Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

связи с образованием низкомолекулярных веществ

    Так исторически сложилось, что водородная связь, хотя она в точности не подходит ни под один тип взаимодействий, приведенных в табл. 1.1, привлекает особое внимание исследователей. Эта связь возникает в тех случаях, когда атом водорода удерживает вблизи себя два электроотрицательных атома. В ее основе лежит взаимодействие между постоянными диполями, которое часто усиливается благодаря вкладу энергии резонанса ионных структур. В биологических системах в роли электроотрицательных атомов при образовании водородных связей обычно выступают атомы азота или кислорода, но вообще в этой роли могут выступать также атомы углерода, серы или какого-либо другого элемента. Водородные связи иногда называют водородными мостиками или протонными связями. Простейшим примером структуры с водородными связями может служить вода (рис. 1.3). Благодаря возникновению водородных связей некоторые низкомолекулярные вещества, например вода или метанол, остаются при комнатной температуре в жидком (а не в газообразном) состоянии и имеют более высокую температуру кипения по сравнению с другими веществами примерно такого же [c.21]


    Характер надмолекулярных структур, их размеры н взаиморасположение, плотность упаковки молекул в первичных элементах структуры и, наконец, морфология сложных кристаллических образований должны оказывать влияние на величину и характер диффузии и растворимости низкомолекулярных веществ в полимерах. В пачке, являющейся основным элементом надмолекулярной структуры аморфного полимера, обеспечивается более или менее полная параллелизация участков цепных молекул, поэтому можно предположить, что в самой пачке более плотная упаковка молекул, чем в промежутках, отделяющих пачки друг от друга. По аналогии с переносом газов и паров через кристаллические полимеры можно считать, что перенос низкомолекулярных веществ в аморфных полимерах будет происходить преимущественно по границам раздела пачек. В результате огибания пачек молекулами диффундирующего низкомолекулярного вещества путь молекул в полимере будет возрастать и, следовательно, значение эффективного коэффициента диффузии уменьшается. Диффузия по межпачечным пространствам должна характеризоваться также и меньшей энергией активации, так как в областях между пачками должно наблюдаться уменьшение межмолекулярных сил и плотности энергии когезии, а также повышение конфигурационного набора цепных молекул. Различие в размерах и формах кристаллических образований сказывается на изменении ряда физических свойств полимеров, в том числе и на процессах переноса низкомолекулярных веществ в полимерах. Так, было показано, что на коэффициенты диффузии низкомолекулярных углеводородов и некоторых постоянных газов в полиэтилене влияют термическая обработка и предыстория образцов полиэтилена, что связано с изменением их кристаллической структуры 2. [c.155]

    Реакция полимеризации — процесс, в результате которого молекулы низкомолекулярного соединения (мономера) соединяются друг с другом при помощи перестройки ковалентных связей, образуя новое вещество (полимер), молекулярная масса которого в целое число раз больше, чем у мономера полимеризация характерна, главным образом, для соединений с кратными (двойными или тройными) связями. Реакция поликонденсации — процесс образования полимера из низкомолекулярных соединений, содержащих две или несколько функциональных групп, сопровождающийся выделением за счет этих групп таких веществ, как вода, аммиак, галогеноводород и т. п. состав элементарного звена полимера в этом случае отличается от состава исходного мономера. [c.604]


    Растворы высокомолекулярных соединений образуются самопроизвольно и для их устойчивости не требуется вводить стабилизирующие вещества. Все высокомолекулярные вещества состоят главным образом из цепных линейных структур, отдельные звенья которых связаны между собой прочными химическими связями, в результате чего молекулярные цепи сохраняются как в твердых полимерах, так и в растворах. Образование высокомолекулярных веществ из низкомолекулярных происходит двумя методами полимеризацией и поликонденсацией. [c.288]

