Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидратация определение

    О.С. Новиковой. Установлено, что с увеличением размера катионов количество цеолитной воды в клиноптилолите заметно уменьшается. Частичную дегидратацию клиноптилолита при замещении более мелких катионов на более крупные легко объяснить уменьшением свободного внутрикристаллического объема. На кинетику дегидратации определенное влияние оказывает и катионная форма клиноптилолита. Уменьшение энергии активации Е дегидратации с возрастанием размеров катионов подтверждает представление о взаимодействии молекул воды с обменными катионами во внутрикристаллическом пространстве цеолитов. Содержание воды в различных формах клиноптилолита приводится в табл. 54. [c.124]


    Структура торфа весьма чувствительна к различного рода физическим и физико-химическим воздействиям, что вызывает соответствующее изменение его гидрофильных и водных свойств. Наиболее существенно эти параметры изменяются при обезвоживании, когда в процессе дегидратации торфа усиливаются меж- и внутримолекулярные взаимодействия через поливалентные катионы, содержание которых в торфе достигает 2 мг-экв/г с. в. (грамм сухого вещества), или посредством водородных связей. В определенных условиях ковалентные или ионные взаимодействия переходят в комплексные гетерополярные, вследствие чего при обезвоживании и интенсивной усадке в надмолекулярных образованиях торфа протекают необратимые процессы. Изменение водных свойств торфа при высушивании до низкого влагосодержания наглядно проявляется в явлении гистерезиса на графиках сорбции — десорбции воды, изменяются также его диэлектрические свойства при высушивании — увлажнении [215] и водопоглощение при различной степени осушения пахотного горизонта торфяной почвы [216]. [c.66]

    Теоретический анализ структуры ДЭС вблизи поверхностей, источники электрических полей которых (заряды и диполи) заполняют определенный поверхностный слой, показывает, что она существенно зависит от толщины этого слоя L. Основным результатом является вывод о том, что поверхностные диполи вносят значительный вклад в электрическое поле, образующееся вблизи поверхности. Поэтому вблизи электрически нейтральной гидратированной гидрофильной поверхности существует электрическое поле, обусловленное поверхностными диполями. Ири дегидратации поверхности (т. е. при L- 0) это поле исчезает. Отметим, что этот результат справедлив только в рамках классической электростатики. В нелокальной электростатике поле вблизи нейтральной гидрофильной поверхности не исчезает и при ее полной дегидратации. [c.153]

    Сопоставление общей кислотности и силы кислотных центров, измеренных по поглощению и десорбции пиридина, показало, что изомеризация протекает на сильных кислотных центрах. Если оценить каталитическую активность сильной кислоты в 100, то для кислоты средней силы она составляет 10, а для слабой отсутствует (0). Именно высокая чувствительность изомеризации к силе кислоты используется при получении а-олефинов дегидратацией спиртов. Для этого процесса не требуются сильные кислотные центры, а использование слабой кислоты позволяет получать только а-олефины, без их изомеризации в 7- и р-изомеры. Чувствительность изомеризации к величине Н использована для определения силы кислотных центров при расчете скорости изомеризации диме-тилбутена-1 и других олефинов [13].  [c.95]


    Различная интенсивность адсорбционных процессов на различных участках поверхности данного адсорбента объясняется неоднородностью поверхности. Каталитическая активность материала обычно связана с адсорбцией реагирующих веществ на активных для данного процесса участках его поверхности, поэтому решающее значение имеет наличие именно этих активных участков (активных центров). Поэтому имеет значение не только адсорбция молекул исходных веществ, но и десорбция образующихся молекул п одуктов реакции. Существенно развитие поверхности, однако даже при значительной поверхности материал не будет активным катализатором, если структура и состояние ее таковы, что на ней нет необходимых активных центров. Вследствие этого для активности катализатора имеет значение не только химический его состав, но, не в меньшей степени, и способ изготовления, от которого зависят состав, структура и состояние поверхности катализатора. Так, специально приготовляемая активная окись алюминия служит хорошим катализатором реакции получения этилена путем дегидратации этилового спирта. Но для получения такой активной окиси алюминия необходимо тщательно соблюдать определенные условия, без чего она при том же химическом составе может не обладать активностью или быть мало активной. [c.495]

