Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура жидкости и экспериментальные методы

    Дж. Принс высказал идею о возможности интерпретации структуры жидкости методом сравнения экспериментальных кривых радиального распределения с теоретическими, вычисленными размыванием определенных решеток. [c.59]

    Говоря о различных путях исследования структуры жидкостей, следует назвать и метод прямого экспериментального моделирования жидкостей (Бернал, Кинг, Скотт), осуществляемый путем встряхивания твердых шаров в баллонах с нерегулярной шероховатой поверхностью. Исследования такого рода показали, что структура жидкости в большой степени определяется геометрическими факторами и близка к так называемой случайной плотноупакованной структуре (для такой структуры объем сфер составляет около 0,64 от общего объема, тогда как для регулярной плотноупакованной структуры коэффициент заполнения 0,74 заметим, что относительное различие плотностей регулярной и случайной плотных упаковок приблизительно равно относительному увеличению объема при плавлении аргона). [c.361]


    Более точные расчеты структуры жидкости и ее термодинамических свойств можно провести с помощью машинной техники расчетов по методу Монте-Карло и методу динамического расчета. Математические же приближения пе всегда оказываются рациональными, если речь идет о формулах, лишенных физической основы. Так, например, при расчете уравнения состояния для аргона оказывается, что критические константы, рассчитанные по теории свободного объема, лучше согласуются с экспериментальными данными, чем рассчитанные с помощью суперпозиционного приближения. Но более богатые сведения о структуре жидкости и более точные количественные расчеты можно извлечь из методов машинной математики. Степень приближения к эксперименту расчетов определяется в основном возможностями машин, а эти возможности непрерывно растут. [c.332]

    Предлагаемый вниманию читателя перевод второго тома серии "Методы измерения в электрохимии" под редакцией Э. Егера и А. Залкинда адресован широкому кругу ученых, использующих в своей практике электрохимические методы. В отличие от первого тома ("Мир", 1976), посвященного электродным процессам, здесь описаны методы исследования растворов электролитов. Поскольку электрохимия изучает явления, происходящие в растворах, исследование структуры жидкости, сольватации, диэлектрических свойств и т.п. имеет фундаментальное значение не только для развития теории гомогенных процессов, но и для разработки адекватных представлений о механизме электродных реакций. Авторы отдельных глав акцентируют внимание на новейших методических достижениях, затрагивая даже детали экспериментальной техники, с тем чтобы облегчить изучение соответствующих методов и в какой -то степени заменить стажировку в специальных лабораториях. Однако для интерпретации результатов измерений необходимо привлечение теории, й здесь авторы сталкиваются с существенными трудностями. Несмотря-на значительные успехи статистической механики растворов и расплавов, связанные с использованием различных вариантов суперпозиционного приближения в боголюбовском методе коррелятивных функций и с применением ЭВМ для прямого расчета термодинамических и структурных характеристик, результаты этих теоретических изысканий настолько трудно обозримы, что они практически не нашли применения у экспериментаторов ни для обработки данных, ни для описания кинетических явлений. Ниже, при анализе отдельных глав книги, мы не раз убедимся в справедливости этих общих замечаний. [c.5]


    Наиболее непосредственные сведения о структуре жидкостей можно получить на основании кривых радиального распределения частиц, вычисляемых с применением метода интегрального анализа из кривых интенсивности рассеяния жидкостью рентгеновских лучей или нейтронов. В ряде работ указывается на значительную неточность метода интегрального анализа и на ошибочность некоторых заключений о структуре жидкостей, основанных на результатах применения этого метода. Указанные работы частично рассмотрены в обзоре, написанном Радченко [1]. Однако рассмотрение имеющегося в настоящее время экспериментального материала,обработанного с применением метода интегрального анализа, приводит к выводу, что этим методом могут быть получены правильные значения количественных характеристик структуры жидкостей. [c.210]

    V- и В-структурами. Еще не имеется ни одного экспериментального метода, дающего информацию о 1-структуре жидкости. Таким образом, концепция 1-структуры, хотя и полезная как эвристическая точка зрения, не является плодотворной при интерпретации экспериментальных данных, и мы не будем ее рассматривать в дальнейшем. [c.157]

