Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носитель реакционная способность

    Для поиска возможных маршрутов химического синтеза необходимо использовать ряд соображений, позволяющих предсказать ре кционную способность химических соединений. При этом учитывается, что носителями тех или иных видов реакционной способности являются определенные фрагменты структуры молекулы. [c.36]

    Гидрирование ацетиленовых и диеновых углеводородов в пропан-пропиленовой и бутан-бутиленовой фракции пиролиза. Во избежание термической полимеризации гидрирование сжиженных газов пиролиза необходимо осуществлять при возможно более низкой температуре (не более 50 °С), причем повышение ее должно происходить только путем адиабатического разогрева (за счет теплового эффекта реакции). Чтобы не допустить чрезмерного разогрева, в ряде случаев следует использовать два последовательных реактора колонного типа либо применить трубчатые реакторы с внешним теплоносителем или возвратом части про-гидрированного и охлажденного продукта на вход реактора. Поскольку фракции пиролиза Сз и С4 получаются в жидком виде, целесообразно проводить гидрирование также в жидкой фазе. Ввиду высокой реакционной способности гидрируемых примесей большого соотношения водород/сырье не требуется, поэтому, как правило, циркуляция водородсодержащего газа не применяется. В реакторы подается стехиометрическое количество водорода с 10—30% избытком. К катализаторам предъявляются требования высокой селективности (гидрироваться должны только высоконенасыщенные углеводороды) и инертности по отношению к реакции полимеризации. Наиболее эффективны палладиевые катализаторы, нанесенные на окись алюминия или носители на основе окиси алюминия. [c.21]


    Таким образом, ЖГ и олигомерные смолы должны обладать повышенной реакционной способностью, носителями которой являются катионы кислот и ненасыщенные связи. [c.48]

    Повышенное содержание в ОСК свободной серы и сульфокислот, а в олигомерных смолах - непредельных соединений (диенов и олефинов) обусловливает их высокую реакционную способность, носителями которой являются катионы кислот и ненасыщенные связи. Существование таких активных центров предполагает следующие механизмы протекания реакций  [c.50]

    Важную роль играет реакционная способность газа, которая зависит от свойств не только газа-носителя, но и анализируемых веществ. Так, например, воздух окисляет альдегиды и олефины [c.58]

    Если в идра-положение фенильных колец ввести сильные электронные акцепторы типа -НОг и -СЫ и др., то стабильность свободных радикалов возрастает еще сильнее, а реакционная способность уменьшается, так как валентность неспаренного электрона размазывается по десяти реакционным центрам. В тех случаях, когда распределение спиновой плотности по тс-системе сочетается еще с экранированием атома — носителя электрона объемистыми группировками, реакционная [c.399]

    Преимуществом твердых носителей, приготовленных на основе тефлона, является его минимальная химическая реакционная способность он реагирует только с расплавленными щелочными металлами и с элементарным фтором и совершенно не обладает каталитической и адсорбционной активностью. Таким образом, он является лучшим носителем для разделения сильнополярных и реакционноспособных соединений. [c.45]

    Известно, что в последние десятилетия основная масса традиционных химических и инструментальных методов анализа смесей органических веществ полностью вытеснена бурно прогрессирующей хроматографией. С учетом того, что разделительная способность хроматографических колонок (аналогия с ректификацией ) достигает тысяч теоретических тарелок, причем относительная летучесть анализируемых веществ может целенаправленно варьироваться в широких пределах применением селективных стационарных фаз, хроматография практически не имеет ограничений, связанных с близостью и сходством физико-химических свойств анализируемых веществ. По существу единственным условием применимости метода газожидкостной хроматографий является способность компонентов заданной смеси испаряться при нагревании в токе инертного газа для разделения и анализа термически нестабильных веществ эффективно используются методы тонкослойной и распределительной колоночной хроматографии. Однако применение хроматографических методов осложняется в случаях, когда анализируемые вещества характеризуются способностью к взаимодействию с электростатически неоднородным сорбционным полем твердых носителей, особо высокой реакционной способностью и т. д. Всеми этими свойствами, к сожалению, отличается и формальдегид, и сопутствующие ему обычно вещества — вода, метанол и в особенности муравьиная кислота. Без преувеличения можно сказать, что хроматографирование перечисленных веществ, за исключением, может быть, метанола, в течение долгого времени представляло задачу, решение которой потребовало разработ- [c.128]