    Твердые основания недостаточно хорошо изучены. Исключением являются альдольные конденсации, в которых они при определенных температурах вызывают дегидратацию, следующую за первой стадией. Однако в исследовании [3] выдвигается некоторое предположение о роли в этих реакциях промежуточных соединений карбония. Реакции, вызванные твердыми кислотами, прекрасно описаны в работах по химии иона карбония. [c.27]

    Определение количества выпариваемой воды по корпусам по уточненному методу. Как установлено выше, = 50 кг на 100 кг раствора. Принимаем, потери тепла в окружащую среду вместе с расходом тепла на дегидратацию 8% (тогда Л = 0,92) кроме того, принимаем, что раствор поступает в первый корпус при температуре кипения, т. е. 1 = 0. Тогда (см. стр. 217) [c.236]

    Для разделения, очистки и осушки различных газовых и жидких смесей все более широкое применение находит адсорбция на молекулярных ситах (синтетических или природных цеолитах), т. е. кристаллических алюмосиликатах щелочных металлов. При дегидратации цеолитов в их кристаллах образуются полости с входными окнами строго определенных размеров для цеолита каждого типа. [c.408]

    Влияние частичной дегидратации и примесей калия на активность силикагеля указывает на то, что разложение четыреххлористого углерода происходит только при наличии определенного набора функциональных групп на поверхности силикагеля, а именно при некотором оптимальном соотношении количества ОН-групп и свободнорадикальных групп, образующихся при частичной дегидратации силикагеля (I). Поскольку подобные свободные валентности дегидратированного силикагеля не обнаруживаются методом ЭПР, мы имеем дело с внутримолекулярным взаимодействием (II). [c.248]

    Внутримолекулярная дегидратация спиртов с образованием этиленовых углеводородов происходит, как уже было указано, и при пропускании паров спирта над твердыми катализаторами, например, над нагретой окисью алюминия. Аналогично на твердом катализаторе, при определенной температуре может происходить и межмолекулярная дегидратация спиртов с образованием простых эфиров (стр. 129). [c.110]

    Ангидриды формально являются продуктами дегидратации кислот. В определенных условиях такую дегидратацию можно действительно осуществить, как показывает пример превращения уксусной кислоты в уксусный ангидрид  [c.192]

    Кинетический метод. Для определения наиболее важных в органическом катализе энергий связи Рн-к, Рс-к и Ро-к необходимо составить три уравнения, включающие искомые энергии связи. В кинетическом методе эта проблема решается использованием трех различных реакций, индексы которых включают нужные энергии связи. Метод заключается в определении энергии активации Е для реакций с разными индексными группами, содержащими нужную сумму атомов. Например, могут быть взяты реакции дегидрирования углеводорода (1), дегидрирования (2) и дегидратации (3) спирта. [c.92]

    Второй эффект более сложен и связан с природой высаливателя. Гидратация ионов высаливателя уменьшает концентрацию несвязанной воды, а следовательно, увеличивает эффективную концентрацию (активность) экстрагируемого вещества. Коэффициент активности увеличивается тем больше и высаливатель действует тем эффективнее, чем сильнее он гидратирован. Связывание воды высаливателем способствует дегидратации катиона экстрагируемого соединения и его сольватации молекулами экстрагента. Этот эффект не зависит от того, имеет или не имеет высаливатель общий ион с экстрагируемым соединением. Критерием высаливающей способности электролита могут быть гидратные числа, однако он недостаточно строг, так как гидратные числа, определенные различными способами, сильно различаются между собой. По высаливающей способности их солей катионы можно расположить примерно в следующий ряд  [c.335]


    Дальнейшее развитие этих представлений привело к необходимости учета соответствия между строением реагирующих молекул и катализатора. А. А. Баландиным была выдвинута теория, по которой молекулы адсорбируются одновременно на двух или нескольких активных центрах. Если между расположением этих центров на определенном небольшом участке поверхности катализатора (мультиплете) и строением реагирующей молекулы существует геометрическое соответствие, то должен наблюдаться каталитический эффект. Например, дегидратация ароматических соединений, содержащих шестичленные кольца, происходит на металлических катализаторах, имеющих гексагональную решетку. При этом важно, что расстояния между атомами углерода в шестичленном кольце близки [c.530]