    Л.2. Структура жидкости и экспериментальные методы. На основании макроскопических свойств воды сделаем попытку получить подробные сведения о структуре воды и природе сил, ответственных за эту структуру. Информацию о У-структуре жидкости можно получить с помощью исследований некоторых ее свойств, но не тех, которые содержат информацию только о О-структуре. Например, термодинамические свойства воды — ее объем, удельная теплоемкость, сжимаемость и т. д.— являются характеристиками О-структуры жидкости. Взятые сами по себе, эти свойства не могут дать информацию о У-структуре. То же самое справедливо для статической диэлектрической константы, дифракционной рентгенографической картины, углового распределения рассеянного света, показателя [c.158]

    Наличие любых искажений прежде всего уменьшает четкость дифракционной картины (интенсивность и остроту рефлексов), а это быстро приводит к практическому исчезновению ряда рефлексов, слиянию близлежащих рефлексов, увеличению диффузного фона, что, в свою очередь, снижает эффективность прямого анализа, уменьшая точность и обедняя получаемую структурную картину. Поэтому, если для таких объектов, как низкомолекуляр-иыё жидкости, сравнительно простая задача определения характеристик ближнего порядка еще могла решаться методом прямого анализа дифракции, то длд полимеров доминирующее значение приобрел другой метод — метод модельных расчетов. В этом методе задают те или иные модели искажений и Производят расчеты дифракционных картин с варьируемыми параметрами структуры. Затем экспериментальные и рассчитанные дифракционные картины сравнивают и по результатам сравнения делают заключения о типе структуры и ее искажениях в исследованном полимерном объекте, а также определяют количественные значения параметров искаженной структуры. [c.95]

    Проверка адекватности модели структуры потока жидкости осуществляется путем сравнения экспериментальной кривой отклика на типовое возмущение с теоретическими функциями отклика, рассчитанными по предлагаемой модели. Этот метод мало эффективен, поскольку при этом можно подобрать такую модель, которая будет абсолютно точно воспроизводить экспериментальную кривую и в то же время совершенно не соответствовать механизму процесса. [c.131]

    Для жидкой фазы или для газовой при значительном отклонении от идеального газа более целесообразно определять объем как функцию температуры и давления (группа 1, табл. 1) и по этим данным находить изотермическое изменение энтальпии и энтропии обычными способами. Для этих определений, требующих точности в расчетах объемных данных, особенно полезен метод остаточных величин. При существующем состоянии статистической механики и знаний о молекулярной структуре представляется целесообразным экспериментально определять теплоемкость жидкостей для расчета энтальпии, энтропии и других производных величин как функции температуры. [c.55]

    Строение вещества. В этом разделе изучается строение атомов и молекул, а также агрегатные состояния веществ. В экспериментальных исследованиях строения молекул наибольщее применение получил метод молекулярной спектроскопии. При изучении агрегатных состояний рассматриваются взаимодействия молекул в газах, жидкостях и кристаллах. Этот раздел имеет важное значение для фармации. Подавляющее большинство лекарственных веществ представляет собой сложные органические соединения с несколькими функциональными группами в молекуле. Химическая структура соединений определяет их биологическую активность. Установление химической структуры соединений методами молекулярной спектроскопии и выяснение связи с биологической активностью представляют собой важные проблемы фармации. [c.9]


    Измеряя температурную зависимость диэлектрической проницаемости газа, можно найти электрический дипольный момент его молекулы и поляризуемость а ар. Для этого обрабатывают экспериментальные данные о зависимости от 1/Г по методу наименьших квадратов И находят коэффициенты Ап В линейной зависимости (19.10) и, следовательно, Од и ц. От поляризуемости молекул зависит так называемое дисперсионное взаимодействие атомов и молекул, которое играет важную роль в свойствах жидкостей и растворов, в процессах адсорбции, конденсации и др. Поляризуемость молекул важна при учете взаимодействия их с электромагнитным полем. Ею определяется интенсивность рассеяния света молекулами, в частности комбинационное рассеяние света (КР). Спектроскопия КР — важный метод исследования структуры. молекул. [c.75]

