Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители строения на растворяющую способность

    Больщой вклад в развитие кинетики внес наш соотечественник H.A. Меншуткин. В 1877 г. он подробно изучил реакцию образования и гидролиза сложных эфиров из разных кислот и спиртов и первым сформулировал проблему зависимости реакционной способности реагентов от их химического строения. Пять лет спустя, изучая гидролиз сложного эфира уксусной кислоты и третичного амилового спирта, он открыл и описал явление автокатализа (образующаяся при гидролизе эфира уксусная кислота ускоряет гидролиз). В 1887-90 гг. при изучении реакции образования четвертичных, аммонийных солей из аминов и алкилгалогенидов он обнаружил сильное влияние растворителя на скорость этой реакции (реакция Меншуткина) и поставил задачу изучения влияния среды на скорость реакции в растворе. В 1888 г. H.A. Меншуткин в монографии Очерки развития химических воззрений ввел в употребление термин химическая кинетика . [c.19]


    Выяснение природы и состава неорганических полимерных образований в растворах послужили основой для разработки методов получения неорганических клеев. Однако для более глубокого понимания.свойств клея и механизма его клеящей способности необходимо ознакомиться с системой полимер — растворитель, т. е. рассмотреть состав и строение растворов неорганических полимеров. [c.25]

    По своим физическим свойствам жидкие кристаллы занимают промежуточное положение между твердыми телами и жидкостями (см. разд. 3.1 и работу [725]). Жидкие кристаллы не обладают жесткой структурой, характерной для твердых тел, поэтому растворенные в жидкокристаллической среде молекулы в известной степени сохраняют молекулярную и конформационную подвижность. С другой стороны, известное структурное упорядочение жидкокристаллической фазы частично ограничивает конформационную подвижность и движение молекул растворенного в ней вещества. Если молекулы растворителя и растворенного вещества близки по своему строению, то первые могут включаться в жидкокристаллическую фазу без нарушения ее структуры. Очевидно, что реакционная способность молекул, включенных в жидкокристаллическую фазу без нарушения ее структуры, и молекул, находящихся в изотропном растворе, будет различной. Если не считать первого сообщения о влиянии жидких кристаллов на химические реакции, опубликованного Сведбергом еще в 1916 г, [726], то детальное изучение жидких кристаллов как растворителей для осуществления химических реакций началось только в последние годы [713].  [c.377]

    В соответствии с современными представлениями о растворах в окрестности сольватированного иона, молекулы, ассоциата, комплекса или другой подобной частицы структура растворителя меняется по мере удаления от центра сольватируемой частицы (ядра) [183,184]. Это экспериментально подтвержденное положение находит отражение в том, что различают молекулы растворителя ближнего (первичная сольватация) и частично дальнего (вторичная сольватация) и дальнего (среда) окружения сольватируемой частицы [18,183]. Применительно к растворам электролитов введено понятие о "границе полной сольватации", весьма важное для выяснения строения концентрированных растворов электролитов. При достижении границы полной сольватации все молекулы растворителя распределяются между сольватными оболочками ионов, которые с этого момента "ведут борьбу" за растворитель, молекулы которого перераспределяются в зависимости от сольватационной способности ионов [184]. [c.92]


    Своеобразие физико-химических свойств лецитина обусловлено его строением. Он состоит из гидрофильной части — фосфохолина — полярных остатков аминоспирта и фосфорной кислоты и липофильной части, образованной длинными алифатическими цепями остатков высших жирных кислот, вследствие чего лецитин хорошо растворим во многих органических растворителях, а с другой стороны очень гигроскопичен и образует с водой коллоидные растворы и мицелляр-ные структуры, обладает значительной поверхностной активностью и способностью образовывать прочные пленки и монослои на поверхностях раздела. Лецитин применяется в ряде отраслей промышленности и имеет большое биологическое значение. Обычно получают его экстракцией из соевых бобов [142]. [c.210]

    Полимеры сетчатого строения не способны растворяться, они только набухают в растворителях. [c.206]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]