    В основе разработанного процесса [216] лежит реакция уксусной кислоты с метилацетиленом, катализируемая соединениями металлов II группы, закрепленными на минеральных носителях. Наряду с основным продуктом образуются ацетон и аллилацетат. Сравнение относительной реакционной способности аллена и метилацетилена—основных компонентов МАФ— показало, что в реакцию вступает лишь метилацетилен, аллен же в условиях синтеза инертен [217]. [c.278]

    При определенных температурах наблюдается резкое повышение реакционной способности медных катализаторов прн газификации угольных коксов в сухом воздухе [35]. Ведутся разработки процессов газификации углей в расплавах солей и металлов, играющих роль как катализаторов, так и носителей. В расплав соды подают уголь и кислород (или воздух), а также пар. Сера и компоненты золы переходят в расплав, поэтому часть его выводят из цикла, охлаждают водой сода регенерируется и возвращается в цикл. Сероводород перерабатывается в элементную серу на установке Клауса. Удаление золы, отпаривание сероводорода и регенерация карбоната натрия — хорошо отработанные технологические операции. Преимуществом процесса является возможность переработки любого сырья, отсутствие стадий его подготовки (в частности, измельчения), полная очистка газа от сероводорода и паров смолы, ускорение химических превращений под воздействием соды. Составы газа при парокислородном и воздушном дутье приведены ниже (%)  [c.250]

    Третья стадия процессов окисления — передача электронов — в отличие от первых, является специфичной для гетерогенного катализа и связывает его с проблемами физики твердого тела. Принципиально проблема подвижности электронов в адсорбционном комплексе не отличается от проблемы подвижности электронов внутри молекулы, поскольку такая подвижность обусловливает реакционную способность системы. Действительно, реакцию окисления какого-либо соединения, например ЗОг, на твердом катализаторе можно себе представить в виде передачи электронов катализатора внутри адсорбционного комплекса, аналогично передаче электронов внутри молекулы органического соединения по системе двойных связей. При таком механизме, в какой-то мере аналогичном механизму процессов биологического окисления, лимитирующей стадией может оказаться передача электронов, определяющаяся подвижностью носителей тока, которая у полупроводниковых соединений невелика. [c.41]

    При зонной проводимости и воздействию катализатора по коллективному механизму передача электронов от донора к акцептору происходит через катализатор. Принципиально подвижности электронов в адсорбционном комплексе окисляемый субстрат — катализатор — кислород в данном случае не отличается от подвижности электронов внутри молекулы органического соединения по системе двойных связей, поскольку такая подвижность обусловливает реакционную способность системы. При таком механизме уже нельзя исключить пространственное передвижение электронов, и лимитирующим фактором во всем процессе в целом может оказаться подвижность носителей тока, которая у полупроводниковых соединений невелика. Надо также иметь в виду, что энергия активации проводимости как при зонном механизме, так и цри механизме перезарядки зависит от межатомных расстояний, т. е. от геометрии решетки и от такого косвенного свойства, как плотность. В работе [9] очень четко пока- [c.16]

    Основные научные работы посвящены магнетохимии. Разрабатывал (с 1940-х) магнитные методы исследования химической связи. Применив их к изучению структуры и реакционной способности твердого тела, нашел пути определения валентного состояния металлов в окислах, степени дисперсности металлических и окисных катализаторов и распределения их зерен на носителях. Показал (1955— 1956), что непосредственным измерением удельной намагниченности можно устанавливать механизм хемосорбции, каталитического акта и изменений, происходящих в работающем катализаторе. [c.454]

    Для исследования кинетики реакций с полимеризующими-ся продуктами в присутствии водяного пара разработана и применена модель реактора с поршневым турбулизатором [35]. Исследование методом конкурирующих реакций [23] позволило определять относительную адсорбционную и реакционную способность углеводородов. Импульсный микрокаталитический метод дал возможность изучения кинетики процесса при нестационарном состоянии катализатора. Оценка величины поверхности серебра [21] и окислов меди [22] на поверхности носителя хемо-сорбционным методом позволила определять удельную поверхность и удельную активность контактов. Наиболее быстрым и удобным является хроматографическое определение общей величины поверхности контактов [1]. Применение инфракрасной спектрометрии дало возможность уточнить детали механизма окисления этилена на серебре. [c.23]