    Анализ строения жидкостей с помощью уравнений (V. 3) и (V. 5) опирается, в сущности, на тот же подход к рещению проблемы, что и рентгенография кристаллов или электронография молекул. Во всех этих методах подбираются такие характеристики структуры (тип и параметры кристаллической решетки, валентные углы и межъядерные расстояния в молекулах, углы, определяющие взаимную ориентацию молекул в ассоциатах и комплексах), которые позволяют наиболее полно и корректно описать результаты систематических экспериментальных исследований. [c.110]

    Итак, около 50% простых твердых веществ в точке плавления характеризуются ОЦК структурой и 30% обладает плотно, упакованными расположениями атомов. Посмотрим теперь, что происходит в результате плавления. Как уже говорилось, важнейшей характеристикой структуры простых жидкостей является среднее координационное число 2. Экспериментальные данные о координационных числах известны приблизительно для 40 простых жидкостей. Изучены все жидкие неметаллы, за исключением астата и радона (инертные газы, водород, азот, кислород, галогены, фосфор, сера, селен, теллур) Атомы жидких инертных газов имеют среднее координационное число, лежащее в интервале 8—9. (Здесь и далее мы пользуемся более поздними результатами дифракционных методов. Ранние измерения в ряде случаев приводили к завышенным значениям координационных чисел.) Остальные неметаллы подчиняются правилу 8—N. [c.269]

    Основным методом экспериментального исследования структуры потоков в жидкофазных системах является метод введения в поток различного типа индикаторов с последующим анализом распределения индикатора во времени в определенных точках изучаемой системы. В зависимости от способа введения индикатора и расположения точек его анализа разработаны и способы расчета среднего времени пребывания и дисперсии. Идея метода экспериментального исследования заключена в следующем. Если принять, что индикатор имеет одинаковую физическую природу с элементами потока, то естественно ожидать один и тот же вид функции распределения для частиц индикатора и самих элементов жидкости. К этим же результатам можно прийти, если каким-то образом пометить частицы жидкости на входе в аппарат и регистрировать их по мере выхода. [c.67]

    Наиболее полно в книге освещены физико-химические свойства пленок (глава IV), такие, как толщина и строение, разница между адсорбцией ПАВ в черной пленке и на поверхности раздела объемных фаз (вода—органическая жидкость), равновесных с пленкой, ориентация молекул ПАВ в пленках из органических жидкостей различной природы, межфазное натяжение пленки и краевые углы между черной пленкой и объемной фазой, образование многослойных черных пленок, кинетика возникновения и роста черных пятен, концентрация образования черных пятен и ее зависимость от свойств ПАВ и природы органической фазы, влияние электрического поля на натяжение и устойчивость пленок и др. Обсуждается взаимосвязь различных физико-химических свойств углеводородных пленок с их устойчивостью. На основе термодинамики тонких пленок и теории молекулярного взаимодействия, с учетом реальной структуры черной пленки и различных составляющих расклинивающего давления, авторами разработан точный метод экспериментального определения констант Гамакера и проведено исследование влияния разнообразных факторов на молекулярное взаимодействие в черных пленках. [c.4]

    Динамические процессы в гидро- и пневмосистемах происходят при нестационарном движении жидкости или газа в напорных каналах элементов. Описание таких процессов в одних случаях может быть построено с использованием квазистационарных гидродинамических характеристик элементов, полученных по результатам экспериментальных исследований при установившихся течениях. В других случаях приходится учитывать изменение гидродинамических характеристик, вызванное нестационарностью структуры потока жидкости или газа. С помощью методов теории автоматического регулирования и управления оказалось возможным получить формализованное описание нестационарных гидродинамических процессов в виде, удобном для исследования и расчета гидро- и пневмосистем. [c.10]