    Способность к набуханию и растворению полимеров в тех или иных растворителях зависит от строения их молекул. Эмпирическое правило подобное растворяется в подобном подтверждается тем, что обычно неполярные полимеры легко растворяются в неполярных растворителях и не растворяются в полярных наоборот, полярные полимеры не растворяются в неполярных растворителях, но растворяются в полярных. [c.402]

    Несмотря на многочисленные исследования строения п свойств адсорбционных слоев на границе раздела вода—углеводород, нет ясности в одном из важных вопросов — насколько велико взаимодействие молекул в адсорбционных слоях и может ли оно привести к образованию конденсированных слоев. Согласно [1, 2] углеводородная фаза сольватирует углеводородные цепи адсорбированных молекул (в частности, высших спиртов) и препятствует их взаимодействию, вследствие чего образование конденсированных слоев на такой границе раздела считается невозможным. Однако интенсивность сольватации может быть различной. Предотвращение взаимодействия цепей предполагает проникновение сольватирующих молекул в адсорбционный слой, но неясно, будут ли неполярные молекулы растворителя прочно удерживаться на поверхности раздела в присутствии избытка молекул ПАВ в растворе, способных значительно сильнее понижать свободную поверхностную энергию. Если же молекулы ПАВ будут адсорбироваться преимущественно и вытеснять молекулы углеводорода, то они смогут взаимодействовать между собой примерно так же, как и на границе раздела вода—воздух. Сольватация же только по внешним концам адсорбированных молекул ПАВ (например, по их метильным группам) вряд ли может нарушить взаимодействие цепей по всей их длине, в особенности если между полярными группами действуют связи, например водородные. В случае же адсорбционного слоя, находящегося по температурным условиям в расширенном состоянии, или в случае ПАВ, строение молекул которых вообще не допускает плотней упаковки углеводородных цепей, проникновение в слой соль-ватирующих молекул углеводорода энергетически может оказаться выгодным. Вероятно, сольватация понижает температуру перехода слоя в расширенное состояние. [c.99]


    Идентификация веществ не требует анализа спектров и может производиться на основании сопоставления спектров испытуемого вещества и вещества заведомо известного строения, причем условия приготовления образцов для съемки должны быть одинаковыми. Полное совпадение спектров свидетельствует об идентичности веществ. Однако следует иметь в виду, что оптические изомеры имеют одинаковые спектры, вместе с тем одно и то же вещество, способное существовать в разных кристаллических модификациях (полиморфизм), может давать разные спектры. В последнем случае для проверки следует сопоставить спектры растворов веществ или растворить каждое из веществ в одном и том же растворителе, выпарить растворы досуха и сравнить спектры твердых остатков. [c.782]

    В заключение хочется отдельно отметить, что закономерности, связывающие строение, реакционную способность и сольватационные свойства, являются достаточно общими как для модельных растворов порфиринов и металлопорфиринов, так и для биологических порфиринсодержащих систем. Поэтому, на наш взгляд, изложенные в главе результаты могут быть полезны при решении практических задач, связанных с выбором растворителей, (как среды для проведения конкретных реакций). К таким задачам относятся изучение токсического воздействия ароматических растворителей на живые организмы и исследование влияния природы сольватного окружения и структурных факторов на биоактивность металлопорфиринов при изучении поведения порфириновых систем в различных областях химии, биохимии и медицины. [c.323]

    Влияние состава и строения углеводородов Са—Се и простых эфиров на полноту осаждения асфальтенов иллюстрируется данными табл. 22. В качестве объекта был взят остаточный битум из мексиканской нефти (т. размягч. 57° С по методу кольца и шара пенетрация при 25° С равна 46) [4]. Обработка этого остаточного битума при комнатной температуре равными объемами разных растворителей дала данные, приведенные в табл. 22. Как в ряду парафиновых углеводородов, так и в ряду простых эфиров, примененных в качестве осадителей асфальтенов, отчетливо проявляется влияние двух факторов — состава и строения этих веществ — на растворяющую способность их в отношении асфальтенов чем выше молекулярный вес углеводородной части молекулы и чем больше степень разветвления углеродного скелета, тем выше растворяющая способность их в отношении асфальтенов, или, что то же самое, тем меньше количество осаждаемых ими асфальтенов из раствора. Циклогексан и его метил-и этилзамещенные полностью растворяют первичные асфальтены (асфальтены в осадок не выпадали). [c.72]