    Активность кобальтовых и железных катализаторов синтеза из окиси углерода и водорода оценивается по выходу углеводородов на 1 синтез-газа, а активность окиси алюминия — по константе скорости дегидратации этилового спирта до этилена при определенной температуре. Помимо активности свежеприготовленного катализатора, часто необходимо знать их каталитическую стабильность после регенерационных операций или кратковременного нагрева до высоких температур. В частности, для алюмосиликатных катализаторов определяют индекс стабильности, под которым понимают индекс активности катализатора после шестичасовой его обработки паром при 750° С. При определении стабильности не ограничиваются подсчетом выхода целевой фракции до 200° С, а определяют также выход газа и его плотность и выход остатка после 200° С. Так как активность гетерогенных катализаторов решаюш им образом зависит от величины и состояния их поверхности, то в ряде случаев контроль их качества проводится по величине удельной поверхности (в м г), которая определяется методом адсорбции толуола или других, чаще всего красящих веществ. [c.305]

    Кислотная дегидратация спиртов с целью получения определен пых олефинов не дает удовлетворительных результатов даже прр применении самых мягко действующих катализаторов. Ниже при ведены три примера, иллюстрирующие возможные изомеризации [c.88]

    В патентной и технической литературе указывается на множество попыток ускорить процесс окисления сырья и придать определенные свойства окисленному битуму, применяя окислители, катализаторы и инициаторы. Так, в качестве окислителей предложено применять кислород, озон, серу, хлор, бром, иод, селен, теллур, азотную и серную кислоты, марганцовокислый калий и др. В качестве катализаторов окислительно-восстановительных реакций — соли соляной кислоты и металлов переменной валентности (железа, меди, олова, титана и др.) в качестве катализаторов алкилирования, дегидратации, крекинга (переносчика протонов) предложены хлориды алюминия, железа, олова, пятиокиси фосфора и т. п. в качестве инициаторов окисления — перекиси и др. Большинство из них инициирует реакции уплотнения молекул сырья в асфальтены, не обогащая битумы кислородом. [c.157]

    Подобно типичным кристаллическим растворам, цеолиты можно рассматривать как кристаллические фазы с однородной структурой, в которых вода или другие пропитывающие или адсорбированные вещества удерживаются в свободноподвижном состоянии. Физические свойства цеолитов определенно указывают на такое Однородное внедрение. Типичность отражения на кривых дегидратации определенных молекулярных отношений соответствует главным образом дисперсному состоянию воды в этих кристаллических растворах. На кривых, построенных Вейгелем по данным равновесий дегидратации, эти определенные точки лежат на одной линии каждой целой молекуле воды в определенном стехиометрическом гидрате (на определенной ступени) соответствует разница температур около 62°С. Шёйман попытался интерпретировать внутренние динамические равновесия в цеолитах с точки зрения теории Смитса аллотропических модификаций (см, В. I, 82, сноску 9) и псевдосистем . Согласно этой теории, гейландит следует рассматривать состоящим из двух или более квазигидратов , между которыми существуют все переходы и которые непрерывно проникают друг в друга. [c.663]

    Выбор аппаратурного оформления процесса коагуляции определяется его скоростью и необходимым временем контакта электролитов с латексом. При коагуляции латексов, стабилизованных алкил (арил)сульфонатами, время коагуляции составляет секунды (или доли секунды) и может быть осуществлено в системе трубопроводов [45] при коагуляции латексов бутадиен-стирольных каучуков, полученных с применением мыл карбоновых кислот, под действием электролитов (Na I + H2SO4) происходит разделение фаз — коагуляция и химическое превращение эмульгатора в свободные карбоновые кислоты, скорость которого зависит от кислотности среды и составляет несколько минут. Одновременно с этим процессом отмечено дегидратирующее действие электролитов на крошку каучука, причем скорость этого процесса также зависит от кислотности среды (pH). Технологические параметры процесса определяются выбранной технологической схемой. При выделении каучука в виде ленты крошка каучука размером 1—3 мм должна иметь определенную когезию, что сохраняется при недостаточной ее дегидратации (в ленте крошка удерживает четырехкратное количество воды) при выделении каучука в виде крошки размером 5—30 мм желательно более полное обезвоживание, чему способствует большая кислотность серума и большая длительность контакта с кислотой. [c.260]