    На явлении рассеяния основаны экспериментальные методы получения спектров плотности в структурном анализе. Эти методы применимы к определению функций распределения плотности независимо от агрегатного состояния вещества. В газе нет корреляции в расположении частиц, поэтому складываются интенсивности волн, рассеянных отдельными частицами. Из картины рассеяния, в случае одноатомного газа, путем фурье-преобразова-ния находят распределение электронной плотности в атомах. Для многоатомного газа с помощью модельных расчетов определяют строение газовых молекул, в растворах изучают форму и размеры макромолекул, частиц вирусов и т. д. В жидкостях и аморфных телах существует корреляция в расположении ближайших соседей. Анализ картин рассеяния в этом случае позволяет определить ближний порядок. В кристаллах, как следствие периодичности структуры, имеется как ближний, так и дальний порядок. Дифракционная картина, получаемая от кристалла, является по содержащейся в ней информации наиболее богатой. Из этой картины, даже для таких сложных объектов, как биополимеры, можно определить координаты всех атомов кристалла [8]. [c.14]

    Как отмечалось, непосредственным отображением ближнего порядка в жидкостях является кривая интенсивности когерентного рассеяния /(5), точнее — структурный фактор а(5) = 1 8)/ШР 5)]. С помощью этой функции определяются электропроводность и ряд других зависящих от структуры величин. Поэтому выводы о структуре жидкости должны основываться прежде всего на анализе характерных признаков кривых интенсивности — положения и относительной величины максимумов, сопоставления экспериментальных кривых а 8) с вычисленными на основе различного типа моделей. Заключения о структуре, сделанные только на основе анализа кривых радиального распределения атомной плотности, могут оказаться неоднозначными из-за погрешностей расчета функций распределения и недискрет-ности пиков на кривых распределения. Наиболее полные и достоверные данные о структуре жидкости можно получить, применяя параллельно метод сравнения кривых интенсивности и метод анализа функций распределения. [c.172]

    Структурные изменения при кипении или сублимации. Поскольку о структурах жидкостей известно так мало, фактически нам приходится ограничиться сравнением структур в твердом и парообразном состояниях. В доструктурной эре знание структур паров подтверждалось только молекулярной массой и ее изменением в зависимости от температуры и давления. Благодаря электронной дифракции и спектроскопическим исследованиям разного рода теперь стала довольно доступной богатая информация, устанавливающая связь между межатомными расстояниями и валентными углами в молекулах пара. Эта информация ограничивается главным образом сравнительно простыми молекулами не только потому, что невозможно установить большое число параметров, требуемых для того, чтобы определить геометрию более сложной молекулы из ограниченных экспериментальных данных, но также и потому, что геометрия многих молекул становится промежуточной, если молекулы гибки. (К тому же некоторые методы установления молекулярной структуры подчиняются определенным ограничениям например, микроволновые спектры обычно возникают только от молекул с постоянным дипольным моментом.) Информация о молекуляр- [c.38]

    Методом математического моделирования структуры пористых тел могут решаться задачи для широкого класса материалов — от моноатом-ных жидкостей до материалов типа бетонов с различными размерами и формами элементов композиций. С высокой достоверностью могут быть исследованы практически все структурные свойства любых типов структур. Это важнейшие структурные характеристики — функция радиального распределения и связанная с ней функция радиальной плотности, функция координации частиц, функция распределения пар частиц по расстоянию между ними такие общеструктурные характеристики, как плотность заполнения и дисперсность всей структуры и отдельных ее компонентов, распределение пор и входных горл по размерам и т. д. Часть из названных структурных характеристик практически невозможно исследовать экспериментальными методами. [c.68]