    Образование полимера при отверждении связующего в реакто-пласте протекает в нестационарных условиях в индивидуальных формах и является трудноконтролируемым и трудновоспроизводимым процессом, часто сопровождающимся интенсивным тепловыделением, создающим неравномерное тепловое поле в изделии, и образованием низкомолекулярных веществ, удалять которые на стадии формования трудно. Поэтому степень отверждения, а следовательно, структура и свойства полимерной матрицы определяются главным образом условиями формования, формой и габаритами изделий, что создает труднопреодолимые препятствия при получении связующих с заданной и воспроизводимой структурой. [c.76]

    Имеющиеся в настоящее время данные о полимеризации диенов при действии щелочных металлов или металлорганических соединений позволяют сделать вывод, что ионный механизм, в частности механизм, допускающий образование карбанионов, недостаточен для объяснения экспериментальных данных, а объяснение их при помощи типично радикального цепного процесса полимеризации также не вполне отвечает истине. Несомненно, что на поверхности металла образуются органические соединения щелочных металлов, обусловливающие начало реакции. Неудачи предпринимавшихся до сих пор попыток объяснения, по-видимому, тесно связаны с вопросом о природе связи между щелочным металлом и органической молекулой в металлорганических соединениях того типа, который в данном случае представляет интерес. Реакции алкилметаллов с образованием низкомолекулярных веществ тоже трудно вполне правильно истолковать с точки зрения образования карбанионов. [c.276]

    Подавляющее большинство полимеров, применяемых в производстве химических волокон, резиновых изделий, пленок, пластических масс, лаков, получают, как указывалось, синтетическим путем из низкомолекулярных соединений (мономеров). Соединение молекул низкомолекулярных веществ между собой с образованием макромолекул полимера может происходить в результате различных реакций, в зависимости от строения исходных мономеров. Если в молекулах мономеров имеются функциональные группы, вступающие в реакцию между собой, и процесс присоединения молекул друг к другу сопровождается выделением побочных низкомолекулярных продуктов, то процесс синтеза полимера носит название реакции поликонденсаЦии. В случае, когда синтез полимера является следствием перегруппировок внутри функциональных групп без изменения элементарного состава, такой процесс называют ступенчатой полимеризацией. Если же молекулы мономера содержат кратные связи или представляют собой циклические соединения и образование макромолекул происходит в результате раскрытия двойных связей или разрушения циклов и не сопровождается выделением побочных продуктов, то процесс получения полимера называется реакцией цепной полимеризации. Поликонденсация и цепная полимеризация являются наиболее распространенными способами получения полимеров. [c.384]

    Растворы полимерных соединений представляют собой термо динамически устойчивые системы, что связано с молекулярно-дисперсным состоянием компонентов раствора. Следовательно, в истинных растворах полимеров последние диспергированы до молекулярного состояния. Однако для растворов высокомолекулярных, как и низкомолекулярных соединений характерна ассоциация. молекул. Отдельные сегменты гибких и очень длинных макромолекул полимеров могут входить одновременно в состав нескольких ассоциатов. Как и в растворах низкомолекулярных веществ, ассоциаты полимерных молекул находятся в непрерывном состоянии образования и разрушения. Продолжительность изменения ассоциатов высокомолекулярных молекул значительно больше, чем для ннзкомолекулярных веществ, что объясняется большей громоздкостью молекул. [c.63]

    У полимерных сорбентов под адсорбцией понимают поглощение на поверхности раздела фаз, а под абсорбцией - растворение поглощаемого низкомолекулярного вещества в полимере с образованием твердого раствора, причем при абсорбции полимер обычно набухает. Процессы абсорбции у полимеров преобладают над процессами адсорбции. Однако при сорбции у пористых полимеров оба процесса происходят одновременно и практически их невозможно разграничить. Кроме того, в порах полимерного сорбента возможна капиллярная конденсация, накладывающаяся на процессы адсорбции и абсорбции. При сорбции полярными полимерами полярных низкомолекулярных веществ сорбент взаимодействует с молекулами сорбата с образованием межмолекулярных связей, в том числе водородных. Изотермы сорбции при этом приобретают характерную 8-образную форму. Вначале происходит интенсивное связывание молекул сорбата, затем после насыщения полярных функциональных групп сорбента наблюдается более медленное поглощение, а у пористых сорбентов вследствие капиллярной конденсации интенсивность поглощения сорбата затем снова возрастает. [c.264]