    При анализе следов веществ в большинстве случаев большое внимание уделяется выбору детектора. С другой стороны, в случае анализа трудно разделяющихся веществ наибольшее значение имеет правильный выбор газа-носителя и рабочих условий. Физическими и химическими свойствами газов определяются показатели, играющие важную роль в практической работе колонки, — коэффициент диффузии, сопротивление потоку и реакционная способность. [c.172]

    Изучение характера конечных продуктов превращения о-ме-тилированных нитрозоациларилидов в зависимости от природы растворителя, проведенное Хойсгеном, (позволило установить условия, от которых зависят оба направления превращений гранс-диазоэфиров (азосочетание и гомолитический распад). Формальная роль радикала как носителя реакционной способности в реакциях гомолиза не подвергается сомнению. Опыты, однако, свидетельствуют против спонтанной диссоциации на свободные радикалы. Лишь в результате использования подходящих растворителей (например, спирта) удалось вызвать гомолиз. Когда радикалы являются только промежуточными соединениями, акцептор готов к их восприятию еще до того, как радикалы возникают в результате разрыва связей в исходных молекулах поэтому они никогда не находятся в свободном состоянии так, как это имеет место в случае радикалов трифенил-метила. Опыты, которые провел Де Тар то изучению гомолити-ческих реакций оптически активных солей 2-метил-6-нитродифе-нил-2 -диазония, могут быть интерпретированы подобным образом. То обстоятельство, что рацемизация происходит лишь в небольшой степени, показывает, что радикалы, образующиеся в качестве промежуточных продуктов, моментально связываются. Следует признать, как об этом свидетельствуют и новые иссле- [c.96]

    Влияние условий процесса в основном хорошо согласуется с поженными выше его химическими особенностямя. Повышение давления водорода, облегчая стабилизацию радикалов (реакция Щ должно тормозить реакции конденсации типа J0, 11. Поэтому ц Ги-меняются повышенные давления, но так, чтобы пе уменьшить селективность Повышение температуры увеличивает выход продуктов деметилирования как в каталитических, так и в термических процессах. Однако одновременно растет выход продуктов конденсации и усиливаются отложения кокса на катализаторе. Поэтому для каждого катализатора подбирается оптимальная температура, составляющая для хромового и молибденового катализаторов на активированном угле 535—550 °С, для окисного алюмокоТбальтмояиб-денового катализатора — 580—600 °С, для хромового катализатора без носителя — 600—650 °С. Во многих процессах в сырье вводят водяной пар, что уменьшает образование продуктов конденсации и кокса. Такое действие пара объясняют ассоциацией молекул воды с радикалами, что снижает реакционную способность радикалов, но не в такой мере, чтобы препятствовать реакции 2. [c.333]

    Важную роль играет реакционная способность газа, которая зависит от свойств не только газа-носителя, но и анализируемых веществ. Так, например, воздух окисляет альдегиды и олефины при сравнительно невысоких температурах, но остается в этих условиях инертным по отношению к предельным углеводородам, фторсодержащим соединениям и благородным газам. Водород может вызвать гидрирование ненасыщенных соединений. Кроме foro, он взрывоопасен, что существенно ограничивает его применение. [c.52]

    Выбор газа-носителя обусловлен в основном принципом действия детектора. Возможность применения газа-носителя определяется его физическими и химическими свойствами коэффициентом диффузии, вязкостью, химической инертностью, сорбционными свойствами. Важную роль играет реакционная способность газа-носителя, которая зависит не только от его свойств, но и от характера исследуемых веществ. Так, например, воздух окисляет альдегиды и олсфины уже нри невысоких температурах, ио инертен но отнощению к определенным углеводородам и фторсодержащим соединениям. Можно сформулировать следующие требования, предъявляемые к газам-носитслям  [c.340]

    Выполнение работы включало три основных этапа I) направленный синтез высокоспецифических реагентов, являющихся основой получения коньюгатов антигенов, и последующая наработка иммуноспецифических субстанций антител к наркотикам и монодисперсных полимерных суспензий с заданными свойствами реакционно-способных комплексов гаптенов либо их специфических антител с ферментом или их макромолекулярным носителем (белок, полимер) 2) разработка иммунохимического метода анализа для определения опиатов, каннабиноидов и гидазепама на основе полученных реагентов с использованием латексной агглютинации 3) разработка экспериментально-технологического регламента и пакета нормативно-технической документации для выпуска опытно-промышленной серии иммунодиагностикумов для быстрого определения наркотиков в биологической жидкости человека. Создание и испытание опытных серий наборов тест-систем для получения необходимых рекомендаций для внедрения в клиническую практику. [c.200]

