Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакция роста. Методы полимеризации

    Реакция роста. Методы полимеризации [c.30]

    Кроме того, как известно, метод совместной полимеризации сам по себе является уникальным средством изучения реакционной способности мономеров и растущих радикалов в реакциях роста цепей полимеризации. В исследованиях реакции роста при раздельной полимеризации мономеров на поверхности было выявлено значительное влияние характера адсорбционной связи мономера с подложкой на константы скорости роста. Однако оставалась скрытой роль второго участника этой реакции-растущего макрорадикала. Одним из наиболее эффективных подходов к изучению этого вопроса, по-видимому, является изучение совместной полимеризации на поверхности. [c.88]


    За последние тридцать лет был освоен в теоретическом и практическом отношении синтез полимеров методами радикальной, катионной и анионной полимеризации [1]. Были найдены эффективные инициирующие системы и разработаны методы регулирования длины иепи при полимеризации, однако собственно реакция роста цепи, т, е. присоединение отдельных мономерных звеньев к растущей цепи полимера, до недавнего времени не поддавалась, в сущности, контролю. Этот процесс определялся статистической [c.7]

    До сих пор константы для реакции роста и обрыва цепи были получены только в виде отношений. То же положение мы встречаем для мономерных радикалов из-за трудности измерения концентраций радикалов отношение констант скоростей получить легче, чем сами константы. Но все же такие абсолютные значения могут быть определены, хотя методы определения довольно трудны. Детально их рассматривать не будем. Вкратце можио сказать, что измерение скорости и степени полимеризации при динамическом равновесии не может дать абсолютных значений Кобр или Кр. Так можио получить лишь дополнительный параметр, а именно время жизни радикала, т. е. весь отрезок времени от начала образования радикальной цепи до ее деструкции. Продолжительность жизни растущей цепи равна концентрации радикалов, деленной на скорость деструкции  [c.233]

    Рассмотрим некоторые применения метода переходного состояния. Уравнение (И) позволило показать [15—18], что энергии активации реакций роста цепи при гомополимеризации и совместной полимеризации изменяются антибатно с тепловыми эффектами этих реакций, определенными из термохимических данных, т. е. находятся, по крайней мере, в качественном соответствии с правилом Поляни. [c.268]

    Большая часть опубликованных работ по аддитивной дисперсионной полимеризации в алифатических углеводородах относится к гомолитическим реакциям. Однако дисперсионная полимеризация может быть проведена и в случае гетеролитических процессов. Очевидно, что инертные алифатические углеводороды как разбавители обладают тем преимуществом, что полимерные дисперсии легко могут быть получены с чувствительными к воде катализаторами, обычно применяемыми в ионной полимеризации, использование которых исключается в водной эмульсионной полимеризации. Хотя увеличение скорости процесса, обычно наблюдающееся в свободно-радикальной дисперсионной полимеризации и обусловленное диффузионными ограничениями стадии обрыва, отсутствует в случае ионной полимеризации, все же присущие последней высокие скорости роста обуславливают возможность реализации полезного метода получения полимерных дисперсий, не достижимых путем свободно-радикальных реакций. [c.240]


    Следует рассмотреть связь уравнения (5.28) с величинами, измеряемыми экспериментально. Константы сополимеризации /"а и Гд можно определить методами, рассмотренными выше д и 8 можно найти, исследуя полимеризацию индивидуальных мономеров, как показано в гл. 3. Если известна также скорость инициирования, то определение зависимости скорости сополимеризации от отношения концентраций мономеров дает величину ф, которая является мерой предпочтительного протекания реакции перекрестного обрыва и как таковая аналогична тенденции к чередованию в реакции роста. [c.205]