    В определенных случаях (реакции полимеризации) звенья макромолекулы по составу представляют собой молекулы мономера, т. е. низкомолекулярного вещества, из которого состоит макромолекула полимера. Строение звеньев макромолекулы полимера отличается от строения молекулы мономера, так как при реакции полимеризации происходит перестройка связей, ведущая к объединению молекул мономера. В качестве примера можно привести схемы реакций образования некоторых полимеров  [c.469]

    Эффект цепи. Полимеры могут вступать в реакции, вообще не имеющие прямых аналогий с реакциями низкомолекулярных веществ. Эти реакции обусловлены наличием длинной цепи однородных звеньев. К таким реакциям относятся, например, процессы деполимеризации, внутримолекулярной полициклизации, превращения полимеров с образованием протяженной системы сопряженных связей, некоторые межмолекулярные реакции (см., например, гл. IV). [c.52]

    Термический распад некоторых полимеров с функциональными группами в виде боковых подвесков приводит к выделению низкомолекулярных веществ, образованию двойных связей в цепи без распада цепи при чисто термическом воздействии. Так идет, например, распад поливинилхлорида (ПВХ)  [c.236]

    В противоположность этому поликонденсация основана на реакциях замещения. Высокомолекулярные вещества, синтезируемые поликонденсацией, имеют иной состав, чем те исходные вещества, из которых они получены, вследствие того, что в процессе реакции происходит выделение воды, галогеноводорода или других низкомолекулярных веществ. Следовательно, понятие "поликонденсация" объединяет такие химические реакции, в которых в общем случае наряду с образованием высокомолекулярного вещества происходит образование низкомолекулярного продукта. Этим поликонденсация принципиально отличается от полимеризации, в основе которой лежат реакции присоединения, и элементный состав мономера и продукта его полимеризации один и тот же. И если в случае полимеризации имеются, в основном, два химических процесса присоединение по кратным связям между двумя атомами и присоединение к циклам, то процессы поликонденсации многогранны, так как известно большое число различных реакций замещения как в органической, так и неорганической химии, многие из которых в настоящее время с успехом используются для получения органических, элементоорганических и неорганических полимеров [3, 4, 10, 12, 38, 39]. [c.8]

    Полимеризация — это реакция образования полимеров путем последовательного присоединения молекул низкомолекулярного вещества (мономера). При полимеризации не образуются побочные продукты и соответственно элементный состав макромолекул не отличается от состава молекул мономеров. В качестве мономеров используются соединения с кратными связями С С, С=Ы, С=С, С=0, С=Ы, либо соединения с циклическими группировками, способными раскрываться, например  [c.351]

    В реакциях элементарных звеньев полимера вследствие соизмеримости молекулярных масс элементарного звена и реагирующего с ним низкомолекулярного вещества участвуют обычно соизмеримые количества полимера и низкомолекулярного соединения. При образовании же межмолекулярных связей в реакции участвует, с одной стороны, макромолекула полимера, а с другой — молекула низкомолекулярного соединения, молекулярная масса которого в сотни или тысячи раз меньше молекулярной массы полимера. Например, для образования химической связи между двумя макромолекулами полиакриловой кнслоты достаточно одного атома двухвалентного металла  [c.46]

    Связи цепей в кристаллитах пектинов сравнительно слабы и легко разрываются за счет гидратации моносахаридных остатков. Поэтому прочные гели образуются только при условии снижения термодинамической активности растворителя (воды) за счет растворения хорошо гидратируемых низкомолекулярных веществ (например, сахарозы). Образование пектиновых гелей в присутствии сахарозы есть физико-химическая основа ряда кондитерских производств, таких, как изготовление варенья, конфитюров, мармеладов и т. ц. В растительных же тканях пектиновые гели служат связующим межклеточным материалом и цементирующей основой клеточной стенки. [c.171]

