Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура поверхности и поверхностные процессы

    В ионном проекторе можно легко обнаружить процессы, протекающие на гранях с низкими индексами, в то время как наблюдение таких процессов в электронном проекторе затруднено ввиду высокой работы выхода этих граней. Возможность наблюдения с помощью ионного проектора индивидуальных атомов как в адсорбированном слое, так и в адсорбенте открывает совершенно новые возможности в исследовании поверхности. Такое возрастание разрешения должно позволить более детально оценить соотношение между структурой и поверхностными процессами. [c.248]


    Другой существенный аспект интереса к квантовохимическим расчетам, и особенно в гетерогенном катализе, связан с определенными характерными особенностями всей этой области химических явлений. Среди этих особенностей следует в первую очередь упомянуть неоднородность (структурную и по составу) поверхности катализатора, динамизм структуры поверхности в процессе реакции, многообразие возможных путей реакции в такой сложной системе все это может приводить к наложению и конкуренции различных реакций, смене режимов и т. п. Как следствие возникают принципиальные трудности при попытке достаточно полного исследования механизма реакции по кинетическим данным, в ряде случаев остаются альтернативные возможности построения кинетических схем, отличающихся различными промежуточными структурами и соединениями. В этом отношении большие надежды возлагаются обычно на уже упоминавшиеся физические методы исследования но, к сожалению, здесь возникает целый ряд ограничений (концентрационных, структурных и т.п.), поэтому указанный путь не может рассматриваться как универсальное средство решения проблемы. По существу, таким единственным универсальным средством оказываются квантовохимические исследования, которые, во всяком случае в обозримом будущем, и будут призваны сузить (а для некоторых систем, возможно, и расширить) набор обсуждаемых промежуточных соединений и тем самым существенно дополнить кинетические исследования. Вообще, по-видимому, может оказаться, что роль квантовохимических расчетов в катализе будет в известном смысле более существенна, чем во многих других областях химических исследований, где они давно и традиционно служат скорее задачам интерпретации известных данных. Конечно, сейчас еще рано говорить о серьезной роли квантовохимических расчетов в обсуждаемой области исследований для этого необходимо, чтобы расчеты стали более доказательными, а последнее потребует больших усилий, связанных с отработкой расчетных схем и путей корректного описания поверхностных структур. Имеющиеся здесь трудности [c.261]

    При всяком адсорбционном процессе часть энергии выделяется в виде тепла. Определение теплоты адсорбции различных газов или паров металлами, окислами, углем и другими твердыми ве.цествами оказало неоценимые услуги для понимания поверхностных процессов, структуры поверхности и явлений гетерогенного катализа. [c.94]

    Так, следует отметить, что современные теории двойного электрического слоя носят феноменологический и полуэмпирический характер. Вместе с тем уже накопился значительный экспериментальный материал, объяснение которого требует рассмотрения структуры поверхности на молекулярном уровне. Такой подход необходим для более детального описания адсорбции органических веществ на электродах, а также для объяснения ряда особенностей структуры поверхностного слоя и в отсутствие органических веществ. Попытки создания молекулярных теорий двойного слоя уже предпринимались. Однако эти теории еще далеки от совершенства. Другой важной проблемой является построение количественной теории поверхностного слоя при хемосорбции ионов, сопровождающейся переносом заряда. Явления переноса заряда при адсорбции широко распространены и играют существенную роль в кинетике электродных процессов. Часто на поверхности электрода находится хемосорбированный кислород (или кислород в другой форме), который сильно влияет на строение поверхностного слоя и скорость электрохимических процессов. Поэтому количественное исследование строения двойного электрического слоя и электрохимической кинетики на окисленных поверхностях представляет собой одну из важнейших проблем кинетики электродных процессов. [c.389]


