Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

молекулярная структура и полимеризация

    В этом разделе мы приводим результаты исследований связи между молекулярной структурой различных эластомеров, полученных методом полимеризации в растворе, и условиями их синтеза, а также данные о молекулярной структуре некоторых каучуков, выпускаемых в опытном и промышленном масштабе. [c.56]

    Молекулярное строение сополимеров типа СКЭП и СКЭПТ сильно зависит от типа применяемой каталитической системы и условий проведения процесса полимеризации. Типичные параметры молекулярной структуры промышленных каучуков СКЭП и СКЭПТ приведены в табл. 6. [c.62]


    Процессы группы Б представляют собой реакции соединения друг с другом большого числа мономерных или олигомерных молекул путем взаимодействия их функциональных групп с образованием линейных, разветвленных или сетчатых структур. Каждый акт взаимодействия этих функциональных групп сопровождается выделением низкомолекулярного продукта (поликонденсация) или в них происходит перестройка атомов и групп атомов в одну устойчивую молекулярную структуру без выделения такого продукта реакции (ступенчатая полимеризация). [c.14]

    Изучение влияния молекулярной структуры допантов на процессы полимеризации и структурирования матриц. [c.55]

    Полиэтилен высокой плотности получают полимеризацией этилена при 60 °С и давлении 0,4—0,5 МПа в присутствии металлоорганического катализатора в среде органического растворителя. Молекулярная масса полимера около 1 ООО ООО. Он имеет менее разветвленную молекулярную структуру, чем ПНП (5—15 метильных групп на каждые 1000 атомов в линейной молекуле содержание кристаллической фазы составляет около 90%. Аморфные участки в полиэтилене обусловливают его гибкость, эластичность и высокую морозостойкость. Наличие кристаллической фазы способствует повышению химической стойкости, механической прочности и теплостойкости. [c.85]

    На рис. 5.17 представлены зависимости показателей состава и молекулярной структуры полимера от начальной концентрации инициатора [/о ]. Увеличение концентрации инициатора повышает температуру в реакторе, что приводит к уменьшению средних молекулярных масс и увеличению степени полидисперсности. Незначительное увеличение среднемассовой молекулярной массы М при относительно низких значениях начальной концентрации, объясняется определенным соотношением между скоростями роста и обрыва цепи при низких (до 250 °С) реакционных температурах. С увеличением концентрации кислорода температура реакции полимеризации в реакторе повышается, что приводит к расширению ММР и, следовательно, к увеличению степени полидисперсности. [c.101]

    Характерной чертой молекулярной структуры ПЭВД, отличающей его от всех ныне известных синтетических полимеризационных полимеров, является сильно развитая ДЦР. Это вызвано тем, что условия синтеза ПЭВД, обеспечивающие получение полимера достаточно высокой степени полимеризации, весьма благоприятны для реакций передачи цепи на полимер (см. гл. 4). Основной реакцией, приводящей к образованию длинных ветвей в макромолекуле ПЭВД, является реакция межмолекулярной передачи цепи. Возможно возникновение ДЦР и вследствие внутримолекулярной передачи цепи, когда происходит отрыв водорода от атома С макрорадикала, гораздо более далекого, чем 5-й. Однако вероятность этой реакции очень мала. [c.123]


    Влияние температуры и давления полимеризации, а также концентрации инициатора на молекулярную массу и полидисперсность ПЭВД продемонстрировано на рис. 7.16-7.18. Они взяты из работы [53], в которой исследована молекулярная структура около 100 образцов ПЭВД, синтезированных в реакторах автоклавного типа с отношением длина внутренний диаметр от 1,25 до 5,3 при изменении температуры полимеризации от 110 до 330 °С, давления - от 110 до 200 МПа, молярной доли инициатора (органические пероксиды и кислород) - от 10 до 80 млн" . Время пребывания реакционной смеси в реакторе составляло 40 и 65 с. Данные рисунков относятся к проведению процесса в реакторе идеального смешения с отношением длины к диаметру 1,25. Резкое падение полидисперсности с температурой в области высокой температуры полимеризации объясняется разложением инициатора температура, при которой начинается падение, тем ниже, чем активнее инициатор. [c.137]