    В зависимости от строения мономерных молекул и их ориентации по отношению к растущей цепи в момент присоединения к ней воз-" можно образование различных стереоизомерных полимеров. Так же, как у низкомолекулярных веществ, для появления стереоизомеров цепь макромолекулы должна содержать двойные связи, соединяющие атомы с различными заместителями цис-транс-шам рпя), или асимметрические атомы углерода или других элементов (оптическая изомерия). [c.173]

    А. М. Мирошниченко [12] объясняет это тем, что кислородсодержащие группы атомов в макромолекулах угля способствуют поляризации и образованию более сильных межмолекулярных связей ио сравнению с внутримолекулярными. Это приводит к глубокому разрушению макромолекул угля с образованием большого количества низкомолекулярных веществ. [c.189]

    Структура граничных слоев полимеров имеет большое значение для понимания механизма структурообразования в наполненных Дисперсных системах. Поэтому представляется важным рассмотрение адсорбции полимеров на границе раздела фаз и конформации адсорбированных цепей [24]. Адсорбция полимеров на твердых поверхностях из растворов весьма специфична и существенно отличается от адсорбции низкомолекулярных веществ. Специфические особенности связаны с тем, что при адсорбции на поверхность адсорбента переходят не изолированные полимерные молекулы (за исключением случая предельно разбавленных растворов), а агрегаты макромолекул или другие надмолекулярные образования, возникающие в растворах уже при относительно невысоких концентрациях. Модель адсорбции молекулярных агрегатов является [c.10]

    При взаимодействии полимерных материалов с низкомолекулярными веществами, при воздействии солнечной радиации или других видов излучения наряду с поверхностными могут происходить объемные процессы, приводящие к резкому изменению свойств полимеров деструкция макромолекул без образования фазовой поверхности, ослабление межмолекулярного взаимодействия без разрушения ковалентных связей, набухание и т. п. [c.6]

    Третья стадия — образование однофазной системы, т. е. переход высокомолекулярного соединения в состояние истинного раствора, реализуется лишь для таких высокомолекулярных соединений, макромолекулы которых не имеют между собой мостиковых связей . При наличии таких связей между микромолекулами процесс растворения останавливается на второй стадии. В этом случае высокомолекулярное соединение имеет ограниченное набухание (без образования истинного раствора). К неограниченно набухающим высокомолекулярным соединениям относятся каучук в бензоле, белок в воде и др. к ограниченно набухающим высокомолекулярным соединениям — вулканизированный каучук. В отличие от истинных растворов низкомолекулярных веществ, в растворах высокомолекулярных соединений равновесие, в частности переход от пересыщенного состояния в насыщенное, достигается чрезвычайно медленно (неделями и месяцами). [c.361]

    Как видно из приведенных примеров, для перехода от линейной структуры полимера к сетчатой достаточно минимум одной химической связи между двумя соседними макромолекулами, т. е. одна молекула низкомолекулярного вещества способна вызвать качественное изменение состояния двух макромолекул полимера, связав их друг с другом. При этом они теряют способность перемещаться в качестве самостоятельной кинетической единицы. Молекулярная масса малой молекулы сшивающего агента значительно меньше молекулярной массы сшиваемых макромолекул полимера, а поэтому уже крайне малые добавки этих агентов приводят к образованию единой структуры сетчатого полимера. Для сшивания молекул каучука с молекулярной массой 500 ООО достаточно 1 % перекиси или 1,5—2% серы для сшивания целлюлозы с молекулярной массой 1 500 ООО достаточно 0,01% гексаметилендиизоцианата (присоединение гидроксильного водорода целлюлозы к изоцианатным группам сшивающего агента). Сшивание макромолекул можно проводить также путем физических воздействий, приводящих к образованию активных центров (радикалов или ионов) на макромолекулах. Например, при облучении ультрафиолетовым светом или при действии у-лучей на насыщенные и ненасыщенные полимеры образуются свободные радикалы внутри макромолекул. Эти радикалы реагируют друг с другом или с двойными связями других макромолекул, что приводит к возникновению поперечных связей и образованию сетчатой структуры. Механизм этих реакций подобен рассмотренному выше случаю перекисной вулканизации каучуков. [c.46]

