Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общая характеристика аминов

    Общая характеристика аминов [c.146]

    Наиболее существенной характеристикой аминов является их основность. Она определяется в общем случае наличием в их структуре неподеленной пары электронов у азота и повышенной электронной плотностью на нем, как это видно из следующей схемы солеобразования, составленной для этиламина  [c.167]

    Дайте общую характеристику химических свойств аминов. На примере этиламина и нитроэтана покажите наиболее существенные химические отличия таких классов азотсодержащих соединений, как амины и нитросоединения. [c.74]


    Дайте общую характеристику химических свойств ароматических аминов. На примере анилина проиллюстрируйте наиболее важные реакции с участием как аминогруппы, так и бензольного кольца. [c.152]

    ОБЩАЯ ХАРАКТЕРИСТИКА НИТРОПРОИЗВОДНЫХ АМИНОВ [c.420]

    А. ОБЩАЯ ХАРАКТЕРИСТИКА РЕАКЦИЙ С АМИНАМИ [c.306]

    I. 1. Общая характеристика методов определения аминного и общего азота .............11 [c.5]

    ОБЩАЯ ХАРАКТЕРИСТИКА МЕТОДОВ ОПРЕДЕЛЕНИЯ АМИННОГО И ОБЩЕГО АЗОТА [c.11]

    Белки — это полимеры, построенные из небольших молекул, называемых аминокислотами. Каждая аминокислота содержит углерод, азот и водород, в некоторых также имеется сера. Как и сахара, белки - это строительные блоки для построения более сложных углеводов. 20 природных аминокислот образуют все белки. Они имеют общие структурные характеристики все они содержат амино- (-NN2) и карбоксильную (-СООН) группы (рис. IV.8). [c.259]

    Выявление в молекуле определенных атомных группировок (функциональных групп и фрагментов углеродного скелета). Таким образом осуществляется отнесение исследуемого вещества к той или иной группе (классу) органических соединений классификация или групповая идентификация). В зависимости от возможностей метода и природы исследуемого объекта групповая идентификация осуществляется на разных уровнях а) отнесение к классу веществ с очень общей и неполной характеристикой структуры (циклоалкан, олефин, спирт, простой эфир, амин и т. д.) б) определение принадлежности к тому или иному гомологическому ряду (например, ряд бензола, предель- [c.5]

    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]


    Других веществ, которые практически не поглощают в области 250—260 нм и не реагируют с уксусным ангидридом. К таким соединениям относятся различные алифатические и алициклические кислоты, простые и сложные эфиры, углеводороды и, возможно, третичные амины. Амины, в принципе, должны катализировать гидролиз уксусного ангидрида, избавляя таким образом от необходимости добавлять серную кислоту. Однако спектральные характеристики исследуемой системы будут зависеть от природы анализируемого соединения. Поэтому при анализах образцов соединений, отличных от уксусной кислоты, для определения вклада уксусного ангидрида в общее значение поглощения раствора потребуется использовать метод компенсации. Возможно, что проведению анализов будут мешать соединения, обладающие системой сопряженных двойных связей, альдегиды, кетоны, спирты, тиолы, первичные и вторичные амины, а также амиды. [c.368]

    Общая картина поведения кислот и оснований в воде и спиртах, которую мы только что рассмотрели, является несколько упрошенной. В первую очередь, обращают на себя внимание превосходящие ошибку эксперимента отчетливые различия в величинах Д (табл. 1) для индивидуальных кислот и оснований. Разброс величин Д был бы намного больше, если бы мы не ограничились двумя сериями, составленными из очень близких соединений — карбоновых кислот и первичных аминов. Например, фенолы отличаются по величинам ДрК от карбоновых кислот. Значительные различия наблюдаются и в поведении первичных, вторичных и третичных аминов — последние часто отличаются от двух первых даже по знаку Др/С. Эти индивидуальные особенности рассмотрены в следующей главе. Во-вторых, все три рассмотренных растворителя имеют близкую химическую природу, а в случае, когда сравнивают растворители различной природы, макроскопическая диэлектрическая постоянная становится еще менее адекватной характеристикой влияния растворителя. Это можно проиллюстрировать на примере поведения кислот и оснований в формамиде [16] —растворителе с диэлектрической постоянной (e=110) несколько большей, чем у воды — обладающем слабыми кислотными и слабыми основными свойствами. Некоторые кислоты являются в формамиде сильными. Поэтому p/(s формамида (16,8) удалось определить потенциометрическим методом. Таким образом, сила кислот и оснований может быть отнесена к частицам растворителя [c.71]