    Постоянство условий полимеризации обеспечивает полимеру однородность по структуре макромолекул. Но на практике постоянство основных факторов, определяющих молекулярную структуру полимера, не соблюдается. С этим связана зависимость молекулярных характеристик ПЭВД от типа реактора, в котором проводится полимеризация (рис. 7.21) [121]. [c.141]

    В автоклавном реакторе непрерывного действия все компоненты реакционной смеси находятся в идентичных условиях полимеризации, но различаются по времени пребывания. В реакторе трубчатого типа все компоненты реакционной смеси пребывают в зоне реакции одно и то же время, но по длине реактора условия синтеза различны. Отсюда следует, что в первом случае макромолекулы должны обладать одинаковым относительным содержанием структурных элементов (частота разветвленности, степень ненасыщенности), но сильно различаться по молекулярной массе в соответствии с шириной распределения по временам пребывания. Во втором случае полимер должен быть полидисперсным как по молекулярной массе, так и по структуре макромолекул. Исследования подтверждают это [53, ]]], 122]. Главные различия молекулярной структуры основных промышленных марок ПЭВД, синтезированных в автоклавных (I) и трубчатых (II) реакторах, заключаются в следующем  [c.141]

    Проведенные исследования позволили установить характер влияния условий полимеризации на молекулярно-массовое распределение (ММР) и содержание разветвленных макромолекул и сшитых структур для основных типов каучуков и предложить рациональные пути получения полимеров с оптимальными молекулярными параметрами. Были выявлены закономерности связей между важнейшими элементами молекулярной структуры эластомеров и их свойствами в широком интервале температур. Установлены количественные корреляции между температурой стеклования и микроструктурой каучуков данного химического строения, изучен характер влияния ММР на температурный коэффициент эластичности для ряда каучуков, а также исследованы кристаллизационные процессы в эластомерах и пути их регулирования. [c.16]

    Молекулярная структура поливинилацетата (ПВА) наиболее полно исследована для полимеров, получаемых в ореде растворителей [7][. Это связано с тем, что при такой полимеризации удается регулировать молекулярную массу образующегося полимера, скорость реакции теплообмена, а кроме того, в среде растворителей удается получить наиболее чистый полимер. [c.195]

    В течение последних 20 лет технология синтетических полимерных материалов развивалась очень быстрыми темпами. Этому в значительной степени способствовало то крайне важное обстоятельство, что эти вещества являются не только заменителями обычных материалов, но и могут обладать таким сочетанием свойств, которое делает их в некоторых случаях значительно более ценными по сравнению с обычно применяемыми материалами. Изучение новых соединений такого типа послужило стимулом для исследования основных химических процессов, приводящих к образованию полимеров. Эти исследования, в свою очередь, привели к развитию теоретической химии. Прекрасным примером этого может служить химия свободно-радикальных реакций, развитие количественной теории которой в значительной степени обязано химии полимеров. Понимание физико-химических закономерностей реакции полимеризации является необходимым условием достижения конечной цели — синтеза полимеров с заранее заданными молекулярной структурой и свойствами. [c.7]

    При исследовании процессов полимеризации одной из наиболее важных задач является установление связи между реакционными способностями мономера и образующихся из него радикалов, с одной стороны, и молекулярной структурой мономера, с другой. Механизм виниловой полимеризации в настоящее время достаточно ясен, а накопление большого-количества экспериментальных данных об абсолютных значениях констант скорости индивидуальных реакций и о температурных коэффициентах этих констант могло бы обеспечить необходимый для рассмотрения фактический материал. Однако в настоящее время количество таких данных весьма ограничено, причем результаты, полученные различными исследователями, далеко не всегда хорошо согласуются. Это обстоятельство, несомненно, является следствием экспериментальных трудностей, присущих исследованию таких систем, и следует надеяться, что развитие техники позволит достигнуть большей точности. В еще большей степени интерпретации полученных результатов препятствовало отсутствие данных о рядах мономеров с закономерно изменяющейся структурой. Поэтому в настоящее время можно сделать только общие качественные выводы о влиянии структуры на реакционную способность. [c.116]