    Многие годы существовало мнение, что в жидком состоянии полимеров, а также твердом аморфном состоянии полностью отсутствует какой-либо порядок в расположении молекул и полимеры представляют собой так называемый молекулярный войлок с беспорядочно перепутанными молекулами. Позднее возникли представления о возможности образования упорядоченных участков в процессе кристаллизации полимеров и даже о возможности образования единичных кристаллов. Вместе с тем считали, что даже в кристаллических полимерных телах возможно наличие неупорядоченных областей, т. е. степень упорядоченности полимеров может характеризоваться степенью кристалличности полимера. Последующие исследования показали, что процесс структурообразования в полимерах многостадийный в связи со сложностью структурной организации самих макромолекул, а следовательно, он резко отличается от структурообразования з низкомолекулярных веществах. Рядом исследований было показано, что образование правильных кристаллических структур возможно лишь в том случае, если в расплавах или растворах, из которых происходит кристаллизация, уже существуют упорядоченные агрегаты макромолекул. [c.66]

    Имеются и другие теории, объясняющие роль сульфида натрия и серы в процессе сульфатной варки. Г. С. Чиркин и Д. В. Тищенко предложили теорию, согласно которой лигнин участвует в окислительно-восстановительных реакциях с серой. Согласно этой теории лигнин под действием щелочи гидролизуется по простым эфирным связям до низкомолекулярных веществ, родственных п-оксибензиловому спирту. Последний конденсируется с образованием оксидифенилметанов, которые затем разрушаются под действием восстановителей в щелочной среде с разрывом связи между метановым углеродом и бензольным кольцом. [c.22]

    Монолитность, плотность и прочность изделий, получаемых из компаундов и премиксов, далеки от максимально возможных и становятся недопустимо низкими, если процесс отверждения реактопласта сопровождается образованием низкомолекулярных веществ. Эти обстоятельства обусловливают необходимость проведения еще одной стадии — предотверждения. Ее проводят после совмещения всех компонентов и часто сочетают с удалением растворителя. Предотверждение сопровождается понижением текучести связующего, поэтому заполнение форм реактопластом становится возможным только при давлениях выше 250—300 кгс/см (прессовочные материалы), но зато качество изделий резко возрастает. [c.6]

    В синтетических полярных полимерах и белках набухание начинается с сольватации полярных групп. При образовании сольватных слоев поглош,ается около 20—40% растворителя от массы сухого полимера. Следующая стадия набухания — поглощение десятикратного объема растворителя — объясняется осмотически-ми явлениями. Набухание в современиой трактовке тесно связано с молекулярной структурой полимера. С термодинамической точки зрения процессы набухания ВМС и растворения низкомолекулярных веществ весьма сходны между собой набухание — явление,-характерное для полимеров. [c.285]

    Среди химических реакций полимеров реакции между разными макромолекулами занимают особое место. Полимераналогичные и внутримолекулярные реакции хотя и могут в сильной степени изменять химическую природу полимеров (введение но-11ЫХ функциональных групп, деструкция макромолекул, образование цикличес их структур), но при этом остается неизменной индивидуальность макромолекулы. Это значит, что полимер сохраняет способность растворяться (хотя природа растворителя может измениться), способность к пластическим деформациям и течению при повышенных температурах или механических напряжениях. Если же между собой реагируют разные макромолекулы по функциональным группам или через посредство би- и более функциональных низкомолекулярных веществ,— то возникают химические связи в структурах между разными макромолекулами. В результате создается новая система связанных друг с другом химически макромолекул, которые теряют способность растворяться и необратимо проскальзывать друг относительно уфуга, т. е. теряют способность к необратимым пластическим деформациям. Как правило, в образовавшихся при этом сетчатых структурах резко улучшаются механические свойства. [c.293]