    Для использования в пищевых отраслях наиболее перспективным методом иммобилизации, обеспечивающим получение биологически активного материала (БАМ), является ковалентное присоединение БАД к полимеру, основанное на образовании химической связи между функциональными группами молекулы БАД, не определяющими его каталитическую активность, и реакционно-способными группами полимерного носителя. Ковалентное связывание БАД с полимером предотвращает миграцию БАД в пищевую среду и обеспечивает возможность многократного использования БАМ. Однако образование ковалентной связи осуществляется, как правило, с применением токсичных растворителей, активаторов и высоких температур, что приводит к инактивации многих БАД и образованию побочных продуктов реакции. ГГоследнее недопустимо при получении БАМ, предназначенных для пищевых отраслей промышленности. [c.215]

    Подобраны условия анализа навеска кокса 0,5 г размер частиц 0,25- 0,5 мм температура в реакторе по заданию в пределах 600 - 900 °С скорость газа - носителя 12 мл/мин объем вводимого воздуха при 20 °С 0,5 мл диаметр колонки 3 мм длина колонки I м. В качестве адсорбента применили цеолит марки 5А, который четко разделяет кислород, азот и оксид углерода, но поглащает Og. Однако, при изэестном содержании кислорода в исходной пробе и снятой хроматограмме можно расчетным путем определить концентрацию СО2 в продуктах горения и реакционную способность кокса как количество сгоревшего углерода, приходящееся на I г. воздуха. Получена расчетная формула для обработки результатов опыта [c.83]

    Высокая реакционная способность аллилгалогенидов в реакциях 8м1-замещв-иия объясняется уменьшением энергии активации образования аллил-катиона главным образом вследствие резонанса. В то же время резонанс уменьшает нуклеофильность различных анионов за счет делокализации их заряда, вызывая тем самым стабилизацию этих частиц. К анионам, стабилизированным вследствие резонанса, относятся нитрат N0 , сульфат 8О 0 и фосфат РО 0. Имея в виду, что резонансные структуры отличаются только распределением электронов, нарисуйте по две резонансные структуры для каждого из этих ионов, стараясь свести число формальных зарядов на каждом носителе заряда к ми-шшуму. Какое максимальное число эквивалентных резонансных структур возможно для каждого из этпх ионов  [c.211]

    Применимость такого подхода продемонстрирована на примере сополимеризации изобутилена с изобутилвиниловым эфиром (см. табл.4.1). При введении электронодонорных соединений в трудносополимеризующуюся смесь этих мономеров, наряду с общим снижением реакционной способности, наблюдается сближение относительных реакционностей макроионов, так как более элек-трофильный носитель цепи должен сольватироваться сильнее, чем менее элек- [c.195]

    В мокрых скрубберах, предназначенных для пылезолоулавлива-ния, орошающей жидкостью, как правило, является вода. Ее расход для разных типов аппаратов может изменяться от 0,1 до 10 м на 1000 м обрабатываемых газов. Так как основным недостатком мокрых способов обезвреживания является необходимость обработки загрязненных стоков, образовавшихся в процессе очистки газов, то приемлемыми могут быть лишь способы с минимальным водопотреблением. Вообще до принятия решения о применении мокрого способа очистки необходимо тщательно проанализировать свойства обрабатываемых выбросов. Во всяком случае нельзя упускать из поля зрения растворимость, реакционную способность (возможность образования взрывоопасных, коррозионноактивных веществ и вторичных загрязнителей), коррозионную активность компонентов загрязнителя и газа-носителя. Для твердых загрязнителей важны также смачиваемость, схватывае-мость, слипаемость, для жидких-смачиваемость, плотность, параметры фазовых переходов. [c.204]