    Долгое время не удавалось экспериментально подтвердить правильность соотношений (62.12) и (62.16). Это можно объяснить, во-первых, тем, что реальная структура поверхности кристалла оказывается гораздо более сложной, чем предполагалось в теории Фольмера и Эрдей-Груза. Так, на кристаллической поверхности электрода имеются ступени атомной высоты s, выступы, или кинки к, реберные вакансии I и дырки h (рис. 169). Во-вторых, поверхность электрода в ходе электроосаждения непрерывно изменяется, а потому меняется истинная плотность тока, а следовательно, и перенапряжение. В результате обычный метод снятия стационарных поляризационных кривых имеет ограниченные возможности. Наконец, на практике стадия образования зародышей не всегда оказывается наиболее медленной. В зависимости от природы металла и условий опыта процесс электрокристаллизации может лимитироваться диффузией реагирующих частиц к поверхности, химическими реакциями в объеме раствора и на поверхности электрода, стадией разряда, а также поверхностной диффузией разрядившегося иона (адатома) и встраиванием его в кристаллическую решетку. Поэтому количественная проверка изложенной теории оказалась возможной лишь после того, как в 50-х го- [c.331]

    Наиболее полно влияние состояния поверхности на кинетику химических реакций было рассмотрено в гетерогенном химическом катализе. Теория каталитических процессов на неоднородных поверхностях была развита в работах М. И. Темкина и С. В. Рогинского. Изучая причины возникновения неоднородности и изменения энергетического состояния поверхности, необходимо учитывать структуру поверхности и взаимодействие поверхностных частиц с примесями или продуктами реакции. Побочные явления могут привести к образованию поверхностных соединений, вероятность возникновения которых зависит от способности катализатора образовывать с реагирующими веществами химические соединения. [c.523]

    Зарождение трещин происходит в зоне максимальных растягивающих напряжений, образующихся в вершинах пустот, расположенных вблизи поверхности металла и по границам зерен. Происходит раскрытие пустот, расположенных у поверхности, и процесс обезуглероживания резко ускоряется. Затем происходит соединение отдельных микрополостей, находящихся под высоким давлением метана и водорода. Развитие трещин обнажает свежую поверхность металла,и молекулярный водород получает доступ к внутренним поверхностям поликристаллов резко увеличивается поверхность взаимодействия водорода с металлом. При этом снижается содержание углерода в поверхностных слоях и происходит межкристаллитное растрескивание структуры, что сопровождается снижением механических свойств металла. [c.166]

    В процессе работы двигателя АШ-82Т в цилиндро-поршневой группе во время обкатки при ремонте, а также во время эксплуатации, на поверхностях трения зеркала цилиндра, поршневых колец и поршня (фиг. 102—104) возникают такие характерные дефекты как грубый рельеф поверхностей трения, неоднородное изменение твердости и структуры трущихся поверхностных слоев металла. [c.132]

    Усадка в процессе высушивания происходит до тех пор, пока механические напряжения, возникающие в силикагеле, неспособны противостоять давлению, воздействующему на структуру благодаря поверхностному натяжению жидкости, находящейся на границе раздела фаз в силикагеле. Как показал Баркас [290], силы сжатия, действующие на силикагель, возрастают с уменьшением диаметров капилляров. Такое сжатие сходно с силами, способствующими сближению стеклянных пластинок, помещенных вертикально в жидкость [291]. Силы, действующие на пластинки, обратно пропорциональны расстоянию между пластинками. Когда любая влажная масса измельченного в порошок материала высушивается, то возникающие капиллярные силы сдавливают гранулы порошка, при этом поверхность твердого материала, смоченного жидкостью, имеет по существу нулевой краевой угол (рис. 5.21). [c.734]

    Имеется определенная взаимосвязь между процессами физической и химической адсорбции компонентов смазочной среды на поверхностях трения и образованием вторичных структур. Так, повышение прочности граничного слоя смазки приводит к деконцентрации напряжений в поверхностных слоях металла, уменьшению толщины и снижению уровня активации тончайших поверхностных слоев. Добавка в состав смазки поверхностно-активных веществ резко расширяет область существования вторичных структур на поверхностях трения металлов. От прочности граничного смазочного слоя зависит уровень активации поверхностных слоев металла, а следовательно и соответствующая ему определенная степень пассивации и тип вторичных структур. Вместе с тем прочность самого граничного слоя зависит от состояния и структуры поверхности трения. [c.12]