    Селективностью катализатора называют величину, которая показывает, в какой степени он ускоряет реакцию образования одного или нескольких желательных промежуточных продуктов в расчете на прореагировавшее сырье. Селективность зависит не только от пртроды катализатора, но и от параметров процесса (Р, т, Уж. глубины п]ревра-щения), поэтому ее следует относить к определенным условиям проведения реакции. Селективность определяется в первую о середь свойствами катализатора, но она зависит от термодинамичс ского равновесия. В качестве примера селективности, определяемой свойствами катализатора, часто приводят реакцию разложения этанола. Над медью протекает реакция дегидрирования, а над оксидом алюминия -реакция дегидратации. В этом случае селективность объясняется тем, что медь поглощает водород, а оксид алюминия хемосорбирует воду. [c.90]

    Особенностью неионогенных деэмульгаторов является ухудшение их растворимости с повышением температуры. Это объясняется тем, что растворение их в воде связано с образованием водородных связей, Повышение температуры выше определенной вели ны приводит к их дегидратации, поскольку энергия водородной связи недостаточно велика, Дегидратированное при нагревании вещество теряет способность растворяться в воде, и раствор становится мутным, при охлаждении вещество вновь растворяется в воде. Каждый де ульгатор имеет свою температуру помутнения, являющуюся мерой соотношения величины гидрофильной и гидрофобной частей молекулы. При температуре помутнения деэмульгатор образует новую фазу и эфс ктивность его снижается, что обусловлено механизмом разрушения эмульсии. Экспериментальная проверка этого факта показала [ 110], что водорастворимые деэмульгаторы при введении в нефтяную эмульсию, нагретую выше их температуры помутнения теряют эффективность, Различие особенно значительно, если деэмульгаторы с низкими температурами помутнения используются для деэмульгации при высокой температуре, В случае проведения де-эмульгацни п температуре ниже температуры помутнения различие уменьшается, Способ ввода деэмульгатора оказывает наименьшее влияние на эффективность в случае применения реагентов с высокой температурой помутнения и низкой температурой деэмульгации. [c.132]

    Присоединение молекул воды к оксиэтилированным веществам всегда протекает экзотермически, энергия водородной связи составляет около 7 ккал1моль. По максимальному повышению температуры при растворении в воде определенных количеств оксиэтилированных веществ Карабинас и Метцигер определяли степень их гидратации и получили результаты, хорошо совпадающие с теоретически вычисленными величинами. Подогрев разбавленных растворов оксиэтилированных веществ до определенной температуры приводит к дегидратации этих веществ вследствие того, что энергия водородной связи недостаточно велика. Дегидратированное при нагревании вещество теряет способность растворяться в воде п раствор становится мутным, а при охлаждении вещество опять растворяется в воде. Для каждого оксиэтилированного вещества имеется своя температура помутнения разбавленного водного раствора, являющаяся мерой соотношения величин гидрофильной и гидрофобной частей молекулы оксиэтилированных веществ. [c.138]

    Особого внимания заслуживает диаграмма Ван Кревелена, построенная в координатах Н С — О С. Основные реакции, играющие важную роль в углеобразовании, такие, как окисление, дегидрогенизация, дегидратация, отщепление метана и декарбоксили-рование, представлены прямыми линиями (рис. 39). Диаграмма позволяет с определенным допущением выразить образование структуры углеродистого скелета твердых топлив. Предполагается, что кислород в природных соединениях связан в виде гидроксильных и эфирных групп, а также циклических кислородсодержащих [c.132]