    Известны три общих метода введения галогена в ароматическое соединение с помощью электрофильного реагента. Такими реагентами, в порядке увеличивающейся реакционной способности, являются 1) молекулярный галоген 2) молекулярный галоген в присутствии катализатора, такого как галогениды иода, олова(IV), железа (III), сурьмы(V) и алюминия 3) положительно заряженный галоген, обычно связанный с носителем, например ионом хлорноватистой кислоты. Выбор одног из этих методов зависит от нуклеофильности ароматического субстрата. Так, хотя хлор или бром реагируют с бензолом в полярных или кислых растворителях, однако реакция проходит очень медленно для завершения реакции между хлором и бензолом требуется несколько дней. С другой стороны, реакция брома с анилином протекает настолько быстро, что ее можно проводить в разбавленных водных растворах при комнатной температуре. Но даже в этих условиях невозможно прекратить реакцию раньше, чем образуется 2,4,6-триброманилин. Это обусловлено, в основном, тем, что каждый из промежуточно образующихся броманилинов является более слабым основанием, чем предыдущий, и поэтому менее способен к протонированию. Для удобства дальнейшее изложение разделено на три части, в которых будут обсуждены реакции фторирования, хлорирования и бромирования, иодирования. [c.375]

    Основная проблема заключается в том, как прикрепить субстрат к полимеру в химии ароматических углеводородов и алифатических соединений это делают с помощью функциональной группы (схемы 2 и 4), такой, как карбоновая кислота или амин, что может ограничивать выбор субстрата в альтернативном методе используют бесследную связку, такую, как силан, который может быть удален, например, при отщеплении водорода от места прикрепления, но этот метод не очень удобен. В этом смысле гетероциклы имеют преимущества Прикрепление к носителю может быть осуществлено с помощью методов [3], подобных описанным выше, а также с помощью кольцевого гетероатома, особенно атома азота в азолах [4] (схема 1) или гетероатома в случае образования гетероциклического кольца на конечной стадии процесса [5] — часто бывает легко проводить реакцию таким образом, чтобы конечная стадия циклизации (образование гетероцикла) сопровождалась одновременным отделением конечного продукта от носителя (схема 3). Атом серы представляет собой удобную связку при синтезе гетероциклов, поскольку он используется как уходящая группа (даже лучше после превращения в сульфоксид [6] или сульфон [7]), что способствует отделению от носителя (схема 5). Для полного обсуждения реакционной способности гетероциклов, использованных в приведенных примерах, следует обращаться к предьщущим главам. [c.673]

    Наиболее часто при гидрировании нитрилов используются никелевые катализаторы скелетный никель ( никель Ренея ), получаемый обработкой щелочью сплавов никеля с алюминием, и никель на различных носителях (на окисях алюминия, хрома, ка пемзе, кизельгуре и др.). Описано гидрирование ка скелетных никель-кобальтовом и никель-железо-молибденовом катализаторах 1 26 никеле Урушибара 27,28 (приготовленном восстановлением хлорида никеля с помощью алюминия и последующим выщелачиванием). В лабораторной практике и в промышленности гидрирование нитрилов проводят также ка скелетных кобальтовых катализаторах и на кобальтовых катализаторах на носителях, приготовленных различными способами. При гидрировании динитрилов на кобальтовых катализаторах дипервичные диамины получают с более высокими выходами, чем при использовании никелевых катализаторов. Гидрирование на никель- и кобальтсодержащих катализаторах, как правило, проводят при давлении 80— 200 ат и температуре 80—200°С. Лишь в присутствии исключительно активных модификаций этих катализаторов и в случае нитрилов с высокой реакционной способностью удается снизить тем нературу и давление гидрирования. [c.348]

    Поверхностные силанольные группы двуокиси кремния имеют слабо кислый характер, но льюисовская кислотность не обнаруживается (если образец чистый). Однако даже небольшое содержание примесей может изменять эти свойства например, льюисовские центры находят на пористом стекле викор [30], что может быть связано с присутствием примеси алюминия. Хотя высокая удельная поверхность силикагеля делает его ценным носителем, сам силикагель как катализатор весьма инертен. Он слабо активен в разложении спиртов [31], возможно из-за примеси ионов А1 +, и в большинстве случаев его значение как катализатора несущественно. Тем не менее гамма-облучение или радиоактивное облучение в ядерном реакторе придает ему некоторую каталитическую активность. Возникающие при облучении типы центров и их реакционную способность обсудил Тейлор [32]. В данном случае можно только отметить, что Р-центры, представляющие собой, вероятно, положительные дырки, захваченные анионными вакансиями, соседними с ионами А1 + (присутствующими как примесь), по-видимому, ответственны за хемосорбцию водорода и катализ обмена Нг — Ог. Если двуокись кремния хорошо обезгажена, облучение создает также кислотные центры, катализирующие реакции изомеризации двойной связи и полимеризацию олефинов. [c.53]