    Электронно-микроскопический анализ. Этот метод дает представление о строении кристаллических областей в асфальтенах и дает наглядную картину об их надмолекулярной организации. Исследования выполняются в просвечивающих и сканирующих (растровых)- электронных микроскопах [329, 330]. Просвечивающие электронные микроскопы позволяют одновременно получать как электронно-микроскопический снимок, так и электронограмму в области больших и малых углов. Разрешающая способность их составляет 15—2 нм, а для сканирующих микроскопов 3—5 нм. Пучок электронов вызывает значительный разогрев и даже плавление образцов, поэтому просвечивающая электронная микроскопия применяется для объектов, имеющих незначительную толщину,— несколько десятков нанометров. Для этого образцы специальным образом готовят получают либо тонкие пленки, либо с помощью ультрамикротомов готовят срезы толщиной 10—20 нм. Из косвенных методов для исследования структуры асфальтенов получил распространение метод реплик. Для исследования используют мелкодисперсные порошки асфальтенов [325] или растворы в бензоле [319]. В первом случае асфальтены помещают на угольную (аморфную) подложку на медной сетке. С целью определения фоновых микропримесей проводят контрольные съемки пустой подложки. Во втором случае бензольные 0,1 % растворы асфальтенов диспергируют на поверхность полированного стекла с частотой излучателя 35 кГц. Далее стекло.с пленкой асфальтенов помещают в вакуумный пост и растворитель откачивают в течение 20 мин. Для контроля сходимости результатов с поверхности пленки асфальтенов получают реплику двумя способами. Одноступенчатая реплика образовывается напылением угольной пленки, а двухступенчатая — чистого алюминия толщиной не менее 0,2 мм. Затем асфальтеновую пленку растворяют в бензоле и отдельную угольную реплику оттеняют платиной. Во втором случае на обратную сторону отдельной алюминиевой фольги напыляют платиноугольную реплику толщиной 20—30 нм, а алюминиевую фольгу затем растворяют в азотной кислоте [331]. [c.158]

    Меркаптаны — сероорганические соединения, содержащие группу — 8Н. Меркаптаны имеют весьма неприятный запах. Даже в очень малых количествах они придают сильный и стойкий запах бензинам. Большая часть нефтяных меркаптанов сохраняется без изменения лишь при температуре <120°С. При более высоких температурах они начинают разлагаться и при 350+400°С полностью разлагаются независимо от химического строения. Поэтому меркаптаны содержатся в основном в прямогонных бензинах. Они хорошо растворимы во всех органических растворителях, а низкомолекулярные также растворяются и в воде. Меркаптаны при обычных температурах способны реагировать с металлами, образуя меркаптиды по схеме  [c.73]

    П. П. Веймарн и В. Оствальд предложили рассматривать свойства дисперсных систем только с позиции их степени дисперсности, не учитывая гетерогенности. Более общие представления о свойствах коллоидных растворов были развиты Н. П. Песковым, который подразделял коллоиды на два класса к первым он отнес коллоиды, которые самопроизвольно диспергируют в растворителе, образуя коллоидные растворы. Если вызвать коагуляцию такой системы, то в коагуляте окажется много растворителя. После удаления электролита (коагулята) коагулянт, как правило, сохраняет способность вновь диспергировать в растворителе. Второй класс коллоидов, по Н. П. Пескову, — это системы, у которых коагуляция необратима, коагулят (осадок), как правило, не содержит дисперсной среды. При этом только вторая группа коллоидных растворов представляет собой типичные коллоиды, инертные по отношению к дисперсионной среде. Как это ни парадоксально, но вещества, получившие впервые в истории науки название коллоиды (гуммиарабик, белки, крахмал), оказались не настоящими коллоидами. Водные растворы этих веществ в отличие от типичных коллоидов представляют собой гомогенные термодинамически равновесные системы, устойчивые и обратимые, т. е. представляют собой истинные растворы макромолекул высокомолекулярных соединений (ВМС). Различие двух типов коллоидов связано в значительной мере с гибкостью и асимметричным строением макромолекул. Последние взаимодействуют с растворителем (дисперсионной средой) подобно низкомолеку- [c.382]