    Присущие им превосходные характеристики компенсируют более высокую стоимость данной смолы по сравнению с другими системами смол. Применение эпоксидов для общих типов армированных пластиков в прошлом ограничивалось теми немногими областями, где требовались сверхвысокие качества. Однако с развитием намоточных структур (видов намотки) применение эпоксидных смол расширяется. Технологичность армированных эпоксидных пластиков в значительной степени зависит от отвер-дителя. Алифатические амины обеспечивают отличные прочностные характеристики. Ароматические амины обеспечивают высокую кратковременную теплостойкость. [c.93]

    Существование четкой корреляции между углами /, и ф,+1 смежных остатков делает дипептидный фрагмент наиболее подходящей элементарной основой для классификации форм основной цепи на два типа -шейпы/и е, единственной характеристикой которых является параметр 6 (рис. 11.33). У трипептидных фрагментов, содержащих два перекрывающихся дипептидных участка, формы основной цепи подразделяются на четыре шейпа efn ее. В общем случае у фрагмента из п амино- [c.226]

    В соответствии с существующей общей характеристикой кислоты относятся к классу вепхеств, способных в растворе отдавать протон (обычные минеральные и органические кислоты, соли аммония, пиридиния и др.), а основания — присоединять протон (обычные неорганические гидроокиси, гидроксиламин, гидразин, алифатические амины, пиридин, соли слабых кислот и др.). Так же можно классифицировать и различные по природе растворители. При сильно выраженном свойстве отдавать протон растворители относятся к классу кислых или протогенных (муравьиная кислота, уксусная кислота, хлористый водород, фтористый водород и др.). Растворители, присоединяющие протон, называют основными или протонофильными (аммиак, алифатические амины, пиридин и др.). Имеются растворители промежуточного типа, обладающие кислыми и основными свойствами. Такие растворители называют амфотерными или амфипро-тонными (вода, спирты и др.). Растворители, не обладающие [c.56]

    Эпоксидированные полимеры обладают высокой реакционной способностью и под действием различных реагентов могут вулканизоваться с образованием трехмерных термоактивных структур. Сшивание или вулканизация осуществляется путем взаимодействия с полифункциональпыми активными водородсодержащими соединениями, например поли аминами или двухосновными кислотами, или по реакциям поликонденсации — полимеризации в присутствии такой кислоты Льюиса, как трехфтористый бор. Двойные связи, присутствующие в эпоксидированных полибутадиенах, представляют дополнительные активные участки цепи, способные взаимодействовать с перекисями и катализаторами ионных реакций. К полимерной цепи по месту двойной связи можно привить полимеры, образующиеся из различных реакционноспособных мономеров типа стирола. Наличие двойных связей позволяет осуществлять взаимодействие эпоксидированных полимеров с другими ненасыщенными полимерами — каучуками и полиэфирами. Общая характеристика реакций эпоксидированных полибутадиенов приведена в табл. П-5. [c.149]


    Фирмой Дюпон (Канада) для производства полупродуктов получения найлона — адипиновой кислоты и гексаметилен-диамина— разработан новый процесс очистки концентрированных сточных вод, богатых азотсодержащими соединениями, путем биологической нитрификации — деиитрификациц. В разработанном процессе предусматривается сочетание аэробного и анаэробного окисления. Нитрификация протекает в аэробных условиях в присутствии диоксида углерода, причем аминный и аммиачный азот биоокисляется до нитритов и нитратов. Денитрификация протекает в анаэробных условиях в среде биораз-лагаемого продукта (обычно метанола). При этом нитраты восстанавливаются до нитритов и в конечном счете до газообразного азота. Поступающие на очистку стоки имеют следующую характеристику содержание общего органического углерода — 3000 мг/л NO2 , N0 3, NH4+ в пересчете на азот соответственно 800, 90 и 230 мг/л органического азота в пересчете на азот —240 мг/л, БПК —6000 мг/л. Процесс позволяет удалять 98% органических веществ и 80—90% общего азота сточных вод. [c.105]