    С ростом потребления пластизолей и органозолей повышается также значение эмульсионного (латексного) метода полимеризации. Он состоит в полимеризации мономера в горизонтальных вращающихся автоклавах при температуре 45—52 °С в присутствии водорастворимых перекис-ных катализаторов и эмульгатора до степени превращения мономера, равной 90%. Применение окислительно-восстановительных каталитических систем заметно увеличивает скорость реакции. Эмульсию полимера после удаления непрореагировавшего мономера сушат в распылительной сушилке. Эмульсионная полимеризация может проводиться непрерывным способом, а суспензионная — только периодическим (для последней также разрабатывают непрерывные способы). Однако поливинилхлорид, полученный по суспензионному методу, имеет большие размеры частиц, чем эмульсионный, поэтому полимер быстро отделяется от воды и легко промывается. Кроме того, реакцию легче регулировать. Проведение полимеризации в эмульсии требует больших капиталовложений в связи с усложнением операций коагуляции и промывки, а полученный полимер имеет меньшую степень чистоты. [c.172]

    По методу переходного состояния рассчитаны стерические факторы для отдельных этапов реакций роста цени в процессе молекулярной полимеризации этилена зз1. [c.47]

    В то же время эти результаты не отвергают возможности одновременного участия в обычной цепной радикальной реакции роста макромолекул как мономерных, так и димерных частиц, каждой со своей константой скорости. Изучение композиционного состава чередующихся сополимеров не позволяет выяснить вопрос об относительном вкладе молекул мономера и димерных комплексов в реакцию роста. Один из возможных путей решения этого вопроса заключается в одновременном изучении методами ЭПР и калориметрии низкотемпературной пост-полимеризации соответствующих мономерных смесей, содержащих заранее запасенные активные центры. [c.80]

    При обсуждении будущего промышленного применения реакций, индуцируемых излучением, необходимо одновременно рассмотреть конкурирующие методы производства этого же самого продукта. Радиационные методы имеют некоторые общие преимущества, которые компенсируют их основной недостаток, заключающийся в дороговизне источников излучения. Первое преимущество — хорошая проникающая способность, позволяющая индуцировать реакции внутри обычного оборудования. В этом состоит преимущество по сравнению с использованием ультрафиолетового света для осуществления таких реакций, как, например, полимеризация и хлорирование. В других случаях проникающая способность обеспечивает равномерную обработку, которая не всегда легко достижима при использовании тепла для инициирования реакции, например в случае вулканизации изделий большой толщины. Второе преимущество имеет общий характер и заключается в большой гибкости радиационного инициирования. Например, крекинг нефти включает две стадии—-инициирование цепной реакции и рост цепи. Условия, благоприятные для одной стадии, могут быть неблагоприятны для другой. Излучение вносит новый параметр, позволяющий устанавливать такую температуру, которая создает оптимальные условия для роста цепи, в то время как излучение используется лишь для стадии инициирования. Точно так же путем использования излучения при меньших давлениях может быть улучшен процесс полимеризации этилена при высоком давлении, что удешевляет оборудование. В действительности этот специфический процесс, казавшийся одним из наиболее обещающих при применении излучений в 1953—1956 гг., оказался теперь имеющим меньшее значение по сравнению с производством полиэтилена методом гетерогенного катализа при низких давлениях. [c.312]

    После сделанных предварительных замечаний мы переходим к рассмотрению предлагаемого общего метода интерпретации МВР. Этот метод, хотя и не может заменить детальное кинетическое описание процесса полимеризации, обладает в то же время рядом преимуществ по сравнению с детализированным рассмотрением. Дело в том, что чрезмерное обилие деталей нередко заслоняет основные физические характеристики процесса — прежде всего его топологию, а затем механизмы реакций роста и обрыва цепей, которые в основном определяют характер МВР. Положение в этом смысле напоминает ситуацию при выборе модели для описания гидродинамических свойств макромолекул [44]. Этот выбор определяется исключительно характером информации, которую мы хотим получить из опыта. [c.28]


    Наиболее легко в этих условиях протекает полимеризация стирола, имеющего низкий энергетический барьер реакции роста це-пи з. Хорошо полимеризуются также акрилаты и метакрилаты. В поле тлеющего разряда можно проводить полимеризацию даже таких газов, которые не полимеризуются другими методами, например метана. [c.328]