    Отсюда следует, что кислород не только инициатор, но и вещество, участвующее в сополимеризации он входит в состав конечного продукта. Установлено, что на каждую двойную связь, участвующую в образовании полимера, приходится примерно по одной молекуле кислорода. Кроме того, кислород расходуется на образование низкомолекулярных продуктов окисления (низшие кислоты, альдегиды, СО, СО2, Н2О). Окислительной деструкции в большей степени подвергаются невысыхающие или полувысыхающие масла. При действии на высыхающие масла кислород расходуется преимущественно на образование поперечных связей в трехмерной молекуле. [c.297]

    Клеточная мембрана — это не просто мешок. Она регулирует перенос низкомолекулярных веществ в клетку и из клетки. У бактерий с внутренней поверхностью мембраны связаны ферменты, катализирующие процессы окисления. Нередко бактериальные мембраны образуют складчатые участки, имеющие в разрезе вид многослойных структур это так называемые мезосомы (рис. 1-1 и 1-2, Г). Предполагается, что в мезосомах протекают специализированные процессы обмена веществ и репликация ДНК. В клетках Е. oli мезосомы выявляются не всегда, и все же, видимо, репликация ДНК у этого организма происходит на определенных участках поверхности мембраны и регулируется связанными с мембраной ферментами. Образование новой мембраны (перегородки) между делящимися клетками происходит синхронно с синтезом ДНК. [c.21]

    Основную массу полимеров составляют органические вещества, однако известно немало неорганических и элементорганиче-ских полимеров. Характерной чертой полимера является то, что лри образовании его молекулы соединяется большое число одинаковых или разных молекул низкомолекулярных веществ — мономеров. Это приводит к тому, что возникает длинная цепная мот лекула, которую называют макромолекулой) В макромолекуле составляющие ее низкомолекулярные повторяющиеся структурные единицы, или элементарные звенья, соединены прочными химическими связями. Сами же макромолекулы связаны между собой слабыми физическими межмолекулярными силами. [c.9]

    Клеточная мембрана и сеть эндоплазматических мембран являются существенным элементом каждой живой клетки. Они не только отграничивают друг от друга клетки и их структурные элементы, но и обеспечивают активный транспорт низкомолекулярных веществ. Основной биологической функцией эндоплазматической сети и связанного с ней образования — так называемого аппарата Гольджи является, по-видимому, синтез основных биополимеров клетки и их транспортировка в нужные участки клетки . В участках так называемой шероховатой сети с эндоплазматическими мембранами связаны рибонуклеопротеидные частицы — рибосомы, в которых происходит синтез белка. В гладких участках эндоплазматической сети происходит биосинтез полисахаридов и липидов. [c.600]

    Кинетические закономерности фазовых переходов имеют общий характер для различных фазовых превращений, таких, как кристаллизация, конденсация, образование эмульсий. Кинетика фазового перехода при формовании волокон из растворов (и особенно вискозных волокон) только начинает изучаться [89]. В связи с этим целесообразно воспользоваться данными, полученными при исследовании кристаллизации низкомолекулярных веществ и полимеров из расплавов [90, с. 78]. Кинетические закономерности кристаллизации низкомолекулярных веществ практически полностью применимы и для случая полимеров. Отличие заключается лишь в том, что при кристаллизации полимеров происходит рост не чистых кристаллов, а фибриллярной или сферолитной фазы, для которой характерно чередование упорядоченных и неупорядоченных участков. Поэтому при рассмотрении кинетики фазового перехода целесообразно пользоваться термином структурообра-зование , так как термин, кристаллизация обычно применяют, когда говорят о росте кристаллических областей в полимере. [c.201]