    Эйзенберг и Кауцман [44 ] проанализировали обширную литературу о структуре и свойствах воды и предложили теорию, удовлетворяющую большинству надежных экспериментальных данных. Вероятно, наиболее полное рассмотрение свойств и структуры воды было проведено Дорси [38]. В обзоре Христиана и сотр. [29] рассмотрены сложные молекулярные структуры воды в газовой фазе и в разбавленных растворах в полярных и неполярных органических растворителях и приведены константы равновесия образования ряда комплексов амин — вода в неполярных растворителях. В противоположность выводам Дорси [38] о почти полной идеальности паров воды, данные Р — V —Т при высоких температурах [79] и ИК-спектры [93] свидетельствуют о значительных отклонениях от идеальности и о существовании агрегатов при температурах выше 100 °С. Шибата и Бар-телл [139] исследовали структуру водяных паров методом дифракции электронов с использованием секторного микрофотометра. Имеются указания на то, что в углеводородах и в четыреххлористом углероде вода находится в форме мономера [29]. (См. также гл. 7.) В слабополярных органических растворителях присутствует, однако, некоторое количество полимерной воды. Константы образования димеров и тримеров воды в органических жидкостях, а также константы равновесия гидратообразования для кетонов, простых эфиров, амидов, диметилсульфоксида и комплексов амины — вода приведены в работе [29]. Магнуссон [96] [c.9]

    Постановка задачи. Теория Кирквуда, Боголюбова, Майера И др., основанная на применении радиальной функции распределения, доказала возможность расчета свойств жидкостей при помощи статистического метода Гиббса. Большим принципиальным достижением является тот факт, что теоретическая радиалы1ая функция распределения р (г, Т, ю) обладает такой же формой зависимости от г, Т, V, как и экспериментальная функция р (г, Г, и), получаемая с помощью исследования углового распределения рентгеновских лучей, рассеянных жидкостью. Таким образом доказана возможность теоретического расчета структуры жидкости на базе общих предположений статистической механики без привлечения эмпирических допущений. [c.174]

    По крайней мере со времен Рентгена [301] выдвигались гипотезы о структуре жидкой воды. Попытки проверить или отвергнуть эти гипотезы затруднялись отсутствием общей теории жидкого состояния воды. По этой же причине теории о структуре воды основывались на двух подходах, ни один нз которых не был достаточно строгим. Первый подход состоял в формулировке модели жидкой воды, трактовке модели некоторым способом, обычно требовавшем большого количества допущений, с помощью методов статистической механики, и сравнении теоретических значений микроскопических свойств с экспериментальными величинами. Совпадение теоретических величин с опытными данными рассматривалось как показатель соответствия модели действительности (см. раздел 5). Второй подход, принятый в этой главе, состоит в установлении аспектов структуры жидкости на основе макроскопических свойств воды. Свойства воды исследованы настолько широко и детально, что даже если какое-либо из них и может быть связано только качественным или полуколичествепным образом с некоторой особенностью жидкой структуры, приемлемая картина воды создается только при рассмотрении многих ее свойств. [c.154]

    Конечно, невозможно получить сведения о У-структуре жидкости только с помощью одних термодинамических измерений. Это вызвано тем, что время, необходимое для типичного термодинамического из.мерепия, значительно больше, чем интервал между диффузионными движениями молекул. Ранее уже была предложена структурная модель на основании других данных. Одпако термодинамические свойства, связанные с этой моделью, могут быть вычислены методами тaти тичe кoii механики. Если же модель адэкватно описывает жидкость и если расчеты выполняются строго, тогда вычисленные свойства должны согласоваться с экспериментальными данными. К сожалению, действительно строгие расчеты для молекулы воды еще невозможны, и поэтому ее термодинамические свойства в настоящее время не могут быть использованы для подтверждения какой-либо конкретной модели жидкой структуры (см. раздел 5). [c.174]

    Рассмотрено четыре метода расчета вязкости жидкостей по групповым составляющим. В табл. 9.12 сравниваются расчетные и экспериментальные з 1ачения вязкости 40 различных жидкостей (обычно простой структуры). Для всех методов получены большие погрешности. Результаты до некоторой степени вводят в заблуждение, поскольку метод Ван-Вельцена и др. не рекомендуется для первых членов гомологических рядов. [c.398]