    При фотохимической полимеризации молекула мономера поглощает квант световой энергии, переходит в возбужденное состояние и затем распадается на свободные радикалы. В отличие от других методов инициирования при фотоинициировании с повышением температуры скорость реакции роста увеличивается и возрастает молекулярный вес полимера. [c.242]

    Успехи, достигнутые за последнее десятилетие в области синтеза стереоспецифических полимеров, в управлении реакцией роста цепи и в разработке новых методов полимеризации [2], направили внимание исследователей в первую очередь на полимеризацию, идущую по ионному механизму, хотя и радикальным путем при подходящих условиях удается получить несколько стереоспецифических полимеров [3]. Вследствие этого интерес к радикальной полимеризации, если и не совсем, то во всяком случае в какой-то степени, безусловно, снизился. [c.13]

    В настоящее время не существует принципиальных сложностей в определении констант скорости реакций роста и обрыва цепи независимыми методами [1, 2], хотя на практике подчас трудно найти ftp и ко по той или другой методике измерения в каждом конкретном случае. Поэтому данных об элементарных константах ep и ко полимеризации различных мономеров в растворах явно недостаточно. [c.377]

    В табл. 59 помещены значения АЕг , вычисленные указанным методом для реакции роста цепи при полимеризации различных мономеров. Величина АЕг выражена в единицах (Ар )/р. [c.277]

    Довольно типичной системой с сильной связью является 4-ВП, адсорбированный на АС/400. Результаты изучения температурной зависимости общей скорости П0лимеризащ1и в этой системе методом ИК-спектроскопии [48] приведены на рис. 3.17. Видно, что зависимость имеет сложный характер наклон кривой в интервале температур 30-90 °С соответствует энергии активации Е = 46,3 кДж/моль, а при температуре ниже 20 °С = 7,4 кДж/моль. Столь сильное уменьщение Е с понижением температуры, видимо, связано с изменением механизма полимеризации от радикального при высоких температурах к ионному при пониженных. Ослабление ингибирующего действия кислорода с понижением температуры ниже 20°С подтверждает это предположение. Здесь мы рассмотрим лишь радикальную полимеризацию 4-ВП на АС/400 по данным работы [48]. При 50 °С скорость полимеризации в этой системе в 5-10 раз меньше, чем, например, для ММА и ВА на той же подложке в сравнимых условиях эксперимента (т.е. в типичных системах со слабой связью). Существенно более низкими оказываются и молекулярные массы полимеров 4- и 2-ВП, образующихся на аэросиле. Общая энергия активации радикальной полимеризации 4-ВП значительно выше, чем в системах со слабой связью. Анализ возможностей перехода реакции роста цепей полимеризации 4-ВП в диффузионную область, проведенный по схеме, рассмотренной в разд. 3.2.3, с использованием экспериментально определенного значения коэффициента поверхностной диффузии 10 — 10 см /с, показал, что реакция протекает в кинетической области. Следовательно, наблюдаемые особенности кинетики не связаны с диффузионными эффектами. [c.87]

    В последние годы очень большое развитие получил метод ионной полимеризации, при помощи которого можно регулировать реакцию роста макромолекул и получать полимеры с заранее заданными свсйствами. Методом ионной полимеризации синтезирован неразветвленный поли,этилен, изотактические полимеры пропилена, изобутилена, стирола и других непредельных соединений. Эти полимеры отличаются регулярным строением, что способствует улучшению их механических свойств. Был также приготовлен 1,4-/ ис-полиизопрен, являющийся аналогом натурального каучука. [c.133]

    В процессе радикальной полимеризации можно воздействовать только на )еакцию инициирования, которая явл5[ется регулируемой. Однако строение полимера определяется реакцией роста, которая не зависит от свойств и1шциатора и способа hhj-i-циирования. Снижением температуры радикальной полимеризации до 015° мсжно добиться повышения степени регулярности строения макромолекул вследствие уменьшения их разветвленности, однако достигаемый при этом эффект сравнительно невелик. Более регулярные полимеры могут быть получены методом радикальной полимеризации при температуре от —30 до —80". Например, при температуре—40 был синтезирован кристаллический полиме-тилметакрилат .  [c.133]