    Наиболее удобным способом получения свободных радикалов для инициирования полимеризации является разложение тех или иных химических соединений, которое и используется для этой цели чаще всего. Обыкновенно применяются органические перекиси [76], а также азонитрилы. Определяющей величиной является скорость разложения молекулы ускорителя в дальнейшем будет рассмотрена зависимость этой величины от температуры, окружающей среды и молекулярной структуры инициатора. [c.186]

    Этерификация с помощью серной кислоты олефинов, содержащих более трех атомов углерода в молекуле, представляет собой значительно более сложную реакцию, чем взаимодействие пропилена с тем же реагентом. Пределы, которых достигают побочные реакции, такие как поли меризация и расщепление полимеров, обусловливаются главным образом молекулярной структурой олефина и условиями опыта, в особенности концентрацией кислоты и температурой. Высшие олефины реагируют значительно быстрее с серной кислотой, чем этилен или пропилен благодаря этому реакцию можно проводить, применяя кислоту относительно низкой концентрации. Соответствующее разбавление серной кислоты практически является весьма важным для получения хороших выходов высших спиртов, так как более концентрированная кислота вызывает значительную полимеризацию. Из некоторых олефинов невозможно получить соответствующих спиртов, даже пользуясь сравнительно разбавленной кислотой. [c.409]

    О молекулярной структуре различных типов полиэтилена опубликовано много данных, полученных главным образом физическими методами. Механизму образования высокомолекулярных этиленовых полимеров посвящено большое число публикаций, но даже лучшие теории подтверждены лишь немногими твердо установленными фактами. Приборы для изучения процессов, происходящих на катализаторе, дают лишь косвенные данные, с учетом которых создаются теоретические представления. Теории катализа и механизм реакции полимеризации должны по меньшей мере согласовываться с данными о структуре полимера, которая хорошо изучена. В этом разделе мы прежде всего рассмотрим сведения о структуре полимера, а затем уже предлагаемые механизмы полимеризации, которые окажутся совме-, стимыми с известной структурой полимера и структурой катализатора. [c.176]

    В самом деле, поскольку начальным актом термических превращений алкенов является ассоциация, ведущая, по крайней мере, к образованию димеров, причем процесс часто идет дальше и приводит к образованию более сложных полимеров, то распад в дальнейшем претерпевает уже не исходный углеводород, а соединение, имеющее, как минимум, вдвое больший молекулярный вес. Полимеризация под воздействием тепла будет продолжаться с повышением температуры до тех пор, пока увеличению сложности структуры не станут препятствовать процессы ее распада, после чего дальнейшее повышение температуры приведет к обратному процессу диссоциации полимеров по путям, как правило, не тождественным полимеризации. [c.58]

    В настояшее время в опытном и промышленном масштабе выпускаются как изопреновые (СКИЛ, карифлекс и др.), так и бутадиеновые (СКДЛ, интен и др.) каучуки литиевой полимеризации. Для улучшения технологических свойств этих полимеров необходимо регулирование их ММР на рис. 2 приведены кривые ММР (гель-хроматограммы) полиизопренов типа карифлекс. а в табл. 2 — данные по молекулярной структуре ряда марок промышленных полибутадиенов литиевой полимеризации. [c.57]

    Статистические бутадиен-стирольные каучуки растворной полимеризации (ДССК) имеют повышенное содержание цисЛЛ-звеньев, они характеризуются также более линейным строением макромолекул и более узким ММР. В табл. 3 приведены сравни-, тельные данные по молекулярной структуре эмульсионных и растворных статистических бутадиен-стирольных каучуков промышленных марок .  [c.57]

    Другие каучуки, получаемые методом растворной полимеризации. Методом полимеризации в растворе получают морозостойкие и бензомаслостойкие каучуки на основе циклических окисей— сополимеры окиси пропилена и аллилглицидилового эфира (СКПО), а также сополимеры окиси этилена и эпихлоргидрина [14, 15]. Эти каучуки выпускаются в промышленном масштабе. Предполагается, что для сополимеров типа СКПО ухудшение эластических свойств в области низких температур, по-видимому, связано с образованием стереорегулярных — изотактических блоков пропиленоксида и другими особенностями их молекулярной структуры. В случае сополимеров окиси этилена и эпихлоргидрина, где сомономеры входят в полимер в соизмеримых количествах (обычно 1 1), ухудшение эластических свойств может быть связано с образованием длинных блоков обоих сойолимеров, которые способны к образованию кристаллической фазы. [c.62]