    Хертцем опубликована работа [И], в которой он провел тщательный критический анализ явлений, связанных со стабилизацией структуры воды растворенными молекулами и теорий айсбергов. Автор предлагает вместо последнего термина, способного ввести в заблуждение, термин вторичная гидратация. Этим он обращает внимание на существующее в водных растворах явление молекулы воды в непосредственной близости от неполярных молекул ведут себя в некотором отношении так, каж будто их температура ниже температуры остального раствора. В качестве меры температуры , которой обладает упорядоченная структура, он принимает остроту максимума функции молекулярного распределения, учитывающей в том числе и ориентацию. Однако теоретические и экспериментальные способы определения функции распределения очень сложны и до сих лор не существует удовлетворительных методов, позволяющих сделать это достаточно надежно. Таким образом, из имеющихся экспериментальных данных нельзя сделать однозначных заключений о структурных изменениях, происходящих в воде под действ ием растворенного вещества. Некоторые свойства раствора указывают на упрочнение структуры жидкости, в то время как другие можно объяснить уменьщением числа водородных связей, т. е. при определенных условиях происходят разрыхление структуры. Кажущееся упрочнение структуры может в действительности сопровождаться разрывом лли деформацией водородных связей. [c.78]

    Более сорока лет назад Дебаю и Хюккелю [1] на основе молекулярных представлений впервые удалось объяснить термодинамические свойства сильно разбавленных растворов полностью диссоциированных электролитов. Несколько лет спустя Бьеррум [2] ввел представление об ионных парах в растворах, а Бернал и Фулер [3] в своей известной работе положили начало изучению структуры воды и растворов электролитов. В тот период, однако, было очень мало экспериментальных данных о специфическом взаимодействии между ионами, между ионами-и молекулами растворителя, а также между молекулами са-люго растворителя, поэтому предложенные модели были основаны только на самых общих идеях. В последнее время наши знания о физических свойствах жидкостей, и особенно растворов электролитов, значительно расширились. Классические экспериментальные методы молекулярной физики были дополнены современными методами, позволившими глубже понять молекулярные процессы. Наибольшую ценность представляют такие методы, при использовании которых исследуемая система подвергается слабым внешним воздействиям. К таким методам относится, например, инфракрасная спектроскопия. [c.11]

    Долгое время рентгенографический метод был главным источником сведений о молекулярной структуре жидкостей. Для одноатом-Еых жидкостей он дает достаточно полные сведения о распределении атомов. В случае многоатомных жидкостей возникает вопрос об ориентационной упорядоченности и рентгенографический метод при современном уровне экспериментальной техники и теории не может дать однозначных выводов о молекулярной структуре. Этот метод обычно позволяет определить лишь расстояния между ядрами внутри молекулы жидкости. Только в отдельных случаях рентгенографический метод позволяет получать сравнительно подробную информацию о структуре многоатомных жидкостей. Примером могут служить широко известные исследования воды. Еще большие трудности возникают при попытках расшифровки с помощью этого метода молекулярного строения растворов, координации ионов в области ближней и дальней сольватации. [c.157]

    В настоящее время развитие методов математической статистики и применение ЭВМ позволяет рассчитывать функции распределения не только для простых жидкостей, но и для растворов. Однако вычисленные на этой основе физические и термодинамические параметры существенно расходятся с экспериментальными. По-видимому, причина этого состоит не в недостаточности математического аппарата, а в неадэкватности решеточной модели истинной физической структуры жидкостей. В этом смысле важным шагом на пути приближения к реальной модели является учет отклонений поведения жидкостей от средневероятностного распределения флуктуаций плотности и ориентации в индивидуальных жидкостях и флуктуаций концентрации в растворах [М. И. Шахпаронов, 1956]. Упомянутый выше коэффициент изотермической сжимаемости может быть определен через флуктуации плотности (Ай) с помощью относительно простого соотношения  [c.45]

    Итак, полного решения задачи о движении жидкости в зернистом слое произвольной структуры не существует. В то же время экспериментальное определение перепада давления при движении замеренного расхода жидкости или газа через трубку с зернистым слоем относительно просто. Поэтому число опубликованных исследований по измерению гидравлического сопротивления зернистых слоев различных конкретных матеряалов очень велико и продолжает увеличиваться. Для обобщения полученных результатов и вывода удобных для инженерного расчета формул существенно, однако, чтобы при замерах перепада давления и расхода жидкости фиксировались также такие основные параметры слоя, как порозность слоя е, удельная поверхность а и средний линейный размер элементов d. Методы измерения этих величин весьма разнообразны и мы изложим только некоторые основные из них. [c.47]

