительной мере определяются симметрией молекул. Когда молекула находится в кристалле, правила отбора определяются симметрией окружения молекулы в элементарной ячейке, так называемой симметрией положения. Часто полосы, запрещенные в газообразном состоянии, появляются у твердых веществ, а колебания, вырожденные в газообразном состоянии, расщепляются в кристалле. Общая проблема влияния симметрии положения на правила отбора была исследована теоретически [9, 10]. В качестве простой иллюстрации этого эффекта рассмотрим инфракрасные спектры веществ, содержащих карбонат-ион. Инфракрасный спектр (ИК) и спектр комбинационного рассеяния (СКР) СаСОз в виде кальцита, где карбонатный ион имеет симметрию положения Оз, включают следующие полосы (сл" ) VI 1087 (СКР), V2 879 (ИК), vз 1432 (СКР, ПК), V4 710 (СКР, ИК). Инфракрасный спектр СаСОз в виде арагонита, где карбонатный ион находится в положении с симметрией С,, отличается от спектра кальцита тем, что частота VI становится активной в инфракрасном спектре, а vз и V4 расщепляются каждая на две полосы. Используя соображения симметрии, рассмотренные выше для иона СОз . получаем следующие результаты  [c.239]

    На практике изучают спектры поглощения электромагнитного излучения с частотами, близкими к частотам колебаний атомов, — инфракрасный (ИК) диапазон (10—10000 сМ ), спектры неупругого (с рождением или уничтожением фонона) рассеяния электромагнитного излучения видимого или ультрафиолетового (УФ) диапазона (комбинационное, или рамановское, рассеяние), рентгеновского излучения или тепловых нейтронов. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния (КР) позволяют достичь максимального разрешения по энергиям, но из-за малого волнового числа первичного излучения дают информацию (если пренебречь многофононными эффектами, имеющими весьма малую интенсивность) только о колебательных состояниях вблизи центра зоны Бриллюэна (оптическим модам при квазиимпульсе, равном нулю). Кроме этого ограничения в обоих методах существуют правила отбора по симметрии ё спектрах поглощения (ИК спектрах) наблюдаются колебательные моды, характеризующиеся изменением дипольного момента, а в спектрах КР — колебания, при которых изменяется квадрупольный момент. Таким образом, эти две методики дополняют друг друга, и для получения более полной информации о колебательном спектре изучаемого вещества желательно иметь оба спектра. В то же время часть колебаний оказывается неактивной ни в ИК спектрах, ни в спектрах КР (так называемые немые моды). Применение для исследования колебательной структуры твердых тел неупругого рассеяния нейтронов лишено всех упомянутых выше ограничений, но в значительной степени ограничено существенно меньшим разрешением и необходимостью много большего количества вещества для проведения эксперимента. Так, спектры неупругого рассеяния нейтронов на различные углы позволяют, в принципе, определить дисперсионные кривые для всех колебательных мод. Однако низкое разрешение приводит к тому, что подобный анализ возможен лишь для относительно простых систем, а в большинстве случаев возможно рассмотрение только усредненного по всей зоне Бриллюэна суммарного спектра всех колебательных мод. [c.272]

    Более подробные сведения об этом можно найти в специальных работах, например у Хиббена [141], где приводятся прЕнвила отбора, управляющие соотношением между молекулярными колебаниями и частотами инфракрасного спектра и спектра комбинационного рассеяния света. Следует упомянуть одно важное и просто запоминающееся правило у молекул, обладающих центром симметрии, колебания атомов, симметричные относительно центра симметрии, активны (т. е. возбуждаются я проявляются) в спектрах комбинационного рассеяния света и неактивны в инфракрасном спектре поглощения и, наоборот, асимметричные относительно центра колебания активны в инфра- [c.151]

    Наприм( р, если в молекуле имеет место инверсия, являющаяся операцией симметрия для каждой отдельной молекулы, то соблюдается правило отбора, согласно которому каждое нормальное колебание активно или в инфракрасном спектре, или в спектре комбинахщонного рассеяния, но никогда не может быть активно в обоих спектрах. В то же время,, если молекула полностью асимметрична, т. е. если к ней неприменима ни одна операция симметрии, все нормальные колебания активны как в инфракрасном спектре, так и в спектре комбинационного рассеяния. [c.300]