    Каталитическое окисление нефтяных остатков. Имеется множество попыток ускорить процесс окисления сырья, повысить качество или придать определенные свойства окисленному битуму с помощью различных катализаторов и инициаторов. В качестве катализаторов окислительногвосстановительных реакций предложено применять соли соляной кислоты и металлов переменной валентности (железа, меди, олова, титана и др.). В качестве катализаторов дегидратации, алкилирования и крекинга (перенос протонов) предложены хлориды алюминия, железа, олова, пятиокись фосфора в качестве инициаторов окисления — перекиси. Большинство из этих катализаторов инициирует реакции уплотнения молекул сырья (масел и смол) в асфальтены, не обогащая битумы кислородом. Возможности ускорения процесса окисления сырья и улучшения свойств битума (в основном в направлении повышения пенетрации при данной температуре размягчения), приводимые в многочисленной патентной литературе, обобщены в [63], но, поскольку авторы патентов делают свои предложения, не раскрывая химизма процесса, их выводы в настоящей монографии не рассматриваются. Исследования А. Хойберга [64, 65] [c.141]

    Настоящая книга состоит из И глав. В первых двух главах автор рассматривает источники получения олефинов как побочных продуктов (при деструктивной переработке нефтяного сырья, синтезе Фишера-Тропша, коксовании углей) и как целевых продуктов (при дегидрировании парафиновых углеводородов, пиролизе газообразных и жидких парафиновых углеводородов и коксовании тяжелых нефтепродуктов). В этих главах изложены также методы получения этилена гидрированием ацетилена и получения индивидуальных олефинов дегидратацией высших спиртов. В отдельном разделе рассматриваются методы получения индивидуальных изоолефинов полимеризацией соответствующих мономеров, а также синтез олефинов с определенным положением кратной связи в молекуле. [c.5]

    Выбор условий проведения процесса большей частью обусловливается экономическими соображениями. Как улге отмеча,пось, при повышении температуры равновесие резко сдвигается в Toj)ony дегидратации спирта, тогда как скорость гидратации увеличивается. Отсюда получается, что при определенной величине активности катализатора повышение скорости реакции вызывает увеличение объема этилена, подвергающегося рециркуляции, так как за проход его реагирует меньше. Увеличение объема рециркулирующих газов повышает расход энергии. Степень превращения этилена за проход МО /КПО повысить увеличением давления, но это влечет за собой донол-нител]лн.1е расходы. Состав смеси паров воды и этилена также определяется частично экономическими соображениями. При сни/кении парциального давления воды ее степень превращения за проход увеличивается, а этилена падает. Следовательно, это также увеличит степень рециркуляции этилена. Правда, одновременно уменьшится количество тепла, требующееся для испарения воды. Наиболее экономичными будут условия, при которых расход энергии иа повышение рециркуляции этилепа будет уравновешиваться снижением расходов на испарение воды. [c.459]

    Как будет изложено ииже, ггри каталитической дегидратации м-бута-нола-1 над окпп.ю алюминия всегда нроисходит также определенная изомеризация дпоиной связи в бутилене-1, так что последний в зависнмости от услов1и 1 н применяемого катализатора всегда содеря ит некоторое ко.чи-чество бутилена-2. [c.594]

    В своей работе по окислению пропилена кислородом Ленер [I] выделил только ацетальдегид, формальдегид и муравьиную кислоту. Однако Ньюитт и Мен, работавшие с избытком пропилена, получили при 215—280" и 12—18 ата окись пропилена, пропиленгликоль и глицерин наряду с различными кислотами и альдегидами [2]. Установлено, что в начальных стадиях окисления образуются аллиловый спирт и пропионовый альдегид. Можно сказать почти определенно, что аллиловый спирт и глицерин получаются в результате атаки кислородом метильной группы. Лукас исследовал окисление бутилена-2 кислородом при 350—500° [3]. Основными продуктами реакции являются ацетальдегид и дивинил. Установлено также присутствие глиоксаля, окиси олефина, кислоты и перекисей метилэтилкетон не обнаружен. Дивинил, по-видимому, получается в результате дегидратации 2,3-бутандиола или окиси бутилена, а окисление его по двойным связям приводит к глиоксалю  [c.158]