    При феноменологическом подходе структура указанных параметров постулируется на основе более или менее правдоподобных гипотез, а для нахождения коэффициентов, входящих в полученные соотношения, привлекаются экспериментальные данные. Метод осреднения дает возможность конкретнее и более обоснованно установить структуру указанных выше членов, связав их.с параметрами течения на уровне отдельных частиц (мелкомасштабного течения). Однако для того, чтобы связать эти параметры с параметрами осредненного движения фаз, приходится вводить достаточно приближенную схематизацию мелкомасштабного течения, поскольку точное определение локальных характеристик течения дисперсной смеси практически невозможно. Окончательный вид выражений для тензоров напряжений в фазах и силы межфазного взаимодействия в зависимости от способов осреднения и принятых схем мелкомасштабного течения оказывается различным. Кроме того, эти выражения могут быть получены аналитически лишь для предельньгх случаев движения дисперсной смеси, когда сплошная фаза — очень вязкая или идеальная жидкость. Поэтому в дальнейшем для определения структуры указанных выше членов будем использовать в основном феноменологический подход, привлекая лишь в некоторых случаях результаты, полученные аналитическими методами. [c.60]

    Рассмотрено влияние переплетения нитей в ткани на проницаемость монофиламентных и полифиламентных тканей [436]. Обсуждено влияние структуры пор ткани на характер отложения осадка и условия образования сводиков над устьями пор. Отмечено, что результаты определения эквивалентного размера пор микроскопическим наблюдением, пузырьковым методом и измерением проницаемости для монофиламентных тканей согласуются лучше, чем для полифиламентных в последних тканях пористость более сложная и состоит из пористостей внутри волокон и вне волокон. Применительно к фильтрованию чистой жидкости (воды) через моно-филаментные ткани различного переплетения зависимость скорости потока от разности давлений выражена с использованием коэффициента расхода в особой форме и модифицированного числа Рейнольдса теоретические расчеты проницаемости полифиламентных тканей не достигают достаточного соответствия экспериментальным данным вследствие ряда существенных упрощений при выводе уравнений. Для суспензий с концентрацией более 20% [c.381]

    Первый этап состоит в идентификации последних членов в правых частях уравнений (3.8). Прежде всего — это задача исследования кинетики химических реакций. Она решается автономно путем постановки специальных кинетических экспериментов в идеальной гидродинавлической обстановке (например, в условиях полного смешения на микроуровне). Кроме того, на этом этапе уточняются феноменологические коэффициенты матриц и Л , для чего используются либо экспериментальные, либо теоретические методы (молекулярно-кинетическая теория газов и жидкостей). Данный круг задач относится к первому (атомарно-молекулярному) уровню иерархической структуры ФХС (см. 1.1). [c.139]

    Вместе с тем выяснились и трудности теоретического описания структуры. Найденные формулы для бинарной функции распределения оказались сложными даже для жидкостей типа сжиженных инертных газов. Еще более сложные уравнения для бинарной функции получаются в случае жидкостей с разносортными частицами, потенциал взаимодействия между которыми определяется сочетанием коротко- и дально-действующих сил притяжения. Благоприятным обстоятельством является то, что теоретически вычисленная бинарная функция распределения обладает качественно такой же зависимостью от расстояния, плотности и температуры, как и экспериментальная, определяемая дифракционными методами. [c.25]