    Во многих случаях для облегчения анализа спектров может быть применен чрезвычайно полезный метод, основанный на зависимости частот колебаний от масс атомов. Замещение атомов их изотопами, в частности замещение атомов водорода в углеводородах атомами дейтерия, заметно изменяет инфракрасные спектры и спектры комбинационного рассеяния н позволяет получить ряд важных сведений. Поскольку силовые постояниые практически не зависят от изотопического состава, исследование спектров полностью дейтерированных углеводородов позволяет получить допо.инительиое число частот для вычисления силовых постоянных и поэтому применяется в ряде с-дучаев. Кроме того, частичное дейтерирование симметричных молекул уменьшает их симметрию, изменяет правила отбора и приводит к расщ(шлению вырожденных колебаний на невырожденные (т. е. к снятию вырождения с некоторых колебаний). Подобные изменения часто чрезвычайно важны для определения и отнесения основных частот исходных (недейтерированных) углеводородов. [c.301]

    Установление колебательных правил отбора осуществляется обычным способом. Произведение представлений исходного и конечного состояний должно содержать в своем разложении представление оператора перехода. В случае колебаний исходным состоянием является основное состояние, обладающее симметрией гамильтониана для основного состояния. Оно должно быгь полносимметричным. Вывод правила отбора основывается на том, что разрешенный колебательный переход должен происходить в возбужденное колебательное состояние, которое обладает трансформационными свойствами какой-либо компоненты оператора перехода. Для обычного поглощения или испускания излучения (инфракрасная спектроскопия) речь идет о компонентах дипольного оператора. В группе С20 компоненты дипольного оператора преобразуются по представлениям Ль В1 или В2. Все эти типы симметрии колебаний молекулы воды отвечают разрешенным в инфракрасном спектре переходам. В спектроскопии комбинационного рассеяния оператором перехода является оператор поляризуемости, который преобразуется как квадрат дипольного оператора. Его компоненгы зависят от декартовых координат как х , г/ г , ху, хг и уг. Представления, по которым преобразуются эти компоненты, обычно тоже указываются в таблицах характеров. Для группы С20 имеются компоненты поляризуемости, которые преобразуются по каждому из ее пред-сгавлений. Следовательно, любой тип колебаний молекулы с [c.335]

    Хотя спектроскопические проявления физической адсорбции, как было показано, аналогичны изменениям спектра в процессе конденсации жидкой фазы, в то же время на спектр адсорбированных молекул оказывает дополнительное влияние асимметричность силового поля поверхности твердого тела. В отличие от раствора, где молекула со всех сторон окружена растворителем, на поверхности молекула испытывает одностороннее действие окружающей среды. Это асимметричное действие вызывает искажение структуры молекулы, при котором в инфракрасном спектре начинают проявляться определенные колебания, первоначально запрещенные правилами отбора с точки зрения симметрии. На рис. 125 представлена примерная форма валентных колебаний СН молекулы этилена и приведены частоты соответствующих полос поглощения газовой фазы в инфракрасном спектре и в спектре комбинационного рассеяния. В газовой фазе только колебания Vg И Vil сопровождаются изменением дипольного момента и вызывают поглощение в инфракрасном спектре. Симметричные колебания Vi и V5 не имеют полос поглощения в инфракрасном спектре, однако они вызывают изменение поляризуемости и проявляются поэтому в спектре комбинационного рассеяния. Правила отбора, определяющие появление полос поглощения в спектре, могут нарушаться, если молекула попадает в асимметричное силовое поле поверхности адсорбента. Этим объясняется появление полосы Vi при ЗОЮ см (рис. 124, табл. 44) в спектре этилена, адсорбированного на пористом стекле (Шеппард и Иейтс, 1956). Наряду с этой полосой наблюдались две интенсивные полосы поглощения при 3100 и 2980 см колебаний Vg и Vil, которые разрешены в инфракрасном спектре. При более высоком разрешении Литтл (1961) наблюдал в спектре этилена, физически адсорбированного на пористом стекле, четвертую полосу около 3070 см (рис. 126). Эта полоса была приписана валентному колебанию СН (V5), которое обычно появляется только в спектре комбинационного рассеяния (см. рис. 125). Отнесение этой полосы к колебанию, проявляющемуся в спектре комбинационного рассеяния при 3108 и 3075 см для газообразного и жидкого этилена соответственно, впервые было сделано Стойчевым (1953). Однако на основании проведенных позднее исследований инфракрасного спектра твердого этилена (Довс, 1962) полосу поглощения при 3066 см следует отнести не к валентному колебанию СН (Vs), а к составному тону более низкочастотных колебаний. [c.372]