    При определенных условиях можно превратить прямую эмульсию в обратную и наоборот, т. е. произвести обращение фаз в эмульсии. Это происходит либо при изменении характера стабилизатора (например, при химическом превращении щелочного мыла в щелочноземельное), либо при изменении взаимодействия среды со стабилизатором. Например, нейтральная соль ЫаС1, добавленная к прямой эмульсии, вызывает дегидратацию полярных групп молекул щелочного мыла в результате происходит их вы-130 [c.130]

    Для оксикислот характерны все превращения, свойственные спиртовой и карбоксильной группам. Однако в определенных условиях фун1сциопальпыс группы оксикислот в зависимости от их взаимного )асп()ложения могут проявлять себя [ю-разному, что можно видеть па примере дегидратации. [c.150]

    Для катализаторов характерна специфичность, т. е. способность воздействовать лишь на определенные реакции. Например, одни и те же исходные вещества могут превратиться в различные продукты в зависимости от свойств примененного катализатора. Так, металлы, в частности медь и никель, имеют большое сродство к водороду, который активированно адсорбируется на их поверхности. Такие металлы являются специфическими катализаторами для реакций гидрогенизации. При пропускании паров этилового спирта над медью или никелем при 300—400° С идет реакция С2Н5ОН СН3СНО + Н2. Глинозем при соответствующей обработке сильно адсорбирует воду н является хорошим катализатором для реакций дегидратации. В присутствии глинозема реакция термического распада этилового спирта идет по другому пути СгНаОН —> С2Н4 + Н2О. [c.406]

    Среди ферментов, обнаруженных в живых организмах к настоящему времени, имеется несколько сотен деполимераз, основная функция которых заключается в деградации полимерных субстратов вплоть до мономеров или до фрагментов с относительно малой степенью полимеризации. Эти ферменты различаются по типу катализируемой ими химической реакции (гидролиз, перенос определенных химических групп, дегидратация, изомеризация и т. д.), по способу действия, специфичности к природе мономерных остатков полимера, специфичности к типу связей, соединяющих мономерные остатки и т. д. По-видимому, самая большая группа деполимераз в современной номенклатуре ферментов представлена 0-гликозидгидролазами, которые к тому же наиболее изучены по сравнению с другими ферментами с точки зрения их деполимераз-ного действия, а также строения протяженных участков их активного центра. [c.34]

    По существу, целью всех многочисленных теорий катализа, которые начали появляться еще в прошлом столетии, было предвидение каталитического действия. Но, пожалуй, началом решения этой задачи следует считать рекомендации по подбору катализаторов, которые содержались в мультиплетной теории А. А. Баландина, теории активных центров X. С. Тэйлора и 3. К. Ридила, в классификации каталитических процессов С. 3. Рогинского, а затем в ряде электронных теорий. В результате появились более или менее общие и проверенные выводы о специфическом характере каталитического действия определенных, правда, довольно обширных групп катализаторов, например, для реакций гидро- и дегидрогенизации, окисления, галогенироваиия — металлы и оксиды металлов— полупроводники для реакций гидратации — дегидратации, гидрогалогенирования, алкилирования алкилгалогенидами — бренстедовские и льюисовские кислоты и основания. Но подбор [c.248]

    Наиболее изучены ионообменные свойства гидроксида циркония. Это соединение нерастворимо и устойчиво к действию кислот, оснований, окислительных и восстановительных агентов оно рассматривается как положительно заряженный полимер, состоящий из цепей, частично сшитых в сетку. Из кислых растворов амфотерный гидроксид циркония обменивает на ионы ОН анионы С1", Вг , НОз и особенно 80Г и СГО4. При повышении температуры сушки до 300° С обменная способность 2г(ОН)4 уменьшается незначительно. Из опытов по дегидратации и термогравиметрических измерений следует, что гидроксиды циркония не образуют гидратов определенного состава, и можно допустить, что при осаждении оксидов полимерный ион (2гООН) образует следующую структуру [13]  [c.46]