    Накопление окислов железа и марганца на поверхности бактериальных клеток — результат двух взаимосвязанных процессов аккумуляции (поглощения) клетками этих металлов из раствора и окисления, сопровождающегося обильным отложением нерастворимых окислов на поверхности бактерий. Процесс аккумуляции тяжелых металлов из растворов в основе имеет физико-химическую природу и в значительной мере обусловлен химическим составом и свойствами поверхностных структур клетки. Он включает связывание металлов внеклеточными структурами (капсулы, чехлы, слизистые выделения), клеточной стенкой и ЦПМ. Сорбционные свойства поверхностных клеточных структур определяются в большой степени суммарным отрицательным зарядом молекул, входящих в их состав. Поглощение металлов приводит к значительному концентрированию их вокруг клеток по отношению к среде. Коэффициент накопления для железа и марганца может достигать значений 10 —10 . [c.376]

    С иных позиций, чем Андреев — Беляев и Зельдович, подошел к проблеме устойчивости горения Ландау [73]. В его теории принят газофазный механизм горения, т. е. с поверхности жидкости идет испарение, которое поддерживается теплом от химических реакций в парах над поверхностью. ]Иетодом малых возму-ш ений поверхности рассматривается устойчивость течения продуктов сгорания с учетом стабилизирующего действия силы тяжести и поверхностного натяжения. При этом в первом приближении пренебрегается толщиной зоны химической реакций в сравнении с длиной волны возмущения. Это означает также отказ от учета процессов, определяющих структуру поверхности разрыва жидкость — газ. Математическая постановка задачи [c.197]

    В последние годы становится все яснее, что в процессе адсорбции структура поверхности может заметно меняться. Качественно такие изменения возможны в том случае, когда энергия адсорбции сравнима с поверхностной энергией адсорбента (в расчете на одну молекулу). Как показано в табл. ХПМ, физическая адсорбция, по-видимому, приводит к изменению структуры поверхности молекулярных адсорбентов (например, льда, парафина или полимеров), но не влияет на поверхность тугоплавких твердых тел (например, обычных металлов, их окислов, углеродистых материалов), отличающихся высокой поверхностной энергией. Последние могут меняться лишь при хемосорбции. [c.415]

    Очистка бомбардировкой ионами, естественно, предполагает удаление вещества с поверхности образца. При этом обычно наблюдается нарушение структуры поверхности, связанное как с внедрением атомов инертного газа в поверхностный слой, так и с изменением структуры новерхности образца. В действительности существует порог энергии ионов отдельно для процесса удаления металла и для начала нарушения структуры поверхности, причем первому процессу соответствует меньшее значение энергии [19]. Однако для всех инертных газов скорость удаления металла нри энергии ионов ниже порога нарушения [c.125]

    Далее, поскольку глубокий механизм каталитических реакций — как гетерогенных, так и гомогенных — является электронным, то к их описанию можно приложить весь сегодняшний арсенал квантовой химии. Сюда относятся расчеты электронной структуры молекул, их реакционной способности, потенциальных поверхностей реакции и т. д. Специфика гетерогенного катализа, однако, состоит в том, что при контактных процессах в электронном механизме реакции непосредственное участие принимают твердые тела. Корректный учет взаимодействия субстрата с поверхностью катализатора значительно усложняет задачу, требует привлечения аппарата теории энергетической зонной структуры, теории поверхностных состояний и т. н. Несмотря на указанную трудность, число работ по квантовой химии гетерогенного катализа постоянно растет. И хотя в настоящее время такие работы чаще всего посвящены исследованию сравнительно небольших сорбционных комплексов или простейших модельных реакций, несомненно, что уже в недалеком будущем квантово-химические расчеты найдут широкое применение в прогнозировании гетерогенных катализаторов для процессов, представляющих практический интерес. На решение этой же задачи нацелены и широко развиваемые теперь методы корреляции кинетических и термодинамических параметров. К гетерогенно-каталитическим реакциям с учетом их некоторых особенностей уже применяют с определенным успехом уравнения линейных соотношений типа Бренстеда, Гаммета — Тафта, Воеводского — Семенова и аналогичные. Широко [c.5]