    Набухание полимеров — избирательное явление. Они способны набухать далеко не во всех жидкостях, а лишь в тех, которые близки им по химическому строению. Так, углеводородные полимеры набухают и растворяются в жидких углеводородах — бензине, бензоле и других, тогда как полимеры, имеющие полярные группы, набухают в полярных растворителях — в воде, ацетоне, спирте. [c.213]

    Химия возбужденных частиц может значительно отличаться от химии частиц, находящихся в основном состоянии. Как мы уже указывали в гл. 1, эти различия могут происходить как в результате избытка энергии, присущего возбужденным частицам, так и за счет частичной перестройки их электронных оболочек. Оба этих фактора отчетливо проявляются в процессах внутри- и межмолекулярного переноса энергии, которые обсуждались в последних двух главах. Очевидной предпосылкой для переноса энергии является ее избыток, а ограничения, накладываемые на состояния, между которыми происходит перенос энергии, зависят от строения электронных оболочек молекул в различных состояниях. В настоящей главе мы рассмотрим процессы, включающие возбужденные частицы, которые приводят к химической реакции (т. е. в которой реагенты и продукты различаются не по возбужденным состояниям, а по химической природе). Эти химические процессы могут быть как внутри-, так и межмолекулярными, подобно физическим процессам переноса энергии. Первый класс реакций включает внутримолекулярное восстановление, присоединение и различные типы изомеризации к межмолекулярным реакциям возбужденных частиц относятся реакции присоединения невозбужденных молекул абсорбированного вещества или (в случае растворов) растворителя. Фотохимические реакции могут быть наилучшим способом синтеза множества важных, интересных или полезных соединений некоторые примеры приведены в разд. 8.10. Мы опишем здесь ряд принципов, лежащих в основе реакционной способности возбужденных частиц, и представим небольшую подборку реакций, иллюстрирующих наиболее важные типы известных процессов. [c.148]

    Вместе с тем подобная инвариантность поведения ПАВ в разреженных адсорбционных слоях, независимо от природы молекул ПАВ и характера их взаимодействия с подстилающим раствором, позволяет утверждать, что именно зависимость между двухмерным давлением и адсорбцией, выражаемая уравнением состояния адсорбционного слоя я(Г), может рассматриваться как его основная характеристика, не зависящая от состояния молекул ПАВ в объеме раствора. Напротив, величина с1Г/(1с, которая характеризует способность вещества к адсорбции, существенно зависит от строения молекул ПАВ и природы растворителя в пределах одного гомологического ряда она быстро растет при переходе к последующему гомологу. Такое резкое отличие в способности ПАВ к адсорбции при тождественности их поведения в самом адсорбционном слое показывает, что возрастание величины ёГ/с1с в гомологическом ряду следует связывать с различиями в поведении рассматриваемых гомологов в объеме раствора, а не в адсорбционном слое. Это означает, что для разреженных [c.69]

    Строение углеводородного радикала, связанного с полярной группой, определенным образом влияет на способность растворителя переводить парафины в раствор. Так, наличие ароматического кольца в молекуле растворителя, при том же числе углеродных атомов повышает растворяющую способность, а нафтенового кольца — понижает по сравнению с алифатическими растворителями. [c.100]

    Выход деасфальтизата уменьшается, так как с приближением температуры к критической начинается переход в асфальт не только смол и асфальтенов, но и высокомолекулярных аренов полициклического строения. При достижении критической температуры растворителя все углеводороды выделяются из раствора. Уменьшение температуры повышает растворяющую способность [c.151]