    Значительная разветвленность цепей каучуков эмульсионной полимеризации является одной из двух основных причин того, что их индекс полидисперсности MJMn значительно превышает 2— величину, характерную для наиболее вероятного ММР [34]. Вторая причина этого связана со спецификой расхода регулятора молекулярной структуры. Даже в отсутствие реакций разветвления постепенное изменение по ходу полимеризации отношения концентрации регулятора к концентрации мономера в зоне реакции приводит к расширению ММР каучука. Этот эффект выражен тем сильнее, чем выше скорость расхода регулятора. Использование сравнительно медленно расходующегося регулятора позволяет поддерживать ММР каучука достаточно узким [35, 36]. С другой стороны, такой же эффект может быть достигнут и путем введения быстро расходующихся регуляторов (например, диизопропил-ксантогендисульфида) порциями по ходу процесса [35, 36]. Оба эти принципа регулирования используются при промышленном синтезе отечественных бутадиен-стирольных и бутадиен-нитрильных каучуков. [c.66]

    В процессе карбонизации вследствие протекания параллельных, последовательных и параллельно-последовательных реакций (расщепление, гидрирование, дегидрирование, изомеризация, алкилирование, деалкили-рование, полимеризация, поликонденсация и т.д.) происходят изменения состава, молекулярной структуры и ММР нефтяных систем в направлении накопления полициклических углеводородов и гетероатомных органических соединений с ароматичностью, возрастающей по мере увеличения глубины превращения исходного материала. Источником накопления ароматических молекулярных структур прежде всего являются ароматические структуры исходного материала, а затем уже продукты химических превращений алифатических и ациклических молекулярных структур. Это подтверждается результатами исследования состава и молекулярной структуры дистиллятных и остаточных продуктов термического крекинга [41...43,45], коксования [34...37,40...45,60,63,64], пиролиза [79...84], каталитического крекинга [43,45,64] и других процессов [84] деструктивной пере- [c.18]

    Изложенные во введении краткие сведения о строении полимеров и их макромолекул позволяют представить важное значение методов синтеза полимеров для прогнозирования их основных свойств и регулирования структуры. Сюда относятся такие важные показатели характеристик полимеров, как размер и вид их макромолекул, т. е. степень полимеризации, линейность, разветвленность, сет-чатость молекулярных структур конфигурация звеньев мономеров в цепях и порядок их чередования присутствие в цепи одинаковых или различных по химической природе звеньев. Все эти показатели задаются при синтезе полимера, а поэтому знание механизма этого процесса является важным этапом на пути к управлению основными свойствами полимера как при его переработке, т. е. в технологических стадиях производства изделий, так и при эксплуатации готовых изделий, прогнозировании сроков их службы, возможности работы в различных условиях. Иными словами, конструировать полимерные изделия, определять области применения тех или иных полимеров возможно без знания условий получения полимеров и связанных с ними основных их структурных характеристик. [c.19]

    Изопреновый (синтетический) стереорегулярный каучук СКИ-3 получается путем полимеризации изопрена в среде инертного растворителя в присутствии комплексного катализатора (типа триалкилалюминий + четыреххлористый титан). Он представляет собой стереорегулярный цыс-1,4-полиизопрен, содержащий 92— 99, Ь звеньев 1,4-г<ис-изомериой конфигурации. По своей молекулярной структуре и техническим свойствам он практически рав- [c.38]