    Опыт показывает, что введение в катализатор некоторых добавок, которые сами не обладают каталитической активностью в данной реакции, может значительно повысить активность катализатора. Такие добавки получили название промоторов. Их действие обусловливается, главным образом, влиянием их на структуру поверхности катализатора. Для обеспечения этого промотор вводят не в готовый катализатор, а еще в процессе его изготовления. Так, например, железный катализатор, применяемый для реакции СО + НгО = СО2 + На, промотируют введением добавок некоторых других металлов. Когда раствор нитрата железа выпаривают, прокаливают и восстанавливают, то получают простой железный катализатор если же предварительно ввести в раствор небольшие, но строго определенные количества бихромата аммония и нитрата тория, то в результате совместного их выделения при выпаривании раствора, совместного разложения прокаливанием и последующим восстановление.м водородом получающийся продукт будет содержать в поверхностном слое все три металла в очень тесном сочетании такой катализатор обладает повышенной каталитической активностью. Как показали иссле- [c.340]

    На них протекают такие распространенные в природе и технике процессы и наблюдаются такие явления как адсорбция, коррозия, катализ, трение, смачивание, локализуются поверхностные состояния. Поверхностные свойства вещества определяются атомно-электронной и микроскопической структурами поверхности и ее химическим составом. [c.214]

    Чтобы в процессе обработки структура поверхности протекторов характеризовалась высокой емкостью и сохраняла при этом химическую стойкость и механическую прочность, необходимо правильно выбрать такие основные параметры, как потенциал и время окисления (рис. 7.5). Область обработки ограничена слева потенциалом, выше которого окисление сопряжено с разрушением графитового материала, а справа — минимальным потенциалом окисления, ниже которого сильно увеличивается время обработки. Сверху область обработки ограничена ломаной линией, выше которой начинается заметное механическое разрушение поверхностного слоя. Ломаную линию получают соединением конечных точек зависимостей изменения емкости от времени при постоянном потенциале. Заштрихованная область является совокупностью точек, для каждой из которых емкость электрода, потенциал окисления и время окисления связаны соотношением (7.4). [c.131]

    Между тем при каталитических процессах всегда наблюдаются значительные изменения физических свойств катализатора [7]. Некоторые из этих изменений, например собирательная рекристаллизация,, по-видимому, действительно обусловлены вторичными явлениями и не играют роли в механизме катализа. Однако ряд других изменений структуры катализатора несомненно так или иначе связан с механизмом элементарного каталитического акта. К таким процессам может быть отнесен з каталитическая коррозия, изученная С. 3. Рогинским [8]. Как было показано Рогинским с сотрудниками, наблюдаемые при каталитических процессах характерные изменения кристаллической структуры поверхности контакта, названные им каталитической коррозией, не связаны со спеканием поверхности, а вызываются протеканием на ней реакции. Это свидетельствует о том, что при каталитическом процессе всегда изменяется кристаллическая структура поверхностного слоя катализатора. Наличие таких изменений вытекает из ряда экспериментальных фактов. Так, в значительном количестве исследований было [c.49]

    Процессы, протекающие на поверхности, обычно удается объяснить, используя представления о свободной поверхностной энергии, структуре поверхности, раснределении электрических зарядов и диффузии. [c.93]

    Наибольшие структурные изменения при совершенствовании кристаллов полимеров происходят в поверхностном слое, который образован регулярными складками, петлями цепей, их концами и участками проходных макромолекул. Естественно, что изменение химической структуры поверхности способно повлиять на процесс совершенствования кристаллов при нагревании. Используя соответствующую реакцию, можно так изменять химическую структуру поверхности что процессы перестройки оказываются подавленными и появляется возможность определить температуру плавления с нулевым производством энтропии. Впервые химическую обработку кристаллов для замедления процессов их перестройки применили Аракава и др. [c.203]

    Формально результат воздействия обратной связи на ход каталитического процеса в математических моделях автоколебаний учитывается различными путями. В основу гетерогенно-каталитических моделей обычно полагается механизм Лэнгмюра—Хиншельвуда с учетом формального отражения а) зависимости констант скорости отдельных стадий реакции от степеней покрытия адсорбированными реагентами [93—98] б) конкуренции стадий адсорбции реагирующих веществ [99—103] в) изменения во времени поверхностной концентрации неактивной примеси или буфера [104—107] г) участия в стадии взаимодействия двух свободных мест [108] д) циклических взаимных переходов механизмов реакции [109], фазовой структуры поверхности [110] е) перегрева тонкого слоя поверхностности катализатора [100] ж) островко-вой адсорбции с образованием диссипативных структур [111, 112]. К этому следует добавить модели с учетом разветвленных поверхностных [113] гетерогенно-гомогенных цепных реакций [114, 115], а также ряд моделей, принимающих во внимание динамическое поведение реактора идеального смешения [116], процессы внешне-[117] и внутридиффузионного тепло-и массопереноса I118—120] и поверхностной диффузии реагентов [121], которые в определенных условиях могут приводить к автоколебаниям скорости реакции. [c.315]