    Избирательное растворение компонентов масляных фракций в полярных растворителях, протекающее в системе, где постоянно присутствуют две жидкие фазы разного состава, зависит от структурных особенностей молекул растворителя. Строение молекул растворителя определяет его растворяющую способность и избирательность по отношению к углеводородам и неутлеводородаым компонентам масляных фракций, т. е. те два основные свойства, которые учитываются при выборе растворителя для очистки нефтяного сырья. Под растворяющей способностью понимают абсолютную растворимость компонентов масляных фракций в определенном количестве растворителя избирательность характеризует способность растворителя растворять вещества только определенной структуры, что позволяет отделять одни компоненты от дру- [c.51]

    Сложные структуры в процессе кристаллизации поликарбонатов на основе бисфенола А были получены из раствора различными методами [5]. При этом обнаружены ленты, фибриллы, глобулы и сферолиты. Существует мнение, что возникновение фибрилл следует рассматривать как промежуточную стадию образования сфероли тов, видимых в обычном микроскопе. Позднее была показана возможность образования сферолитов при медленном испарении растворителя из раствора поликарбоната на основе бисфенола А [6]. В этой же работе впервые подробно рассмотрены условия и возможность кристаллизации поликарбонатов, полученных поликонденсацией бисфенолов различного строения с фосгеном. Исходные бисфенолы являются производными ди(4-окси-фенил) метана и различаются заместителями у центрального углеродного атома или в ароматическом ядре При этом можно выделить, в зависимости от способно сти к кристаллизации, три группы полимеров. Первая группа поликарбонатов способна образовывать лишь структуры с ближним порядком (аморфное состояние), для второй группы характерно газокристаллическое со- [c.104]

    О загущающем действии вязкостных присадок можно судить также по характеристической вязкости их растворов. Характеристическая вязкость растворов этилен-пропиленового сополимера значительно выще, чем растворов полиалкилметакрилатов. Максимум характеристической вязкости растворов углеводородных полимеров соответствует температуре, которая ниже рабочей температуры масла в двигателе. Для таких полимеров большинство нефтяных масел являются хорошими растворителями, поэтому присадки обладают высоким загущающим действием при низких температурах, а при повышении температуры их загущающее действие снижается. Загущающая способность присадок зависит главным образом от природы полимера. Меньшую загущающую способность полиалкилметакрилатов по сравнению с полиизобутиленом при низких температурах можно объяснить различием в строении их макромолекул. У полиалки 1метакрилатов при охлаждении загущенного масла усиливается взаимодействие сложноэфирных полярных групп, возникают компактные, малосольватированные агрегаты, которые слабо повышают вязкость масла, но удерживаются в нем благодаря неполярным углеводородным участкам. [c.145]

    Многочисленные ионные реакции можно объяснить простыми ионными переходами (прототропия, хлоротропия) для строения растворов решающую роль имеет координационная способность полярной молекулы растворителя. Таким образом, пришли к еще менее наглядным соотношениям, которые обусловлены образованием нейтральных коллоидов, изополианионов и изополикатионов. [c.230]

    Н. Ф. Бакеева и др. показано, что даже в разбавленных растворах полимеров происходит ассоциация макромолекул. Более того, явления ассоциации наблюдаются в растворах неполярных полимеров в неполярных растворителях, в которых могут иметь место только слабые ван-дер-ваальсовы взаимодействия. Можно предположить, что высокая склонность к образованию надмолекулярных структур является общим свойством полимеров, обусловленным длинноцепным строением макромолекул, способных кооперативно взаимодействовать друг с другом. Тенденция к ассоциации макромолекул особенно отчетливо обнаруживается в растворах регулярных полимеров. Так, например, хорошо известны-стереокомплексы полиметилметакрилата, образующиеся при взаимодействии макромолекул изо- и синдиотактического строения в органических растворителях Известно также образование комплексов в растворах в малополярных растворителях Ь- и Д-поли-у-метилглутаматов. В этих растворах полипептидные цепочки находятся в конформации правой и левой а-спирали В таких растворах также имеют место ван-дер-ваальсовы взаимодействия между звеньями макромолекул, входящих в комплекс, которые благодаря кооперативному характеру взаимодействия цепочек обусловливают устойчивость этих образований. [c.3]