    Если один из атомов V в плоской молекуле ХУз замещен атомом 2, то симметрия молекулы понижается до Сг -. Если два атома V замещены двумя различными атомами У и 2, то происходит дальнейшее понижение симметрии до Сз. В результате этого правила отбора изменяются, как указано в табл. 25. В обоих случаях все шесть колебаний становятся активными в инфракрасном спектре и спектре комбинационного рассеяния. В табл. 26 приведены наблюдаемые фундаментальные частоты колебаний молекул этих двух типов. Отнесение полос для НМОз и ОЫОз сделано в предположении, что группа ОН является как бы одним атомом, имеющим ту же массу, что и группа ОН. В спектре паров HNOз валентные колебания О — Н, ножничные деформационные колебания N — О — Н и крутильно-деформационные колебания О —Н наблюдаются соответственно при 3560, 1335 и 465 слг> [209]. Интересно отметить, что С1Рз и ВгРз являются плоскими Т-образными молекулами, имеющими [c.135]

    Может показаться, что теория спектров второго порядка, которая была изложена в гл. 10 и с приложениями которой мы только что познакомились, не вполне пригодна для обертонов и составных ТОНОВ колебательных мод в кристаллах, содержащих нейтральные или ионные молекулы. Действительно, очень часто в инфракрасных спектрах поглощения и реже в спектрах комбинационного. рассеяния ) наблюдаются полосы, относящиеся к обертонам или составным то1 ам внутренних колебаний. Они характеризуются вполне определенными частотами, и их щири-ны — того же порядка, что и щирины полос нормальных колебаний. В этих случаях вполне удовлетворительные прогнозы обычно позволяют сделать правила отбора, основанные на фактор-групповом подходе. [c.320]

    Располагая достаточно полными экспериментальными данными о колебательных спектрах молекулы, можно при помоши правил отбора в ряде случаев установить ее симметрию. Проявление той или другой колебательной частоты в спектре комбинационного рассеяния или инфракрасного поглощения или в обоих спектрах и численное значение степени деполяризации соответствующей линии дают указания о принадлежности этой линии к определенному классу колебаний, т. е. й о симметрии молекулы. Наиболее просто решается вопрос о наличии в молекуле центра симметрии, так как в этом случае действует альтернативный запрет. Во многих случаях ценные выводы можно сделать на основании измерений степени деполяризации линий в спектрах комбинационного рассеяния. Однако практически здесь часто возникает неопределенность, так как при ограниченной точности измерений трудно бывает решить, является ли линия деполяризованной (р = 6/7), т. е. относится ли она к неполносимметричным колебаниям. Также трудно решить вопрос о полной поляризации линии (р = 0), что могло бы свидетельствовать о кубической симметрии молекулы. Поэтому обычно данные о колебательных спектрах комбинируют с другими физическими и химиче-гкими данными о строении молекулы. [c.157]