    Ингибитор ГАЗОХИМ применяют в условиях углекислотной коррозии оборудования на крупнейших месторождениях России, Узбекистана и Туркменистана, а также на низкосернистых месторождениях. Он является ингибитором аминного типа (основа — гексаметилендиамин). Установлено, что введение в состав ингибитора эфира циклогексанола значительно повышает защитное действие его аминной части. Увеличение защиты от общей коррозии составляет 10-25%, а от наводоро-живания — 50-55%, что особенно важно при применении ингибитора на низкосернистых месторождениях. Эффективность защитного действия ингибитора ГАЗОХИМ достигает 90% от общей коррозии и 95% от наводороживания. При наличии в составе амина и эфира в соотношении 1 2 обеспечиваются наилучшие технологические характеристики реагента [146]. Ингибитор имеет сравнительно низкую стоимость, так как изготавливается на основе побочных продуктов производства минеральных удобрений. [c.224]

    Растворенные органические вещества (РОВ). Эта группа веществ включает различные органические соединения органические кислоты, спирты, альдегиды и кетоны, сложные эфиры, в том числе эфиры жирньк кислот (липиды), фенолы, гуминовые вещества, ароматические соединения, углеводы, азотсодержащие соединения (аминокислоты, амины, белки) и т. д. Для количественной характеристики РОВ используют косвенные показатели общее содержание Сорг, Морг, Рорг, перманганатную или дихроматпую окисляемость воды (ХПК), биохимическое потребление кислорода (БПК). [c.35]

    Р-Переходы также представляют собой, как правило, сложные процессы и их отнесение еще более затруднено. Для эпоксидных смол они исследованы более подробно [1, 66], однако полученные данные не позволяют сделать общих заключений. В ряде работ [61, 66—68] не обнарун<ено зависимости температуры максимума 3-перехода от концентрации узлов сетки. В то же время, по данным работ [25, 69], увеличение плотности сшивания эпоксидного полимера за счет уменьшения молекулярной массы олигомера или функциональности амина приводит к значительному увеличению Гр, причем авторы этих работ считают возможным по изменению 7 р контролировать степень отверждения полимеров, так как этот максимум лежит в области стеклообразного состояния, и при его определении не вызывает доотверждения полимера, которое происходит при нагревании недоотвержденного полимера выше температуры стеклования. Если правильно указанное выше отнесение р-перехода к движению оксиэфирного фрагмента —О—СН2—СН (ОН) —СНг— основной цепи молекулы [67], то повышение Гр может быть связано с общим уменьщением подвижности цепи при увеличении плотности сшивания. Релаксационные 7- и р-переходы слишком сложны и мало исследованы, чтобы можно было делать какие-либо общие заключения, однако они дают информацию о молекулярном движении в стеклообразном состоянии и в значительной степени определяют характеристики эпоксидных полимеров в этой области. [c.65]

    В главе П1 были описаны продукты, получаемые присоединением органических веществ к перхлоратам металлов, например продукты присоединения пиридина и комплексы бензола и толуола с перхлоратом серебра. В данном разделе будут рассмотрены общие свойства и дана характеристика только чисто органических перхлоратов, таких, как перхлораты аминов, соли оксония карбоння и диазония, сложные эфиры (эфиры хлорной кислоты) и недавно открытые перхлорил-соединения. Бэтон и Прейл собрали хорошую библиографию и составили подробный литературный обзор по этим соединениям. [c.71]

    В разработанном процессе предусматривается сочетание аэробного и анаэробного окисления. Нитрификация протекает в аэробных условиях в присутствии двуокиси углерода, причём амин-ный и аммиачный азот биоокисляется до нитритов и нитратов. Денитрификация протекает в анаэробных условиях в среде био-разлагаемого продукта (обычно метанола). При этом происходит восстановление нитратов до нитритов и, в конечном счёте, до газообразного азота. Поступающие на очистку стоки имеют следующую характеристику общий органический углерод — 3000 мг/л БПК — 6000 мг/л N0 , N03, NH в пересчёте на азот соответственно 800, 90 и 230 мг/л органический азот в пересчёте на азот — 240 мг/л. Процесс позволяет удалять 98% БПК и 80—90% общего азота сточных вод. [c.280]