    К. В. Зотовой и А. А. Трапезниковым обнаружен интересный факт, позволяющий в некоторых случаях по-новому объяснить устойчивость пленок пеиы. Эти авторы установили, что поверхностно-активные коллоидные компоненты могут переходить в пленку в большем количестве, чем в адсорбционный слой на поверхЦости исходного раствора. Это обусловлено особыми условиями образования пленки, способствующими непрерывному обновлению поверхности и обмену поверхностно-активными компонентами. В результате перехода в пленку непрочных коллоидных агрегатов, возникших по тем или иным причинам в растворе, в глубине пленки меяаду адсорбционными слоями может образоваться тиксотропная структура, сильно повышающая вязкость этой части пленки. Сами же адсорбционные слои остаются при этом маловязкими. Понятно, что благодаря такой структуре сильно замедляется процесс стекания и повышается устойчивость пен. С таким объяснением устойчивости пены хорошо согласуется исключительная длительность существования пен, стабилизованных высокомолекулярными соединениями. В этом случае образование высоковязкой тиксотропной структуры в глубине пленки пены почти не вызывает сомнений. [c.392]

    Неоднородность структуры поверхности кристалла предопределяет возможность наличия вдоль нее градиента химического потенциала. Это приводит к поверхностной самодиффузии (диффузии вещества кристалла) и гетеродиффузии (диффузии чужеродных частиц). Эти процессы идут в направлении выравнивания поверхности граней, залечивания их дефектов. Кроме того, распространению вещества по поверхности (его ползучести, растеканию) способствуют неровности, которые служат стоками для диффундирующих частиц. [c.342]

    Ко второй группе относятся вещества, поверхностно-активные на границе двух несмешивающи.хся жидкостей или на твердых поверхностях раздела, но не образующие структур ни в объеме раствора, ни в поверхностных слоях. Адсорбируясь и тем самым понижая свободную поверхностную энергию жидкости или твердого тела, они облегчают процесс образования новых поверхностей, т. е. диспергирование в данной среде. Адсорбируясь на твердых поверхностях, поверхностно-активные вещества второй группы могут резко изменять молекулярную природу твердой повер.хности. В результате такой ориентированной адсорбции поверхностно-активных веществ происходит гидрофобизация первоначально гидрофильных твердых поверхностей. Эффект гидрофобизации усиливается химической связью — фиксацией полярных групп молекул поверхностно-активного вещества на соответствующих участках твердых поверхностей. Длинные углеводородные цепи, ориентированные наружу, вызывают несмачиванне такой поверхности водой или избирательное вытеснение воды с иоверхности неполярной жидкостью. [c.193]

    Большое число разновидностей биогенного кремнезема обнаружено в различных видах живых организмов в виде изолированных частиц, скелетных структур и поверхностных элементов. В большинстве случаев кремнезем после освобождения от органических вешеств проявляется в виде характерных узоров и форм (см. гл. 7). Фактически все биогенные формы кремнезема аморфны. Они часто имеют подструктуру из чрезвычайно малых частиц, меньших 50 А, с группами SiOH на поверхности. Частицы либо соединяются вместе в плотно упакованные трехмерные структуры, иногда представляя собой изолированные, микроскопические массы, либо являются твердыми образованиями, пронизанными отверстиями, подобно швейцарскому сыру, либо напоминают массу связанных между собой палочек. Небольшие первичные частицы могут слипаться в более плотные структуры, и переплетающиеся поры становятся тоньше. Дальнейший процесс осаждения кремнезема может сгладить характерные детали и привести к образованию непроницаемого [c.47]

    Предполагается, что при оккслительных процессах кислород постепенно претерпевает ряд изменений и может находиться в различных формах — ив молекулярной, и в атомарной. Связь кислорода с поверхностью катализатора постепенно упрочняется первоначальная форма, сохраняющая еще молекулярную структуру кислорода — поверхностная перекигь,— в определенных условиях превращается в поверхностные окислы, и этот процесс является началом целой серии дальнейших превращений, играющих существенную роль при окислении . [c.273]