    В случае если для проведения опыта нужен газообразный изобутилен, то его не конденсируют, а направляют непосредст венно в реакционный сосуд. Расход определяют либо по количеству воды, выделяющейся при дегидратации спирта, либо реометром, либо газосчетчиком. Для точного определения расхода пользуются газометрами. [c.47]

    Для определения структуры гексиловых спиртов применялся метод дегидратации их над активной окисью алюминия и гидрирования полученных гексеиов в предельные углеводороды. Независимо от работ ВНИИНефтехим аналогичной методикой пользовались голландские исследователи [246]. [c.335]

    Переведение спиртов в эфиры азотистой кислоты имеет то преимущество, что необходимая для проведения этой реакции температура не превышает температуру анализа, и поэтому реактор может быть помещен в тот же термостат. Если для количественного превращения требуется большее время пребывания в реакторе, чем допускает выбранная скорость потока газа, то на пути потока газа-носителя перед входом в хроматографическую колонку ставят трехходовой кран и пробу пропускают при помощи этого крана через реактор многократно. Предложенные также Дравертом, Фельгенхауэром и Купфером (1960) два метода — превращение спиртов в олефины путем дегидратации в реакторе, заполненном стерхамолом, на который нанесена фосфорная кислота, и гидрирование спиртов до соответствующих насыщенных углеводородов с использованием никеля Ренея — в некоторых отношениях менее пригодны, чем описанный выше метод, основанный на превращении в нитриты. Для обеих этих реакций необходима более высокая температура реактора, который поэтому должен находиться в отдельном термостате. Применение очень чувствительного олефннового метода практически ограничивается определением низших спиртов с прямой цепью (например, определением спирта, содержащегося в крови), так как из изомерных спиртов могут возникать олефины с одинаковой структурой. Каталитическое гидрирование спиртов до алифатических углеводородов протекает удовлетворительно лишь в сравнительно узком интервале температур. Кроме того, при газохроматографическом анализе алкилнитритов, как правило, достигается сравнительно лучшее разделение, чем при анализе образующихся из спиртов олефинов или алифатических углеводородов. [c.273]

    Вискозная ткань Светлогорского завода, предварительно пропитанная антипиреном, подвергалась термической обработ ке иа дериватографе. Расчет результатов дериватограмм проводился по апроксимационному методу Горовица-Метцгера. Определенные по этому методу энергии активации позволили с достаточной точностью установить температурные интервалы основных стадий процесса. Выделены три стадии пиролиза дегидратация, деполимеризация, глубокая деструкция, протекание которых подтверждается данными элементного анализа и ИК Спектроскопии, [c.58]

    Примером аналитического применения кнслотгюй дегидратации может служить количесттвеиное определение третичных спиртов в смеси с первичными и вторичными. При этом сме< ь кипятят с ксилолом в присутствии небольшого количества хлорида цинка или иода. Прибор снабжен обратным холодильником и водоотделителем. В этих условиях дегидратируется только третичный спирт. Его содержаиие в смеси рассчитывают по количеству выделившейся воды. [c.312]

    Колори.метрнческое определение терпингидрата по Я. М. Перельману основано на восстановлен и и фосфорно-молибдсновой кислоты до молибденовой снни тсрпинеолами, образующимися при дегидратации интенсивность окраски зависит от количества терпингидрата и сравнивается со стандартом. [c.127]


Смотреть страницы где упоминается термин Дегидратация определение: [c.265]    [c.42]    [c.97]    [c.266]    [c.218]    [c.122]    [c.107]    [c.713]    [c.209]   
Каталитические, фотохимические и электролитические реакции (1960) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Весовое определение без дегидратации

Дегидратация

Исследование процесса дегидратации и разработка метода определения содержания воды в фосфогипсе. Л. Г. Березкина, С. В. Мельникова, Суходолова, 3. Л. Ленева

Определение изотопного эффекта при дегидратации муравьиной (-14С) кислоты

Определение третичных спиртов, основанное на реакции дегидратации

Приготовление катализатора дегидратации спиртов и определение его активности

Теплота дегидратации, определение фазовых превращений эффекты

Теплота дегидратации, определение фазовых превращений эффекты термические



© 2024 chem21.info Реклама на сайте