    Соотношение между содержанием смолы и отверждающего агента, а также режим отверждения выбирали согласно указаниям фирм, поставляющих эти продукты. В тех случаях, когда данные по составлению композиций отсутствовали, соотношение между смолой и отвердителем выбирали исходя из общих сообра>йений в зависимости от типа применяемого отверждающего агента. Для систем, содержащих амины, смешивали эквивалентные количества компонентов, из расчета одного атома галогена на одну эпоксидную группу смолы. При использовании ангидридных отвердителей очень сложно задаться стехиометри-ческим соотношением компонентов, поэтому состав композиции выбирали методом проб и ошибок , ориентируясь на оптимальные характеристики готовых изделий. Подбор производили для бисфенола А и полученные результаты переносились на другие образцы. Для ускорения реакции при использовании ангидридных отвердителей в качестве катализатора вводили диметилбензиламин. Окончательная темнература отверждения для всех систем составляла 160 °С, а продолжительность реакщш варьировали в пределах от 6 до 24 ч. Увеличение продолжительности реакции при использовании галогенированных ароматических аминов связано с их пониженной реакционной способностью в сравнении с незамещенными аналогами. [c.323]

    Анализ азотсодержащих соединений нефти. Азотсодержащие соединения с помощью масс-спектрометрии низкого разрешения могут анализироваться только в случае отсутствия в смеси других групп соединений из-за больших взаимных наложений масс-спектров. Азотистые основания благодаря своим основным свойствам сравнительно легко выделяются из нефтяных фракций 136]. Групповые масс-спектры этих соединений в общем аналогичны спектрам ароматических углеводородов и серосодержащих соединений они содержат интенсивные пики молекулярных ионов М+ и осколочных ионов (М—В)+. Анализ жасс-спектров этих соединений показал, что характеристики ароматических аминов, таких, как анилин и его производные, практически не отличаются от характеристик гетероароматических азотсодержащих соединений — пиридина и его производных. [c.114]

    В [35] описывается выделение из топлив ТС-1 смолистой фракции и выделение из последней азотоорганических соединений, общая ИКС-характеристика которых предполагает наличие первичных и вторичных ароматических аминов, пирролов, хинолинов. Во фракциях, полученных хроматографическим делением азотистого концентрата, идентифицированы также, кроме перечисленных типов, аминопирролы, аминопиридины. [c.28]

    Для предсказания индуктивного эффекта винильной группы используется, по общему признанию, достаточно умозрительный метод, основанный на использовании констант полярных заместителей а [140]. Эти константы, полученные на основании изучения скоростей омыления эфиров, рассматриваются как характеристика электроноотталкивающей способности различных заместителей. Было найдено, что влияние достаточно широкого ряда групп на скорость и равновесие некоторых различных типов реакций могут быть с известной степенью точности представлены величинами а. В частности, Браун и сотрудники при изучении газофазной диссоциации продуктов взаимодействия три-метилбора и некоторых первичных алифатических аминов [140] получили данные, позволившие проверить уравнение АН = = —7,262а + 24,54, где ЛЯ представляет собой энтальпию диссоциации, а 2о — сумму величин а заместителей, в данном случае двух атомов водорода и алкильной группы у атома азота. Если предполагать, что полярные эффекты сказываются на диссоциации типа [c.141]

    Параметр растворимости Гильдебранда (корень квадратный из величины энергии Испарения, выраженной в ккал/см ) используют для характеристики полярности растворителей при распределительной хроматографии. Общий параметр б разлагается на составляющие по взаимодействиям 6д — по дисперсионным взаимодействиям, бор — по ориентационным (дипольным) взаимодействиям бпа и 5пд — по взаимодействиям с образованием водородных связей, соответ ствующим протоноакцепторной и протонодонорной способностям растворителя При разделении веществ, имеющих большие дипольные моменты (нитрилов нитросоединений и т. п.), наилучшей характеристикой хроматографической актив ности растворителя является параметр бор, т. е. по дипольным взаимодействиям Для веществ-акцепторов электронов (эфиров, аминов и т. п.) хорошим показате лем хроматографической активности служит параметр бпд, а для протонодонор ных чвеществ (спиртов, фенолов) — параметр бпа- Р астворители с высо-КИМ значением параметра бд проявляют некоторую специфичность по отно шению к ароматическим соединениям. [c.388]