    Исходный волос поверхностно-гиирофобен [807], но имеет высокоразвитую гидрофильную внутреннюю поверхность клеточной структуры. Разрушение внешней поверхности, вскрытие внутренней структуры и 01кислительные поверхностные процессы гидро-филизуют поверхность частиц размола, они и переходят в водную фазу даже на начальных стадиях. [c.329]

    На основании анализа большого экспериментального материала А. Н. Фрумкин [92] пришел к следующему заключению. Ряд постепенно упрочняющихся форм связи кислорода на поверхности в определенных случаях начинается нервоначальной формой, сохраняющей еще молекулярную структуру кислорода, — поверхностной перекисью ее превращение в поверхностные окислы является началом целой серии дальнейших превращений кислорода, играющих существенную роль в ряде процессов окисления . [c.45]

    Прежде всего вполне вероятно, что при адсорбции неоднородности и дефекты поверхности обратимо перераспределяются. Как отмечается в гл. V, разд. V-4B, присутствие адсорбированных молекул должно приводить к изменению энергии центров адсорбции (рис. V-8). При температуре выше некоторого критического для поверхностной подвижности значения распределение центров адсорбции зависит от степени заполнения поверхности адсорбатом. Кроме того, несколько первых слоев кристаллической поверхности твердого тела имеют искаженную структуру (гл. V, разд. V-7). В присутствии адсорбата степень нарушения структуры поверхностного слоя, конечно, должна меняться, причем этот процесс не обязательно сопровождается массовым переносом атомов твердого тела. Имеется ряд данных, которые можно непосредственно связывать с изменением структуры поверхностного слоя. Так, Лэндер и Моррисон, исследуя дифракцию медленных электронов на поверхности германия, пришли к выводу, что ири адсорбции иода имеет место значительная перестройка поверхности. Применив метод автоэлектронной микроскопии, Эрлих и др. [66] обнаружили, что структуры поверхности вольфрама при адсорбции и десорбции азота меняются. Изменения адсорбента при хемосорбции подробно рассмотрены в обзоре [67]. Получены также некоторые данные, свидетельствующие о структурной перестройке поверхностей молекулярных кристаллов при физической адсорбции. При адсорбции н-гексана на льду такие изменения наблюдаются при температурах выше —35 °С [69]. [c.431]

    Л. Н. Теренин и его ученики успешно применяют оптические методы для решения многих проблем катализа. А. Н. Фрумкин разработал совершенный электрохимический метод изучения адсорбции газов и структуры поверхности металлов. А. В. Фрост, Д. П. Добычин, П. Д. Данков и др. для изучения механизма реакции гидрогенизации этилена пользовались измерением электропроводности катализатора во время реакции. О. И. Лейпунский и А. В. Ривдель исполъзовали изменение разности контактных потенциалов для выяснения природы активированной адсорбции. Для изучения ориентации молекул в адсорбционном слое на твердых контактах А, X. Борк воспользовался точными кинетическими исследованиями. С. 3. Рогинский и И. Е. Брежнева для изучения поверхности твердых контактов и происходящих на них процессов воспользовались омечеными атомами, применяя искусственные радиоактивные изотопы. Рентгенографическое исследование влияния параметров решетки и размеров первичных кристаллов на активность и избирательность действия катализаторов, а также рентгеновский анализ промышленных катализаторов проводили А. М. Рубинштейн, Г. С. Жданов, В. П. Котов и Г. Д. Любарский. Исследование поверхностных слоев методом дифракции быстрых электронов в течение нескольких лет ведет 3. Г. Пинскер. Электронномикроскопические исследования катализаторов проводят А. Б. Шехтер, С. 3, Рогинский и др. В последние годы для изучения катализаторов начали применять термический анализ. [c.11]