    Область малых концентраций. Водные растворы неэлектролитов представляют обширный класс жидкостей, структура и свойства которых изучаются различными методами. При исследовании рассеяния рентгеновского излучения смесями метилового спирта с водой И. В. Радченко и Ф. К. Шестаковским обнаружено, что присутствие в воде молекул метанола укрепляет ее структуру, вызывая образование более прочных молекулярных ассоциаций, чем в чистой воде. М. Ф. Букс, и А. В. Шурупова, изучая рассеяние света растворами спиртов в воде, обнаружили узкий максимум интенсивности в области малых концентраций спирта. Проведенный ими теоретический анализ концентрационного рассеяния света показывает, что наблюдаемый максимум интенсивности при малых концентрациях спирта не связан с флуктуациями концентрации. Теоретическая кривая светорассеяния проходит через экспериментальные точки во всей области концентраций выше 0,1 мольных долей спирта. При концентрации (0,05 0,7)т на экспериментальной кривой выделяется узкий максимум, которого нет на теоретической кривой. Можно предположить, что этот максимум интенсивности светорассеяния при малых концентрациях спирта обусловлен флуктуациями структуры раствора, связанными со стабилизацией структуры воды. [c.298]

    С помощью эллиптического отверстия образуют струю в форме эллиптического цилиндра под действием сил поверхностного натяжения, стремящихся придать струе форму цилиндра с круговым сечением, и инерционных сил устанавливаются поперечные колебания струи— большая и малая оси эллипса поочередно меняются местами. Теория, развитая Рэлеем, а затем Бором и Сатерлендом, позволяет связать длину волны на поверхности струи, определяемую экспериментально оптическими методами, с поверхностным натяжением жидкости. Сопоставление полученных таким образом значений поверхностного натяжения с результатами определения их статическими или полустати-ческими методами позволяет сделать выводы о скорости установления равновесной структуры поверхностных слоев, кинетике адсорбции и т. д. [c.41]

    Соединения постоянного и неременного состава. Дальтониды и бертоллиды. Стехиометрические соотношения компонентов, образующих соединение, соблюдаются только в парообразном состоянии, в молекулярных кристаллах и жидкостях. При образовании твердых фаз с координационной структурой эти соотношения не соблюдаются. В настоящее время доказано, что большинство твердых веществ с немолекулярной структурой могут образовывать твердые растворы со своими компонентами, т.е. существовать в некотором интервале составов. Так, на диаграмме состояния (см. рис. 103) промежуточная фаза A B образует твердые растворы как с одним, так и с другим компонентом. Аналогично этому существуют области гомогенности (области твердых растворов а и /3) на основе компонентов А и В. С термодинамической точки зрения, образование ограниченных твердых растворов всегда энергетически выгодно. Поэтому отсутствие экспериментально установленной области гомогенности у определенного ряда соединений с координационной структурой (так называемые линейные фазы, которые на диаграмме состояния отображаются вертикальной линией — ординатой соответствующего состава) свидетельствует лишь о недостаточной чувствительности современных методов физико-химического исследования. Очевидно, истинно линейными могут быть только твердые фазы с молекулярной структурой. [c.204]

    В последнее десятилетие теория молекулярного взаимодействия в тонких слоях жидкостей получила дальнейшее всестороннее развитие. Тем не менее задача экспериментального определения отрицательного расклинивающего давления и констант Гамакера остается одной из важнейших при исследовании черных пленок. Во-первых, экспериментальное определение констант Гамакера в пленках из предельных углеводородов, стабилизированных ПАВ с небольшими полярными группами и углеводородными радикалами, содержащими только метнльные и метиленовые группы, может быть использовано для проверки теории молекулярного взаимодействия (и различных методов расчета). Во-вторых, обусловлено это тем, что обе фазы эмульсий, моделью которых является углеводородная пленка, обычно многокомпонентны. Кроме того, ван-дер-ваальсовское взаимодействие в черной пленке осложнено наличием достаточно толстых адсорбционных слоев ПАВ, учет влияния которых ввиду их различной структуры, состава и ориентации углеводородных радикалов весьма сложен. В эмульсиях и эмульсионных пленках, полученных из концентрированных ра- [c.131]


Смотреть страницы где упоминается термин Структура жидкости и экспериментальные методы: [c.108]    [c.81]    [c.44]    [c.9]    [c.103]    [c.146]    [c.170]   
Смотреть главы в:

Структура и свойства воды -> Структура жидкости и экспериментальные методы




ПОИСК





Смотрите так же термины и статьи:

Метод структур

Структура жидкостей



© 2025 chem21.info Реклама на сайте