    С образованием вторичной клеточной оболочки начинается процесс лигиификацип. Лигнификация сначала идет в первичной оболочке, затем в межклеточном слое и в дальнейшем во вторнч-иоГ оболочке. Лигнин заполняет пространство, ранее занятое водой, и превращает среду между фибриллами целлюлозы из вязкого геля в относительно твердое неэластичное вещество. При этом образуются химические и физические связи лигнина с ГМЦ (более подробно см. в 4-й главе этой книги). Но в процессе лигнифи-кации не все микропустоты заполняются лигнином. В оболочке существует система капилляров (преимущественно диаметром 5— 6 нм), благодаря которой она приобретает высокую проницаемость для водных растворов и низкомолекулярных веществ. Продвижение жидкостей от одной клетки к другой происходит через систему пор, т. е. в тех местах оболочки, где не образовалась вторичная оболочка. Предполагается, что в оболочку могут проникать частицы диаметром не более 12 нм [8, с. 38]. [c.33]

    Химические реакции между функциональными группами отдельных звеньев линейных макромолекул с низкомолекулярными веществами, имеющими две функциональные группы или две свободные валентности, приводят к соединению макромолекул с образованием полимеров сетчатой структуры. Этот процесс получил широкое распространение в технологии переработки полимеров. К наиболее широко применяемым процессам этого типа относится вулканизация (стр. 519). В процессе вулканизации линейные полимеры превращаются в сетчатые с редким расположением полеречных связей, что придает полимеру нерастворимость, лишает его термопластичности, но сохраняет его высокую эластичность. [c.437]

    Адсорбция полимеров на твердых поверхностях из растворов является весьма специфичной и существенно отличается от адсорбции низкомолекулярных веществ. В детальных исследованиях этого процесса, проведенных в наших работах [12—15], было установлено, что эти специфические особенности связаны с тем, что при адсорбции па поверхность адсорбента переходят не изолированные полимерные молекулы (за исключением случая предельно разбавленных растворов), а агрегаты макромолекул или другие надмолекулярные образования, возникающие в растворах уже при относительно невысоких концентрациях. При этом состав т 1ких агрегатов и форма макромолекул в них зависят от концентрации раствора, а это означает, что с изменением концентрации раствора происходят непрерывные изменения как размера, так и формы адсорбируемых частиц. [c.311]

    Значительное влияние оказывает на скорость диффузии ПХФ пз сетки сшитой МЦ химическое строение мостичной связи. Более гибкие мостичные связи, образованные реагентом ДМАЭ (№ оп. 5 и 0), создают подвижную сетку, оказывают пластифицирующий эффект, в результате чего скорость транспорта реагентов из сетки возрастает (Д оп. 3 и 6). Таким образом, процессы диффузии низкомолекулярного органического вещества из пространственной сетки сшитого эфира целлюлозы определяются ее строением (т. е. числом мостичных связей, их строением и распределением) и могут служить характеристикой таких систем. [c.226]

    Представления о структуре аморфных полимеров в конденсированном состоянии как о системе перепутанных цепных молекул привели к разработке молекулярных механизмов пластицирующего действия добавок низкомолекулярных веществ, вводимых в такие полимеры, выражаемого правилами мольных [1] или объемных [2] долей. Влияние низкомолекулярных веществ на механические свойства полимеров рассматривалось в этих случаях на молекулярном уровне характеристики явления пластификации. Однако в последнее время эти представления претерпели существенные изменения. Оказалось, что полимеры представляют собой систему высокоупорядоченных вторичных структурных образований [3], имеющих в отдельных случаях строгую геометрическую огранку, сходную с кристаллическими формами [4—7]. Новые данные, полученные по характеристике структуры аморфных полимеров, оказались весьма плодотворными для понимания явления пластификации полимеров низкомолекулярными веществами, которые ограниченно совмещаются с полимерами. Было показано, что влияние именно таких низкомолекулярпых веществ на механические свойства полимеров, определяющие их пластифицирующий эффект, связано со степенью распада надмолекулярных структур в полимерах. Можно представить, что процессы распада надмолекулярных структур в полимерах имеют такой же ступенчатый характер, как и процессы самого структурообразования. Полное разрушение всех вторичных структурных образований характеризуется возникновением термодинамически устойчивого раствора [8]. Уменьшение хрупких свойств материала в этом случае приводит к так называемой внутри-пачечной пластификации полимера [9]. Введение в полимер низкомолекулярных веществ, ограниченно совмешающихся с ним и вызывающих разрушение вторичных надмолекулярных образований, приводит к полученииз системы из молекул таких веществ, равномерно распределенных между первичными надмолекулярными образованиями — пачками цепей. Если при этом уменьшаются хрупкие свойства полимерного материала, имеет место так называемая межпачечная пластификация полимера [9]. Наконец, можно представить и существование начального акта распада, который должен характеризоваться нарушением контактов между вторичными надмолекулярными структурными образованиями. При этом подвижность таких сложных образований должна возрасти, а количество низкомолекулярного вещества, сорбированного на местах контактов, должно быть, по-видимому, весьма небольшим. Излон енные соображения явились предметом настоящего исследования. [c.387]