    В случае комбинационного рассеяния правила отбора несколько отличаются от правил, приложимых к колебательным полосам инфракрасного спектра. Так, для линейных молекул Д/=0, 2 для параллельных полос и 1, 2 для перпендикулярных -ветвь должна, таким образом, присутствовать в параллельных и отсутствовать в перпендикулярных полосах. Для симметричных волчков АК=0 и = О, 1, 2 для колебаний, параллельных оси симметрии молекулы, тогда как для колебаний, перпендикулярных к этой оси, АК = 1, 2 и Д7 = 0, 1, 2. Взаимодействие между колебаниями и вращениями должно вести к аномальному разделению в перпендикулярных полосах, точно так же, как в инфракрасных спектрах. У сферически симметричных молекул только те полосы в спектре комбинационного рассеяния могут обнаруживать вращательную структуру, которые обусловлены не полностью симметричными колебаниями. Для такой полосы правилом отбора является условие Д/ = 0, 1, 2. Подобные правила отбора приложимы к полосам комбинационного рассеяния несимметричных молекул. Очевидно, что вследствие большого числа дозволенных вращательных переходов структура колебательных полос в спектрах комбинационного рассеяния многоатомных молекул должна быть сложна. Если бы нолосы были разрешены, то они дали бы возможность вычислить моменты инерции молекул, которые могли бы дополнить данные, получаемые из инфракрасных спектров. [c.284]

    Из сказанного выше видно, что одни и те же энергетические уровни определяют, с одной стороны, эффект комбинационного рассеяния и, с другой стороны, колебательно-вращательные переходы. По этой причине спектры комбинационного рассеяния содержат, вообще говоря, те же частоты, что и инфракрасные спектры. Однако имеются некоторые существенные различия, обусловленные тем обстоятельством, что у этих двух типов спектров спраЕ едливы разные правила отбора. (Колебание атомов в молекуле образует инфракрасную частоту только в том случае, если оно вызывает изменение дипольиого электрического момента, т.е. поляризацию молекулы, в то время как появление рамановской частоты требует изменения поляризуемости см. ниже.) Поэтому некоторые частоты, отсутствующие в спектре комбинационного рассеяния, присутствуют в инфракрасном спектре, и наоборот. Так, симметричное линейное колебание молекулы СОз, не активное в инфракрасном спектре (см. рис. 28), проявляет себя в виде рамановской частоты при 1336 см -Таким образом, инфракрасные спектры и спектры комбинационного рассеяния удачно взаимно дополняют друг друга. [c.110]

    Инфракрасные спектры поглощения и спектры комбинационного рассеяния света в пределах, определяемых правилами отбора, дают по существу одни и те же сведения о молекуле, а именно -колебательный спектр молекулы, находящейся в нормальном электронном состоянии (правила отбора определяют появление частоты соответствующего колебания только в том или ином спектре или в обоих сразу). Если задача эксперимента заключается в характеристике чистого вещества или смеси, содержащей большие количества всех компонентов, то могут использоваться обе методики и выбор одной из них определяется удобством и доступностью оборудования. Аппаратура для получения спектров комбинационного рассеяния света стоит значительно дешевле и проще в эксплуатации, чем инфракрасные спектрометры когда проводится исследование случайного образца (и если иметь в виду, что работы ведутся не часто, а требования к чувствительности анализа невысоки), то для исследования веществ, допускающих Освещение их видимым светом, следует предпочесть спектроскопию комбинационного рассеяния света. В тех же случаях, когда требуется высокая чувствительность анализа или предполагаются широкие масштабы аналитических работ с многочисленными и разнообразными веществами, необходимо отдать предпочтение большим преимуществам инфракрасной методики. Однако воз -можно, что с усовершенствованием автоматической фотоэлектрической регистрации спектроскопия комбинационного рассеяния света окажется, как метод анализа смесей, на одном уровне с инфракрасной и ультрафиолетовой спектроскопией. Описание аналитических методик спектроскопии комбинационного рассеяния света см. в работе Штамма [175а] и других [158а]. > [c.174]


Смотреть страницы где упоминается термин Колебания правила отбора для спектров комбинационного рассеяния и инфракрасных спектров: [c.290]    [c.261]    [c.396]    [c.306]    [c.385]    [c.392]    [c.222]    [c.173]    [c.133]    [c.97]   
Современная химия координационных соединений (1963) -- [ c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Инфракрасные спектры и спектры комбинационного рассеяния

Комбинационное рассеяние

Комбинационное рассеяние правила отбора

Правила отбора

Правила отбора для инфракрасных спектров и спектров комбинационного рассеяния

Спектры комбинационного рассеяния



© 2025 chem21.info Реклама на сайте