    После того как было изучено регулярное строение натурального каучука, исследователи неоднократно предпринимали попытки синтезировать полимеры, которые бы обладали сходными с ним структурой и свойствами. Многочисленные опыты полимеризации диенов дали интересные результаты, позволившие сделать теоретические выводы о влиянии температуры, инициаторов и роли поли-меризационной среды на способ соединения молекул мономера в цепи. Так, например, была высказана мысль о том, что более высокая температура способствует присоединению мономера по принципу А-Цис, а более низкая — по принципу , А-гранс это объяснялось различием в свободных энергиях активации этих типов реакций. И хотя долгое время не удавалось доказать справедливость этой гипотезы для полимеризации диенов, именно благодаря ее использованию был достигнут дальнейший прогресс в области получения полимеров с регулярной молекулярной структурой. Только недавно, с применением высокочувствительных физических методов, в особенности ядерного магнитного резонанса, было установлено, что при полимеризации виниловых мономеров с заместителями, имеющими большой объем, в условиях низких температур образуются соединения с повышенным содержанием фракций син-диотактической структуры. [c.8]

    В зависимости от условий проведения процесса полимеризации проиилена получаются полимеры с различной молекулярной структурой, которая определяет их физико-механические свойства и, как следствие, пригодность для той пли иной цели. [c.62]

    С открытием стереоспецифической полимеризации иропилена стало ясно, что высокопрочные волокна можно вырабатывать и из изотактических полиолефинов, в которых не образуется водородных мостиков и не имеется полярных групп. Однако обязательным условием, предопределяющим возможность формования волокна из таких полимеров, является наличие у них совершенной линейной и регулярной молекулярной структуры, а также сравнительно высокого молекулярного веса. Вследствие высокой регулярности пространственной структуры изотактические полимеры имеют более плотную упаковку макромолекул, чем атактические, благодаря чему создаются предпосылки для возникновения трехмерной периодической повторяемости мономерных единиц (кристалличности), [c.229]

    При выводе кинетических соотношений обычно делаются следующие четыре допущения. 1. Рассматривается случай, когда полимеризация протекает с длинными цепями, т. е. скорость полимеризации v v так что v, можно не принимать во внимание. 2. Допускается, что к и к, не зависят от длины реагирующего макрорадикала, т. е. Кру = кр2 =. .. = кр , и то же для kt и ktd- Такое предположение представляется разумным, особенно для высокомолекулярных радикалов, так как реакционная способность радикала определяется его молекулярной структурой вблизи свободной валентности, а при гомополимеризации строение всех макрорадикалов одинаково и различаются они только своей длиной. 3. Предполагается протекание реакции в квазистационарном режиме. Это справедливо для экспериментов с v, = onst и длительностью t tr, xr = = (2A,v,-) V2. При V, = 10 +10 6 моль/л и 2к, = 10 +10 Ммоль с) время жизни макрорадикалов R- изменяется в интервале 0,1-10 с, что значительно короче периода прогревания реактора (50-200 с). 4. Обычно пренебрегают обрывом с участием первичных радикалов, образующихся из инициатора (этой реакции г. + R нет в схеме), поскольку в большинстве случаев практически все г реагируют с мономером, а доля г , реагирую- [c.357]

    В США запатентован за № 2839545 (1958) способ фосфори-лирования фосфатидов и повышения качества фосфатидов и подобных им липидов для увеличения их диспергируемости в воде и в водных средах с целью образования высококачественных эмульсий. Фосфатиды подвергают обработке надкислотой (надуксусной, надпропионовой, надмолочной) и фосфорилиро-ванию посредством Р2О5, РОСЬ или РСЬ, в результате чего получают фосфатиды, хорошо диспергирующиеся в воде без изменения их молекулярной структуры (расщепления молекул или полимеризации). [c.45]

    ПВФ, полученный в присутствии обычных свободно-радикальных инициаторов, имеет беспорядочно ориентированную (атактическую) молекулярную структуру и содержит до 32% звеньев, соединенных по типу голова к голове , т. е. в поли-.мерной цепи одно мономерное звено из каждых шести присоединяется обратно . Степень стереорегулярности образцов ПВФ, синтезированных на катализаторах Пиглера — Натта, а также при инициировании полимеризациич ооралкилами, существенно не улучшается. У образцов обнаружен одни и тот же тип спектров дифракции рентгеновских лучей полимеры отличаются лишь повыщенными степенью кристалличности и температурой плавления кристаллитов [121], что обусловлено более регулярным присоединением по типу голова к хвосту . С понижением те.мпературы полимеризации повышается регулярность ПВФ за счет уменьшения аномальных мономерных связей голова— голова , хвост—хвост и разветвлений цепи полимера. [c.74]