    Наиболее заметно различие меж-,. ,у радикальными, анионными и катионными процессами в реакциях совместной полимеризации. В первую очередь оно проявляется в разном составе сополимеров, полученных по этим трем. методам, что объясняется различной реакционной способностью одних и тех же мономеров в реакциях роста при ради-ка, 1ьной и ионной сополимеризации. [c.151]

    Полимеризация хлористого винила, как и всех галоидпроизводных этилена, протекает по радикальному механизму. Скорость полимеризации хлористого винила в присутствии перекиспого инициатора постепенио нарастает до превращения 30—40% мономера в полимер, после чего становится постоянной. В конце процесса при степени превращения выше 75—80% скорость полимеризации заметно снижается. Это объясняется тем, что полихлорвинил не растворим в своем мономере. Осаждающиеся мельчайшие частицы полимера адсорбируют часть мономера, и дальнейшая полимеризация протекает в набухших частицах полимера. Прекращение роста макромолекул полихлорвинила происходит преимущественно передачей энергии возбуждения макромолекулы мономеру или полимеру. Во втором случае образуются разветвленные макромолекулы. Средний молекулярный вес полимера зависит от метода полимеризации, количества инициатора и температуры реакции. [c.800]

    Значительное влияние структуры поверхности и характера обработки катализатора указывает на то, что поверхность играет чрезвычайно важную роль и непосредственно участвует в полимеризации. При осажденных катализаторах изменение физической и химической структуры осадка непосредственно определяет молекулярный вес получаемого полимера и степень его стереорегулярности, При предварительно приготовленных окпснометаллических катализаторах характер и метод приготовления носителя с высокой удельной поверхностью оказывают сильное влияние па протекание реакции полимеризации. Низкие давления, необходимые для получения стереорегулярных полимеров, непосредственно связаны с тем, что олефины хемосорбпрованы на поверхности применяемых твердых катализаторов [96]. Следовательно, мономер концентрируется на этой поверхности даже при сравнительно низком внешнем давлении газа. Поверхность может увеличить скорость реакции роста полимера в результате повышения скорости присоединения мономерных остатков по сравнению с одновременно протекающей реакцией передачи цепи. Движущей силой реакции распространения цепп в этом случае является экзотермическая адсорбция олефпна. [c.298]

    Значительные успехи были достигнуты и в регулировании реакции роста цепи при полимеризащ-1и диенов [8] и различных полярных мономеров, В результате проведенных опытов было показано, что стереоспецифическая полимеризация олефинов может быть проведена также и в гомогенной системе. При анионной или катионной гомополимеризации с управляемой реакцией роста цепи несомненно важную роль играет промежуточный комплекс мономера с противоионом. При таком методе получения стереорегуляр-ных полимеров удается снизить свободную энергию активации реакции роста цепи, ведущую к образованию полимера с определенной степенью тактичности. К сожалению, этот метод трудноосуществим при полимеризации неполярных, высоколетучих мономеров, какими являются, в частности, этилен и пропилен. Реакцию полимеризации этилена в высокомолекулярный разветвленный продукт долгое время осуществляли только по радикальному механизму при высоких давлении и температуре. Аналогичные опыты по радикальной полимеризации пропилена не имели успеха, так как на третнчном атоме углерода легко происходит передача цепн, вследствие чего образуется полимер небольшого молекулярного веса, который не может быть использован для получения пластмасс. Высокомолекулярные линейные полимеры этилена и пропилена можно синтезировать при низком давлении только при наличии твердой фазы катализатора. Мономер и металлорганический компонент сорбируются на поверхности твердой фазы, чем достигается ориентация каждой молекулы мономера перед ее присоединением к растущей полимерной цепи. [c.10]