    Интересное доказательство строения студней тип 1Б содержится в работах Лейна и Моравеца [5]. К полистиролу, сополимеризованному с метакриловой кислотой (2,3 мол. %), были привиты короткие капролактамовые цепочки, сообщающие полимеру способность локально кристаллизоваться. При пластификации диоктилфтала-том (20%) был получен материал с каучукоподобными свойствами, который при температуре выше 85 °С способен растягиваться в несколько раз, а при 205 °С плавиться и терять свои эластические свойства. В апротон-ных растворителях полимер растворяется (разрушаются кристаллиты капролактама). [c.46]

    Таким образом, использование этого дешевого реагента более или менее ограничено необходимостью применения апротонных растворителей, но в отсутствие краун-эфиров он частично растворим только в одном органическом растворителе — ДМСО. Для приготовления бледно-желтого 0,15 М раствора КОг может быть использован 0,3 М раствор дициклогексано-18-крауна-б в ДМСО [576]. В большинстве случаев использование бензола более целесообразно, чем ДМСО, потому что применение бензола устраняет потенциально существующие сложности при использовании ДМСО-аниона [577]. Комплекс КОг с ди-циклогексано-18-крауном-6 растворим в бензоле до концентрации 0,05 моль/л [577]. В присутствии 18-крауна-б могут быть получены растворы КОг в ДМФА, ДМЭ и даже эфире [578]. Стабильные растворы тетраэтиламмонийсупероксида в апротонных растворителях были приготовлены путем электрохимического генерирования [579, 587], а недавно показано, что супероксид может быть активирован межфазным катализатором аликватом 336 [1016]. Ряд исследователей использовали нуклеофильные свойства супероксида. Сравнение реакционной способности К1 и КОг (0,5 М) по отношению к 1-бромоктану (0,5 М в ДМСО) в присутствии 18-крауна-б (0,05 М) показало, что периоды полупревращения равны примерно 20 ч и 45 с соответственно [580]. Таким образом, супероксид является супернуклеофилом . Разные авторы сообщают о различном строении продуктов реакции алкилгалогенидов и алкилсульфонатов в зависимости от условий. [c.391]

    Теория растворов, как было показано выше, не позволяет предсказывать величины растваримости углеводородов и селективности раствО рителей с необходимой точностью, исходя из химической структуры и физико-химических свойств индивидуальных компонентов. Исследования в этой области находятся на стадии накопления и обобщения экспериментальных данных, установления закономерностей, связывающих селективность и растворяющую способность растворителей с их химическим. строением. [c.29]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]

    Органическая химия создала широчайшую базу понимания сложного материального субстрата жизни во всем величии многообразий его строения, главным образом из легких атомов первого, второго и третьего периодов Системы физическая химия проникла уже довольно глубоко в природу водных растворов — этой колыбели жизни и средоточия тайн алхимического алькагеста (всеобщего растворителя) она дала и некоторые подходы к пониманию реакционной и каталитической способности атомов и молекул. [c.353]

    Вместе с тем подобная инвариантность поведения ПАВ в разреженных адсорбционных слоях, независимо от природы молекул ПАВ и характера их взаимодействия с подстилающим раствором, позволяет утверждать, что именно зависимость между двухмерным давлением и адсорбцией, выражаемая уравнением состояния адсорбционного слоя л (Г), может рассматриваться как его основная характеристика, не зависящая от состояния молекул ПАВ в объеме раствора. Напротив, величина с117с1с, которая характеризует способность вещества к адсорбции, существенно зависит от строения молекул ПАВ и природы растворителя в пределах одного гомологического ряда величина с1Г/(1с, как отмечалось на с. 55, быстро растет при переходе к последующему гомологу. Такое резкое различие в способности ПАВ к адсорбции при тождественности их поведения в самом адсорбционном слое показывает, что возрастание величины АТ/Ас в гомологическом ряду следует связывать с различиями в поведении рассматриваемых гомологов в объеме раствора, а не в адсорбционном слое. Это означает, что (для разреженных адсорбционных слоев) величина до— определяется энергетическим состоянием молекул ПАВ в объеме раствора. Иными словами, в равенстве (II—16) стандартную часть химического потенциала молекул в адсорбционном слое можно [c.58]