    До разработки методов синтеза высокомолекулярных полимеров, описанных в гл. VII, использование природных веществ в качестве пластических масс было почти все] Да сопряжено с некоторым разрушением первоначально молекулярной структуры, подобно тому, как это имеет место, например, при растворении целлюлозы или при вальцевании каучука, и сопровождалось, только в ограниченных пределах, образованием онечного продукта новой структуры (например, при вулканизаци каучука или при высыхании масел). С тех пор как были разработаны удовлетворительные методы полимеризации, промышленность пластических масс непрерывно развивалась, и в настоящее время имеется возможность производить материалы, обладающие почти любыми требуемыми физическими свойствами и высокой химической стойкостью. Наибольшее значение в развитии промышленности пластмасс имели си тетические смолы. [c.466]

    Количественные соотношения между молекулярной структурой и свойствами блоксонолимеров могут быть получены лишь с учетом сведений об их надмолекулярной организации. Для образования хорошо выраженного дальнего порядка необходимо располагать полимерами с высокорегулярной молекулярной структурой. Этим требованиям удовлетворяют блоксополимеры бутадиена и стирола, получаемые методом анионной полимеризации [33]. Их можно рассматривать как модельные некристаллизующиеся соединения. [c.181]

    Различия длины цепей полимера можно считать особенностью, заложен ной в свойствах высокомолекулярных коллоидов и зависящей от вида полимеризации, применявшейся для получения полимеров. Различия вида полимеризации у природного и синтетического каучука мсгут быть причиной резкого изменения свойств и поведения полимеров. Очень часто полимеризация не приводит к образованию определенного высокополимерного вещества, а скорее дает смесь продуктов полимеризации. Полистирол, например [82], состоит из смеси полимеров, имеющих одинаксвую структуру, но различающихся по длине цепи. Штаудингер называет эти полимеры полимер-гомологами [84].. Обнаружено, что склонность к полимеризации а-метилстирола значительно меньше, чем стирола, поэтому получаются более короткие цепи и происходит замыкание цикла, ксгда лишь несколько молекул оказываются связанными друг с другом. Таким образом получен гомологический ряд полимеров поли-метилстиролов от димера до октамера. Наличие циклов устансвлено насыщенным характером полученных продуктов и отсутствием концевых групп [88]. Полистиролы и полииндены аналогичны по молекулярной структуре, они состоят подобно метилстиролам из длинных цепей, конечные валентности которых насыщаются при образовании циклов [89]. [c.655]

    Полимеризация с участием систем С = С С = С. Соединения с двумя сопряженными двойными связями С —- С—С = С— проявляют повышенную способность к полимеризации с образованием полимерных продуктов с высоким молекулярным весом. Эти продукты, как правило, имеют большое техническое значение, однако они не представляют большого интереса для химика-орга-ника, для которого важно получение полимеров с определенной молекулярной структурой. Катализаторами, ускоряющими полимеризацию, являются щелочные металлы, в особенности натрий. Реакцию можно проводить в различных растворителях, например в эфире или бензоле. Можно использовать также алкилы щелочных металлов. В производстве пластиков полимеризацию часто проводят в эмульсиях, что способствует рассеянию тепла, выделяюихегося в процессе реакции. [c.188]

    Таким образом, приведенные выше данные четко свидетельствуют о том,, что как межмолекулярное взаимодействие цепей, так и образуемые при этом морфологические структуры весьма чувствительны к связыванию цепей между собой, т. е. к их сшиванию. Детальный механизм этого влияния в настоящее время еще не установлен, однако можно думать, что возмущающее действие узлов сетки должно в первую очередь сказываться на конформациях ближайших атомов, т. е. на первичной молекулярной структуре цепи. Такого рода работы только начинают развиваться, однако один пример влияния сетки на конформацию некоторых групп в настоящее время уже известен [188]. При исследовании ИК-спектров сетчатых полимеров, полученных радикальной полимеризацией диметакрилата триэтиленгликоля (ТГМ-3) было установлено, что в спектре этих полимеров наблюдается только один поворотный изомер группы —С(0)—О—С — т эакс-конформер, а полоса цис-изомера вообще отсутствует, тогда как в линейном аналоге этого сетчатого полимера — атактическом полиметилметакрилате — эта группа существует в двух конформациях в более устойчивой цис- и менее устойчивой транс-конформации. Следует отметить, что такая ситуация, характеризующаяся единственно возможной формой реализации поворотной изомерии сложноэфирной группы в исследованном сетчатом полимере, наблюдается при различных условиях его образования (температура, добавки различных растворителей), т. е. это явление связано именно с сетчатым характером полимера и не зависит от способа получения сетки. [c.156]