    Одной из причин образования электроноакцепторных центров на поверхности может быть миграция примесных атомов из объема на поверхность. Действительно, процесс миграции примеси на поверхность значительно ускоряется при высоких температурах. обработки кремнезема. Однако природа центров, образовавшихся при обработке аэросила в вакууме при высоких температурах, сложнее. Как следует из приведенных результатов, искусственное введение на поверхность чистого кремнезема примеси не приводит к формированию поверхностных структур, аналогичных структурам поверхности кремнезема, содержащего А1 в объеме, возникающим после обработки при высоких температурах. Адсорбция арилкарбинолов на таким образом модифицированных поверхностях сопровождается их ионизацией, что прямо свидетельствует о существовании протонодонорных центров, аналогичных существующим на поверхности алюмосиликагеля (см. главу IX). [c.202]

    В работе [62] исследовано образование поверхностных соединений при адсорбции диметилового эфира на поверхности гидратированной (откачка при 20° С) и частично дегидратированной (откачка при 450° С) окиси алюминия. Было найдено, что адсорбция эфира гидроксилированной окисью алюминия сопровождается образованием водородной связи с поверхностными гидроксильными группами, следствием чего является смещение полосы поглощения veo эфира на 30 сж . Спектр эфира, адсорбированного окисью алюминия при 150—200° С, во многом аналогичен спектру координационных соединений эфира с ВРз. Карбонатно-карбоксилатные поверхностные структуры имеют полосы поглощения в области 1300—1700 смг. На дегидроксилированной ловерхности окиси алюминия появление полос поглощения карбо-натно-карбоксилатных структур около 1600 и 1460 смг наблюдается после адсорбции эфира при 200° С, После прогрева образца при 300—400° С появляются новые полосы в области 1400— 1380 см . Из всей совокупности наблюдаемых полос поглощения монодентатной карбонатной структуре приписываются полосы в области 1450—1500, 1350 и 1050—1070 смг-, а бидентатнон— лолосы в области 1590—1640, 1260—1290 и 1020—1030 см-. Отмечается, что возникновение этих структур происходит в процессе разложения эфира на поверхности и сопровождается выделением молекул воды. [c.301]

    В жидкостно-адсорбционной хроматографии наряду с поверхностными свойствами адсорбента на результаты разделения оказьшает влияние и пористость его структуры. Удельная поверхность определяет емкость адсорбента. Для удовлетворительного разделения достаточно, чтобы адсорбент имел поверхность 50 м /г. Но возможно хорошее разделение и при меньшей поверхности. В частности, поверхностно-пористые материалы, находящие все более широкое применение в жидкостной хроматографии, имеют уде,льную поверхность 0,65-14,0 м /г [6]. Это позволяет провести хроматографическое разделение с высокой эффективностью, но из-за малой емкости таких адсорбентов приходится работать с очень малыми пробами и соответственно с высокочувствительными детекторами. Удельная поверхность не определяет селективность адсорбента. В самом деле, с увеличением поверхности адсорбента увеличивается количество адсорбированного вещества, но для всех веществ это изменение будет одинаковым, и поэтому селективность не изменится. Размер пор сильнее влияет на свойства адсорбента. Относительная доля свободных и реактивных гидроксильных групп на поверхности силикагеля тесно связана с размером пор адсорбента. Широкопористый силикагель имеет большую долю свободных ОН-групп, а поверхность узкопористого силикагеля покрыта в основном реактивными и связанными гидроксильными группами. Это различие в структуре поверхности узко- и широкопористых силикагелей достаточно, чтобы повлиять на относительную адсорбцию различных соединений. Линейная емкость силикагеля и ее изменение в процессе дезактивации также зависят от размера пор адсорбента (см. рис. 5 . Объясняется это тем, что поверхность узкопористых силикагелей более гетерогенна, и поэтому, несмотря на большую удельную поверхность адсорбенты этого типа обладают меньшей линейной емкостью. Добавление воды к активным образцам быстро делает поверхность широкопористого силикагеля однородной линейная емкость узкопористых силикагелей повышается в процессе добавления дезактиватора. [c.24]


Смотреть страницы где упоминается термин Структура поверхности и поверхностные процессы: [c.392]    [c.153]    [c.154]    [c.12]    [c.480]    [c.35]    [c.163]    [c.116]    [c.62]    [c.184]    [c.203]    [c.148]    [c.252]    [c.17]    [c.217]   
Смотреть главы в:

Химия твердого тела -> Структура поверхности и поверхностные процессы




ПОИСК





Смотрите так же термины и статьи:

Поверхностный структура



© 2025 chem21.info Реклама на сайте