    Авторами работы [99] предложено использовать метод регуляризации А. Н. Тихонова [100, 101] для нахождения функции распределения АЦ по вероятности обрыва макроцепи из данных о суммарном ММР полимера. В исследованиях [102, 103] из экспериментально определенных кривых ММР полибутадиена с использованием метода регуляризации было установлено, что, независимо от природы используемого диена и условий проведения полимеризации, процесс образования макромолекул на лантанидных катализаторах МдС1з-3(ВиО)зРО в сочетании с АОС протекает с участием четырех типов АЦ, отличающихся соотношением констант скоростей реакций роста и передачи цепи. Найдено, что структура АОС оказывает влияние как на это соотношение, так и количество АЦ каждого типа. [c.61]

    Возможность учета влияния метильной группы на энергию активации в методе переходного состояния дала возможность теоретически исследовать реакции роста цепи при полимеризации диенов [17, 18]. Величина вычислялась по уравнению (И) с учетом сопряжения с метильной группой, полимерная цепь моделировалась также метильной группой. В качестве стандартной реакции была принята реакция роста цепи при полимеризации винилацетата дпя этой реакции = 4,5 ккал/молъ. Так как в винилацетате отсутствует сопряжение двойной связи с заместителем, то винилацетат можно моделировать этиленом, а поливинилацетат-ный радикал — этильным радикалом (группа СНз моделирует группу /w H2—). Тогда А 2 = 0,79. Для Ъ было принято значение 30. [c.270]

    Гель-эффект. При обычных температурах инициированная полимеризация винилацетата характеризуется заметным ускорением при увеличении глубины превращения. Изучение фотосенсибилизированной полимеризации в массе методом термопары [80, 112] (см. стр. 49) вплоть до глубины превращения 75% позволило определить константы скорости реакций роста и обрыва на различных стадиях полимеризации. Установлено, что средняя продолжительность жизни полимерных радикалов увеличивается в ходе полимеризации. Это является результатом заметного и непрерывного уменьшения с самого начала реакции. Вплоть до глубины превращения 50% кр медленно растет (что может быть связано с изменением активности), а затем быстро падает. Энергии активации процессов обрыва и роста резко возрастают на последних стадиях полимеризации и, наконец, становятся равными приблизительно 15 ккал1моль это значение, вероятно, соответствует температурному коэффициенту чисто физических трансляционных процессов. В системах, подобных этой, точные соотношения между активностями и концентрациями неизвестны и, следовательно, полученные значения констант скоростей до некоторой степени неопределенны , однако маловероятно, чтобы это могло послужить источником заметных ошибок. Качественное рассмотрение результатов, подтверждающих правильность такой интерпретации, было дано при обсуждении гель-эффекта при полимеризации метилметакрилата. [c.111]

    Для иллюстрации основных принципов рассчитаем простыми статистическими методами молекулярно-весовые распределения для двух случаев. Расчет аналогичен предложенному Бурсяном и Сорокиным [6] для неразветвленных цепных реакций он впервые был применен к полимеризации Шульцем [7]. Рассмотрим полимеризацию, в которой 1) концентрация мономера поддерживается постоянной, 2) передача цепи происходит через простые молекулярные частицы 5, которые могут быть и частицами мономера, 3) обрыв происходит исключительно путем диспропорционирования. В первую очередь необходимо вычислить среднюю продолжительность жизни отдельного радикала. Пусть — среднее время между образованием данного радикала и вступлением его в реакцию роста с мономером, и Ту и —промежутки времени между появлением данного радикала и его исчезновением в результате реакций передачи цепи или бимолекулярного обрыва соответственно. Тогда средняя продолжительность жизни т радикала, могущего участвовать в этих трех реакциях, определится выражением [c.302]

    Применение в качестве инициатора азодинитрила бисизомас-ляной кислоты с меченым атомом С при исследовании механизма раздельной и совместной полимеризации метилметакрилс.та и стирола [61] позволило с большой точностью определить число концевых групп с мечеными атомами, сопоставить полученные данные с осмометрическими среднечисловыми молекулярными массами, таким образом, изучить механизм обрыва цепей. Результаты этой работы показывают, что если известен механизм обрыва, то с большой точностью можно выполнить и обратную задачу определение среднечисловой молекулярной массы. Однако сложность механизмов протекания процессов полимеризации виниловых мономеров, а-олефинов и диенов затрудняет правильную интерпретацию полученных результатов и ограничивает использование методов, основанных на введении радиоактивной метки на стадии инициирования или обрыва реакции роста. [c.118]