    Л1 — протекают реакции скелетной изомеризации бутиленов и изомеризации по двойной связи, крекинг низкомолекулярных олефинов и, по-видимому, также дегидратация спиртов [225, 255—257, 279]. Для этих реакций с ростом содержания А12О3 в алюмосиликате каталитическая активность растет. Наиболее активна чистая А12О3. Механизм реакции на таких атомах А1, соответственно схеме (38), часто заключается в отщеплении гидрид-иона с образованием карбо-ний-иона, способного к дальнейшим превращениям. В работе Лефтина и Хермана [257], например, было показано с помощью ультрафиолетовых спектров, что при изомеризации бутиленов на алюмосиликатах с перемещением двойной связи промежуточными реак-ционноснособными веществами служат л-аллильные карбоний-ионы  [c.78]

    Барамбойм [47] исследовал процесс деструкции при вальцевании на холоду смешанного полиамида типа АК 50/50 в присутствии низкомолекулярных добавок типа резорцина, о- и п-оксиаминобензойной кислоты или веществ, способных полимеризоваться (метилметакрилат), и установил, что они химически связаны с фрагментами деструкции. Автор доказал, что физикомеханические свойства (сопротивление разрыву, относительное удлинение пленок и т. д.) полиамидов, модифицированных низкомолекулярными веществами, являются лучшими. Вероятно, это связано с образованием водородных связей, которые в случае присоединения полиметилметакрилата оказались слабее. [c.311]

    Полиэтилен высокого давления термоустойчив приблизительно до температуры 290°. При нагревании полимера выше этой температуры молекулярный вес его уменьшается, хотя при этом не выделяется значительных количеств летучих продуктов термодеструкции. 11ри температурах выше 360° происходит быстрое образование летучих веществ. Из данных по определению изменений вязкости растворов полиэтилена, подвергаемого термодеструкции в интервале температур 290—360°, Оакс и Ричардс [99] вычислили число разрывающихся при этом связей (рис. У1П-20). Интересно, что в процессе термодеструкции полиэтилена скорость расщепления цепей непрерывно уменьшается, вместо того чтобы представлять постоянную величину, как это должно быть, если реакция протекает полностью по закону случая. Поскольку низкомолекулярные линейные углеводороды устойчивы к действию значительно более высоких температур, при термодеструкции полиэтилена в указанном температурном интервале происходит, по-видимому, расщепление каких-то связей, отличающихся от обычных углерод-углеродных связей, расположенных между мет1гаеновыми группами. В этом отношении процесс термодеструкции полиэтилена напоминает расщепление слабых связей в молекуле [c.48]


Смотреть страницы где упоминается термин связи с образованием низкомолекулярных веществ: [c.377]    [c.15]    [c.294]    [c.14]    [c.171]    [c.224]    [c.274]    [c.73]   
Каталитические свойства веществ том 1 (1968) -- [ c.92 , c.345 , c.346 , c.424 , c.425 , c.745 , c.769 , c.792 , c.943 , c.944 , c.1090 , c.1268 , c.1401 ]




ПОИСК







© 2025 chem21.info Реклама на сайте