    Дифференциальный анализ водорода. Данный метод, описанный Холлом и Лютинским [149], основан на зависимости реакционной способности водорода при его обмене с дейтерием от природы поверхности, на которой он находится. Пока этот способ использовался только для выявления форм водорода, связанного на металле и на окисле применительно к нанесенной платине, однако метод может оказаться полезным и для выявления различий в реакционной способности поверхности разных металлов при достаточно низкой температуре реакции. Этот метод использовался также для идентификации данных по программированной термодесорбции форм водорода, адсорбированного на дисперсной платине (платиновой черни) [150]. Программированная термодесорбция. Температура, необходимая для десорбции газа с металлической поверхности, зависит от энергии связи газа с поверхностью. Для чистых металлических образцов отдельные пики спектра термодесорбции часто прини-сывают разным типам поверхностных адсорбционных центров. Сводка таких данных приведена Хейуордом [151]. Авторы работы [152] изучали программированную термодесорбцию водорода с дисперсного платинового катализатора (платиновой черни) [152], а в обзоре [153] описана методика исследования таких образцов, предусматривающая десорбцию в поток газа-носителя. По-видимому, возможные изменения десорбционного спектра, полученного для разных газов, например окиси углерода, водорода или азота, могут дать сведения о поверхностном составе катализаторов на основе сплавов. Хотя чаще исследуют металлические образцы без носителя, в благоприятных условиях можно изучать и нанесенные металлы [33] при этом весьма полезно сочетать этот метод и ИК-спектроскопию. Изменения работы выхода. Изменение работы выхода как следствие адсорбции газа может дать сведения о составе поверхности, если известно, что эти изменения для двух чистых компонентов биметаллического катализатора значительно отличаются. Надежнее всего использовать метод для выяснения распределения компонентов сложной системы. Захтлер и сотр. [132, 135] применили фотоэлектрический метод для изучения адсорбции окиси углерода на различных металлических пленках, а Уоллей и др. [154] использовали диодный метод, исследуя адсорбцию окиси углерода на пленках Рс1—Ag. [c.444]

    Разделение и анализ жирных кислот с применением газо-жидкостной, адсорбционной и тонкослойной хроматографии, комплексообразования с карбамидом и ряда других методов, как правило, прош,е и эффективнее, если кислоты переведены в их производные — сложные эфиры. Последние, в отличие от кислот, не обладают способностью димеризоваться, в меньшей степени необратимо адсорбируются на носителях и сорбентах или удерживаются- жидкими фазами, более летучи. Наличие в молекуле сложного эфира жирной кислоты одной или нескольких гидроксильных групп вызывает дополнительные трудности при разделении — усиливается реакционная способность и адсорбируемость (в том числе необратимая), на хроматограммах появляются несимметричные пики. Уменьшить активность гидроксильной группы можно ее блокированием — получением, например, ацетильных, трифторуксусных и триметилсилиловых производных. Эти вещества более летучи, менее полярны и термически устойчивы. [c.163]

    Для разграничения от других типов цепных реакций мы будем назы-, вать такие цепи эстафетными. Они встречаются у гомогенных химических реакций разных типов. Передавать эстафету может частица, или состояние, сообщающее молекулам повышенную реакционную способность и могущее в условиях реакций сохраняться, не исчезая, на протяжении нескольких (многих) элементарных актов. При образовании O I2 и НС1 эстафетой является неспаренный холостой электрон мо-корадикала. При реакции устойчивых молекул с монорадикалами этот электрон не исчезает, а только изменяет носителя. Для вывода неспаренного электрона из игры требуется взаимодействие монорадикалов друг, с другом, с ингибиторами или с поверхностью твердого тела. [c.373]

    В отличие от гидрогенизации сложных органических соединений удельная активность металлов при окислении СО резко возрастает в области малых степеней заполнения платиновых и палладиевых катализаторов на окиси алюминия, для которых характерно резкое возрастание удельной адсорбции водорода и окиси углерода с преобладанием форм с высокой энергией связи [1, 11, 12, 13]. Анализ реакционной способности платиновых и палладиевых катализаторов окисления окиси углерода методом теории активных ансамблей показал, что активным цеьггром является одноатомный ансамбль, который формируется, как и в гидрогенизационных процессах, на особо активных местах носителя, образуя с ним смешанный ансамбль, состояи ий из атомов металла и особо активных мест у-АХгОз. Адсорбционными центрами у-АЬОз, гранецентрированная решетка которой представляет дефектную шпинель с недостатком катионов в окта- и тетраэдрических междоузлиях, являются атомы алюминия. [c.56]