    Поперечные химические связи. Даже небольшое количество по- перечных химических связей 1мсжду цепями препятствует их отделению друг от друга и переходу в раствор. Чтобы получить нерастворимый полимер, достаточно создать хотя бы одну связь между каждыми двумя цепями например, при вулканизации каучуков серой на 2 моль полимера требуется 1 моль серы. Это означает, что при среднем молекулярном весе каучука, равном 100 000, па 200 000 г каучука тоебуется 32 г серы илн па 1 кг каучука — примерно 0,16 г серы. Если каучук способен к реакциям сшивания при взаимодействии с кислородом, то присутствие 0.08 г кис,тлрода на I кг каучука достаточно для того, чтобы каучук перестал растворяться. Таким образом, ничтожные количества сшивающих добавок совершенно лишают полимеры способности растворяться в любых растворителях. Полимеры сетчатого строения не становятся рас- творимыми при нагревании до любых температур. [c.324]

    Наличие корреляции между различными термодинамическими свойствами предельно разбавленного раствора в области температур, близких к стандартной, подтверждает предположение о том, что специфические межмолекуля рные контакты (вызванные перераспределением электронной плотности в гидратном комплексе, в отличие от таковых в кристалле, существенно зависят от параметров состояния системы. При изучении этого вопроса необходимо учитывать не только строение и исходное структурное состояние изотопомеров растворителя и растворенного вещества, но и донорно-акцепторную способность их молекул. [c.134]

    Многие основные красители, в том числе и трифенилметановые, способны к агрегации, степень которой зависит от их концентрации [31, 203, 358, 415]. На агрегацию красителей оказывают существенное влияШ1е строение самого красителя, природа растворителя и температура [413, 414]. Наиболее сильно красители агрегируются в водных растворах с уменьшением диэлектрической проницаемости растворителя агрегация ослабевает, и для спиртовых растворов она уже мало характерна [31, 32, 203, 358, 413—415]. [c.46]

    Межмолекулярное взаимодействие (высокая энергия когезии) оказывает решающее влияние на все свойства полимеров, делая последние резко отличающимися от низкомолекулярных соединений. Энергия когезии влияет на физическую структуру, на физические, физико-химические и химические свойства (химическую реакционную способность) полимеров. Межмолекулярное взаимодействие определяет агрегатное состояние из-за высокой энергии когезии у полимеров отсутствует газообразное состояние, и при нагревании они разлагаются. Межмолекулярное взаимодействие влияет на фазовое состояние полимеров, способствуя упорядочению макромолекул, в том числе кристаллизации, с образованием надмолекулярных структур различного типа (см. 5.3). Из-за высокой энергии когезии полимеры труднее растворяются, чем низкомолекулярные соединения, и для них труднее подбирать растворители (см. 7.1). Межмолекулярное взаимодействие делает полимеры химически менее реакционноспособными по сравнению с низкомолекулярными соединениями аналогичного химического строения, так как химическому реагенту для проникновения в массу полимера необходимо преодолеть энерг ию когезии. Внутримоле- [c.128]


Смотреть страницы где упоминается термин Растворители строения на растворяющую способность: [c.81]    [c.249]    [c.193]    [c.325]    [c.96]    [c.34]    [c.424]    [c.514]    [c.324]    [c.76]    [c.28]    [c.112]    [c.257]   
Волокна из синтетических полимеров (1957) -- [ c.330 ]




ПОИСК





Смотрите так же термины и статьи:

Способность pH раствора



© 2024 chem21.info Реклама на сайте