    Это предположение подтверждается тем, что при температуре 220° деструк-турируется более 50% от веса образца полиметилметакрилата, полученного методом фотоинициированной полимеризации, при которой, как известно, в большей мере проходит обрыв путем диспропорционирования, тогда как полимер метилметакрилата, на обоих концах цепей которого содержатся дифенилцианометильные группы, значительно более устойчив к термодеструкции. В обсуждаемой работе, однако, не удалось установить, какие именно — насыш,енные или ненасыш енные — концы ценей полиметилметакрилата менее устойчивы при термодеструкции, так как во всех препаратах, полученных путем полимеризации в блоке в присутствии инициаторов, и в полимере, синтезированном с использованием фотоинициирования, количества насыщенных и ненасыщенных концов цепей эквивалентны, поскольку обрыв реакции роста цепи у таких полимеров происходит только путем диспропорционирования. В другой работе Грасси и Вансу [78] удалось решить эту задачу путем исследования термодеструкции ряда образцов полиметилметакрилата, полученных в среде бензола, который действовал при полимеризации как слабый агент передачи цепи. В этом случае было разумно предположить, что реакция передачи цепи заключается в отрыве атома водорода от молекулы бензо.иа, так что каждый элементарный акт передачи цени приводит к появлению насыщенного конца цепи, идентичного насыщенному концу одной из двух цепей, образующихся при обрыве путем диспропорционирования, а появляющийся фенильный радикал инициирует рост новой цепи. Из данных по кинетике реакции и на основании результатов определения молекулярных весов образующихся в таких условиях полимеров может быть вычислено относительное содержание в этих полимерах молекул с насыщенными и ненасыщенными концевыми группами. 11ри изучении термодеструкции этих полимеров цри 220° Грасси и Ванс нашли, что относительная доля молекул полимера, подвергающаяся в этих условиях деполимеризации, пропорциональна вычисленному содержанию ненасыщенных концевых трупп в исследуемом образце. [c.31]

    Исследуя кинетику фотополимеризацни винилацетата дилатометрическим методом при 25° (сенсибилизатор — динитрил-азо-днциклогексанкарбоновой кислоты), Бенгоу [628—630] нашел, что стационарная скорость устанавливается примерно через 2 сек. после начала реакции. На основании полученных данных рассчитана величина отношения констант скоростей реакции роста и обрыва цепей кр ко— 2,9 10" . Он же определил значение величины теплоты (АЯ) реакции полимеризации ДЯ = =20,1 + 1,0 ккал моль. [c.455]

    Для полимеризации метилметакрилата с динитрилом азоизомасляной кислоты, меченным С предложен метод определения абсолютных значений констант скоростей реакций роста цепи и обех реакций обрыва диспропорционирования и рекомбинации полимерных радикалов. При проведении реакции в бензоле в атмосфере азота при 30—80° С найдено ep /Ao = 3,45—1810/Г  [c.48]

    Для термической полимеризации метилметакрилата предложен метод определения соотношения р/ о и дис/ рек, где йр, ко, кщ1с и рек — константы скорости реакций роста, обрыва, диспропорционирования и рекомбинации соответственно 2634.2635  [c.610]

    Отдельные попытки оценки констант скоростей роста при полимеризации на поверхности предпринимались и раньше. В [3, 36, 37] рассчитаны кр для радиационной прививочной полимеризации из газовой фазы акрилонитрила на капроновом волокне по методу постэффекта. В этих расчетах авторы придерживались ударного механизма полимеризации, хотя на самом деле он, по-видимому, адсорбционный. Кроме того, в изучавшейся авторами системе весьма сложно было определить истинную концентрацию инициируюших радикалов в поверхностном слое волокна. В результате авторы пришли к выводу, что значения к на поверхности близки к тем, которые наблюдаются при радикальной полимеризации АН в жидкой фазе, и в то же время получили нулевое значение энергии активации роста цепей, что для указанной реакции маловероятно и значительно отличается от значений, установленных для радикальной полимеризации АН и других мономеров в жидкой фазе. [c.70]