    Реакционная способность представляет собой фактор, зависящий от обоих компопоптов данной системы анализируемое вещество — газ-носитель, и различается для каждого данного анализа и данных рабочих условий. Так, например, воздух окисляет альдегиды или олефины при повышенной температуре, но инертен по отношению к фторсодержащим углеводородам и благородным газам. В случае применения инертных газов N2, Не, Аг и СОз не возникает вопроса о реакционной способности. Поэтому в ГЖХ применяются почти исключительно эти газы. [c.172]

    Поскольку продукты пиролиза могут реагировать п вне анализируемого пиролизуемого образца, природа газа-носителя, его реакционная способность, как и его скорость, в значительной мере влияет на состав продуктов пиролиза. Так, при пиролизе атактического полипропилена в атмосфере азота и водорода летучие продукты пиролиза в атмосфере азота образуются при температуре примерно на 200 °С более высокой, чем в атмосфере водорода [38]. Влияние природы газа-носителя (водорода, гелия) при иапольэавании пиролизера по точке Кюри рассмотрено в работе [38], в которой, кроме того, показано, что материал филамента (железо) оказывает каталитическое действие. Выход ненасыщенных продуктов уменьшается при использовании в качестве газа-носителя водорода. При применении железного филамента, покрытого кварцем, выход продуктов [c.91]

    Приготовление специфических реагентов обычно не представляет особых затруднений. При проведении реакций в хроматографической схеме селективные реагенты наносят на поверхность инертного твердого носителя, используя известные приемы для нанесения неподвижных н идких фаз. В том случае, когда на твердый носитель необходимо нанести реагент, взаимодей-ствуюший с водой (например, концентрированная серная кислота) или кислородом воздуха, то приготовление реагента следует проводить либо в специальном боксе в защитной газовой атмосфере, либо используя метод нанесения НЖФ на твердый носитель в кипящем слое. Использование носителей, обладающих сильными адсорбционными свойствами, в принципе позволяет применить и легколетучие реактивы [3, 4]. Реакционная способность твердых реагентов может быть увеличена, если их использовать в растворителе (НЖФ), в котором удаляемое вещество хорошо растворимо при температуре эксперимента. Некоторые схемы, используемые в методе вычитания, приведены на рис. У-2. Схема а была предложена в работе [4], схема б — в работе [3]. Это наиболее простые схемы, которые применяют в методе вычитания. Однако для проведения анализа методом вычитания на обычной хроматографической аппаратуре необходимо провести два анализа во-первых, обычный анализ исходной смеси без использования реактора и, во-вторых, анализ невычи-таемых (нереагирующих) компонентов, который проводят на последовательно соединенных колонке и реакторе. Поскольку изменение хроматографической схемы в каждом анализе нецелесообразно, желательно использовать схему, позволяющую более просто реализовать обе стадии анализа. Эту задачу решает схема в [5], которая представляется весьма рациональной для использования в методе вычитания. В качестве примера рассмотрим анализ модельной смеси, состоящей из [c.140]

    Большое влияние на метрологические характеристики метода оказывают условия хроматографического разделения. Выбор сорбента и газа-носителя для газохроматографического разделения зависит от образующихся продуктов. Поскольку в качестве детектора используют обычно катарометр, наиболее целесообразно использовать как газ-носитель гелий с некоторыми предосторожностями можно использовать водород. Выбор этих газов обусловлен их высокой теплопроводностью, резко отличной от теплопроводности образующихся соединений. Хотя, как следует из табл. VII-1, в результате химических превращений образуются малокомпонентные смеси, их хроматографическое разделение вызывает определенные затруднения вследствие высокой полярности, высокой реакционной способности некоторых продуктов и резкого различия хроматографических свойств отдельных компонентов. Например воду до детектирования превращали в водород или ацетилен в приборе [c.187]


Смотреть страницы где упоминается термин Носитель реакционная способность: [c.200]    [c.66]    [c.70]    [c.55]    [c.307]    [c.226]    [c.142]    [c.389]    [c.95]    [c.552]    [c.186]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.44 ]




ПОИСК







© 2025 chem21.info Реклама на сайте