    Общие положения. Если растворы ДНК, имеющие исходное значение pH, близкое к нейтральному, и содержащие противоионы с умеренной ионной силой, подвергнуть действию некоторых факторов, то молекулы ДНК претерпевают ряд структурных (конформационных) изменений, иногда обратимых, а иногда необратимых. Такими факторами могут служить повышение температуры, добавление гидроксильных или водородных ионов, удаление противоионов или прибавление различных органических реагентов (спиртов, гликолей, амидов, алифатических и гетероциклических аминов, замещенных производных мочевины, фенолов, сульфоксидов и т. д.), а также некоторых анионов ( I3 O2, NS , С10 ). Конформационные изменения ДНК по аналогии со сходными процессами в белковой химии (см. гл. IV) были названы денатурацией, а факторы и агенты, вызывающие этот процесс,— денатурирующими факторами или агентами. Любая из гидродинамических или оптических характеристик макромолекулы (s , [т]], Rq, h, [а] и т. д.) может быть использована для того, чтобы качественно оценить процесс денатурации. Если же необходимо различать только два состояния — нативное и денатурированное — то, пользуясь тем или иным показателем, можно исследовать процесс также и количественно. Агенты, относящиеся к различным классам, часто являются как бы взаимно комплементарными по своему денатурирующему действию. Так, например, при добавлении некоторых денатурирующих агентов температура, при которой наступает денатурация, понижается аналогичным образом влияет и уменьшение ионной силы при повышенной температуре концентрация денатурирующего агента, необходимая для получения желательной степени денатурации, оказывается более [c.148]

    Выделение простейшего азотистого основания, аммиака, наблюдалось при перегонке многих нефтей [8]. Имеются также указания на присутствие в нефти некоторых простых аминов, например метиламина в грозненской нефти [9], триметиламина в з.-украинской [10]. Но главная масса азотистых соединений нефти принадлежит к более высокомолекулярным органическим основаниям. Их выделение производится промывкой нефти или ее дестиллатов серной кислотой, с которой они образуют соли разлагая последние щелочью, получают смесь свободных оснований, которую для ближайшего исследования и разделения подвергают прежде всего фракционировке в вакууме. Далее следуют получение солей и хлороппа-тииатов, их кристаллизация и ближайшая характеристика отдельных выделенных оснований, точнее — более или менее узких их фракций. Таким образом, с различной степенью полноты были исследованы органические основания кавказских, з,-украинских, румынских и некоторых американских нефтей при этом в общих чертах были получены следующие результаты. [c.252]

    Активность белково-биуретовых комплексов хотя и слабо, но все же зависит и от природы белка. Глобулины дают наиболее активные комплексы, затем следует желатин, казеин и альбумины. Так как размах каталазной активности, свойственной различным комплексам меди, очень велик, то естественны попытки найти последовательность, в которой изменяется активность, располагая в ряд не индивидуальные лиганды, а группы комплексов, образованных лигандами, относящимися к одному классу органических соединений. Действительно, групповые характеристики показывают, что внутри группы сходных лигандов активность изменяется в некотором интервале, причем, насколько можно судить по-имеющимся данным, чем выше общий уровень активности, тем в общем шире интервал, занимаемый данной группой. Так, активности комплексов, с аминокислотами занимают очень небольшой интервал, в то время как диамины характеризуются значительно большими колебаниями активности в зависимости от природы амина. [c.150]

    Полициклизация в растворе лишена многих недостатков, присущих твердофазным способам. Из общих соображений для гомогенной полициклизации можно ожидать повышения скоростей и степени завершенности реакции отпадает необходимость учета фазового состояния полимера нет опасности разрушения волокна и т. д. Препятствием к применению этого способа служит низкая растворимость полигетероариленов с циклами в цепи. Для повышения растворимости полимеров с гетероциклами можно прибегнуть либо к их химической модификации, либо к подбору сильнодействующих растворителей. Первый путь пока представляется менее перспективным из-за значительного снижения термических характеристик полимера. Практическое применение получила полициклизация в серной кислоте, олеуме и полифосфорной кислоте. Физическая характеристика этих растворителей приведена выше. В последние годы в лабораторной практике стали применять кислоты Льюиса и растворители сульфонового типа. Растворяющая способность серной и полифосфорной кислот связана с протонированием гетероатомов и ароматических ядер кислот Льюиса — с возникновением координационных связей между этими кислотами и гетероатомами и ароматическими ядрами полимера [62]. Наряду с высоким растворяющим действием эти соединения являются сильными дегидратирующими агентами, что собственно и определяет их применимость в качестве реакционной среды для полициклодегидратации. Помимо этого ПФК обладает и каталитическим действием [63]. Считают, что она образует соль с диаминами, способствует повышению реакционной способности электро-фильного углеродного атома карбонильной группы. Показано присутствие фосфора в цепи полимера. Комплекс ПФК с амином находится в равновесии со свободным амином [c.58]