    Кристаллизующиеся полимеры метод полимеризащ1и. Обычно немногие полимеры являются высококристаллическими. Полистирол и полиметилметакрилат, полученные нри свободно-ра-дикальной полимеризации, совершенно аморфные материалы, которые не проявляют какой-либо тенденции к кристаллизации. Наряду с этим политетрафторэтилен легко кристаллизуется и, как правило, находится в кристаллическом состоянии. Натуральный каучук, однако, обычно существует в аморфном состоянии, по кристаллизуется нри растяжении или при низкой темнературе. Часто для достижения кристалличности полимеров требуются весьма жесткие условия даже если существует полная структурная упорядоченность, могут быть необходимы особая обработка и экстремальные давление и температура. Упорядоченная макроскопическая структура (кристаллический материал) в общем является результатом высокой степени однородности молекулярной структуры. Из-за больших размеров молекул полимеров имеется большая возможность образования, в полимерных цепях структурных дефектов и нарушений. Часто встречаются два структурных дефекта, нарушающие однородность строения цени 1) беспорядочное разветвление и 2) беспорядочность асимметрии атомов углерода в цени. Эти дефекты являются результатом способа полимеризации гомогенная свободнорадикальная полимеризация при достаточно высоких температурах благоприятствует возникновению обоих дефектов. [c.273]

    Длинные боковые цепи. Во многих полиэтиленах высокого давления были обнаружены длинные боковые цепи, что объясняется свободнорадикальным механизмом полимеризации. В разд. IV было указано, что в полученном суспензионной полимеризацией полиэтилене Филлипс содержатся небольщие концентрации молекул с длинными боковыми цепями. Эти данные основываются на свойствах расплава, поскольку число боковых цепей СЛИП1К0М мало, чтобы его можно было измерить прямыми методами [53]. В табл. 4 сравниваются два полученных способом Филлипс гомополимера с равными вязкостями раствора и одинаковой среднемассовой молекулярной массой Mw. Однако продукт суспензионной полимеризации имеет на 65% более высокую вязкость расплава при малых сдвигах, чем образец, полученный полимеризацией в растворе. Это различие в вязкости расплавов прямо противоположно тому, что следовало бы ожидать на основании различий в молекулярных структурах. Длин- [c.179]

    Физические свойства. Во многих работах приведены данные исследований вязкости растворов поливинилового спирта [21—31]. Эвва [21] исследовал структурную вязкость и реологические свойства водных растворов поливинилового спирта. Скорость течения изменяется с напряжением t по уравнению q = Ах , где А vi п — константы, зависящие от температуры, концентрации и степени полимеризации. Саито [30] объясняет повышение вязкости растворов полимеров при добавлении детергентов образованием комплексов вследствие селективной адсорбции ионов детергента за счет дисперсионных сил и наличия сил притяжения между ионами детергента и диполем в полимере. Комплексообразование больше зависит от строения молекул детергента, чем от строения полимера. Исследованию молекулярной структуры и кристалличности поливинилового спирта посвящен ряд работ [32—39]. [c.340]


Смотреть страницы где упоминается термин молекулярная структура и полимеризация: [c.57]    [c.58]    [c.79]    [c.15]    [c.146]    [c.362]    [c.120]    [c.408]    [c.149]    [c.101]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.357 , c.358 ]




ПОИСК





Смотрите так же термины и статьи:

Структура молекулярная



© 2025 chem21.info Реклама на сайте