    Методом сополимеризации различного типа мономеров получают полимеры с практически интересными физико-химическими свойствами. Специфику процесса сополимеризации при свободнорадикальной полимеризации определяет реакция роста цепи. Она полностью определяет состав полимера. Реакции инициирования и обрыва цепи имеют много общего с аналогичными реакциями при гомополимеризации. [c.530]

    Кинетика полимеризации при различных температурах изучена в [311, 312], а в работе [317] продемонстрированы возможности использования люминесцентного метода исследования. В силу своей высокой чувствительности этот метод позволяет исследовать кинетику начальных стадий полимеризации, когда отношение концентраций образовавшегося полимера и мономера еще мало и можно пренебречь процессами, приводящими к явлению так называемого запределивания полимерной цепи. В работе [313] для ряда кристаллических мономеров обнаружена радикальная реакция зарождения полимерной цепи и присоединения молекул мономера при 77 К под действием ионизирующей радиации. Наиболее важным, с нашей точки зрения, является установленный авторами экспериментальный факт, что реакция роста полимерной цепи происходит только во время действия излучения. По нашему мнению, это указывает на особую роль излучения в процессах, происходящих в твердых образцах, которая заключается, в частности, в сильном изменении физико-химических свойств среды. [c.79]

    Ацетильные группы отщепляются от готового полимера с помощью мягкого гидролиза в водном аммиаке при комнатной температуре. В настоящее время разработаны некоторые еще более эффективные методы защиты боковых групп с помощью более сложных органических соединений. Однако мы их не будем касаться. При получении полипептидов, как во всякой реакции поликопденсации или полимеризации, мы должны различать реакции инициирования и реакции роста цепи полимера. Реакции обрыва цепей в данном случае можно избежать, и все цепи могут расти вплоть до полного исчерпания. мономера. При этом необходимо, чтобы полимерные цепи находились в растворе или в набухшем состоянии и концевая аминогруппа была доступна реакции с мономером. При достаточно эффективном инициаторе (например, не слишком слабом амине) степень полимеризации (средпечислен-ная) попросту равна числу молей прореагировавшего мономера, деленному на число молей инициатора. Это означает, что все молекулы инициатора вступают одновременно в реакцию с молекулами мономера и все цепи растут одновременно и без обрыва. При таких условиях константы скоростей инициирования и роста окажутся одпого порядка. Скорость роста цепи определяется реакционоснособпостью мономера. Реакционоспособность различных карбоксиангидридов чрезвычайно различна и сильно зависит от природы аминокислоты. При этом она относительно мало зависит от природы пептида, аминогруппа которого присоединяет к себе данное звено. [c.39]

    Это различие между реакциями поликонденсации и полимеризации является наиболее характерным при сопоставлении этих методов синтеза полимеров. Оно достаточно для формулирования понятий. Однако более строгим является определение, учитывающее кинетику реакций поликонденсации и полимеризации мономеров. Это определение, по Кюхлеру [1], можно сформулировать следующим образом при поликонденсации каждый акт роста ступенчато увеличивающейся молекулы характеризуется постоянным значением энергии активации при полимеризации энергия активации первичного акта (активации молекулы мономера) значительно выше, чем энергия активации реакции роста цепи ). [c.24]

    Ионезава, Фукуи и др. [19, 20] предложили метод количественной характеристики энергии активации для реакций роста цепи при виниловой полимеризации. [c.276]


Смотреть страницы где упоминается термин Реакция роста. Методы полимеризации: [c.85]    [c.94]    [c.115]    [c.257]    [c.32]    [c.542]    [c.312]    [c.355]    [c.320]   
Смотреть главы в:

Химия и технология полимеров Том 1 -> Реакция роста. Методы полимеризации

Химия и технология полимеров Том 1 -> Реакция роста. Методы полимеризации




ПОИСК





Смотрите так же термины и статьи:

Полимеризация методы

Реакции полимеризации



© 2024 chem21.info Реклама на сайте