    Для выяснения механизма гетерогенных каталитических реакций и создания теории катализа большое значение имеют сведения о хемосорбционных свойствах контактов по отношению к отдельным компонентам реакционной среды, а также к их различным смесям в условиях, близких к условиям протекания реакций. В практике катализа цаиболее распространены процессы с использованием двухкомпонентных смесей. Для изучения адсорбции двухкомнонентных смесей газов и паров применяются различные методы [2, 3, 4, 5, 6], из которых наиболее общим и приемлемым является объемно-весовой метод [2, 5]. Однако наряду с двухкомпонентными реакционными смесями применяются и многокомпонентные системы. Так, например, при синтезе аминов на железных катализаторах используется смесь водорода, окиси углерода и аммиака [1]. Для определения адсорбционных свойств контактов по отношению к тройным смесям газов для установления доли участия каждого из компонентов в суммарном эффекте адсорбции, очевидно, дополнительно к объемно-весовым измерениям необходима третья характеристика. Такой величиной может быть изменение концентрации в газовой фазе одного из компонентов газовой смеси в результате адсорбции. [c.160]

    Нельзя зыбывать еще об одном обстоятельстве. Равновесная структура жидкой фазы у поверхности субстрата формируется в течение длительных сроков, ограниченных временем до гелеобразования или временем для условно полного отверждения. Для эпоксидных смол, отверждаемых алифатическими аминами, это время составляет [148] соответственно 0,5—1,5 и 6— 8 ч при 20 °С. В связи с этим при отверждении на границе раздела фиксируются разные состояния жидкой фазы, определяемые соотношением скоростей отверждения и достижения равновесной плотности. Чем длительнее (мягче) режим отверждения, тем больше адсорбированный на субстрате слой полимера успевает приблизиться к равновесному. В общем можно сказать, что изменение характеристик пограничных слоев по сравнению с объемом. может происходить в любую сторону в зависимости от комплекса физических, физико-химических и химических сил, действующих на границе раздела фаз. [c.96]

    Были проведены подобные корреляции термодинамических характеристик образования бис-(аминоацидатных) комплексов. [100], M2++2A- i MA2. Кроме того, было найдено, что ДЯ (21,3 ккал/моль) образования комплекса Си (His) г, в котором предполагается координация как аминного, так и имидазольного атомов азота, приближенно может быть представлена как сумма ДЯ для Си(Gly)2, равной 12,8 ккал/моль, и 7гДЯ для Си(2,2 -01р)г (Dip=дипнридил), равной 8,3 ккал/моль. Это приближение оправдывается также для аналогичных комплексов Ni + и Zn2+. И, наконец, было замечено, что энтальпия реакций взаимодействия различных ионов металлов с аминоацидатами в общем следует ряду Ирвинга—Уильямса (разд. 2.1.3). [c.125]

    При декарбоксилировании аминокислот образуются биогенные амины. Основными биогенными аминами являются у-аминомасляная кислота, гистамин, серотонин и креатин. ГАМК образуется в мозге из глутаминовой кислоты. Накопление ее в мозге приводит к развитию процессов торможения в моторных центрах ЦНС. Гистамин образуется в различных тканях при декарбоксилировании гистидина и поэтому называется тканевым гормоном. Он вызывает расширение мелких кровеносных сосудов и сужение крупных, а также сокращение гладких мышц внутренних органов. Гистамин участвует в возникновении болевого синдрома, стимулирует образование соляной кислоты в желудке. Серотонин образуется из триптофана. Он участвует в регуляции артериального давления, температуры тела, частоты дыхания, почечной фильтрации. В больших дозах серотонин стимулирует, а в малых — подавляет деятельность ЦНС. Креатин синтезируется в тканях из заменимых аминокислот аргинина и глицина (рис. 87). Под действием креатинкиназы и АТФ он превращается в креатинфосфат, который используется для ресинтеза АТФ в мышцах (см. главы 3 и 15). Количество креатинфосфата пропорционально мышечной массе. Креатин и креатинфосфат превращаются в креатинин, который выводится с мочой. Количество креатинина, выделяющегося из организма, пропорционально общему содержанию креатинфосфата и может использоваться для характеристики массы мышц. При уменьшении мышечной массы уменьшается также содержание креатинина в моче. [c.235]


Смотреть страницы где упоминается термин Общая характеристика аминов: [c.798]    [c.288]    [c.224]    [c.61]    [c.991]    [c.4]   
Смотреть главы в:

Основы органической химии -> Общая характеристика аминов




ПОИСК





Смотрите так же термины и статьи:

Амины характеристика



© 2025 chem21.info Реклама на сайте