Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды в бензине, полученном с помощью

    Высокооктановый бензин можно получить и термическим крекингом, но в этом случае нужны очень высокие температуры, а потери из-за образования газа и кокса слишком велики. Как и при термическом крекинге, тяжелый газойль, получаемый при каталитическом процессе, содержит значительно больше ароматических углеводородов и может быть использован в качестве сырья для термического крекинга [240, 241]. С помощью гидрирования можно превратить его в продукт с высоким содержанием нафтеновых углеводородов, вполне пригодный для повторного каталитического крекирования [242]. Такая обработка газойля обычно экономически невыгодна тяжелый газойль применяется, как правило, в качестве легкого дистиллятного топлива. [c.324]


    Базовые компоненты авиационных бензинов получают выделением необходимых высокооктановых фракций, обычно низкокинящих, пз нафтеновых и ароматических нефтей Калифорнии, Восточной Венесуэлы и Восточного побережья. Октановое число таких компонентов равно 70—76 (моторный метод, без этилирования). Получить базовые компоненты с еще большими октановыми числами можно с помощью каталитической очистки бензинов каталитического крекинга [291]. В результате такой очистки увеличивается содержание ароматических и уменьшается до ничтожной величины содержание ненасыщенных углеводородов. По- [c.432]

    При помощи гидрокрекинга может быть получен бытовой сжиженный газ. В двух вариантах — умеренном и жестком (цифры в скобках) — из лигроина, содержащего 11,5% ароматических углеводородов, получено 0,9 (8,7)% i- j, 14,8 (61,4)% Сз, 30,0 (14,4)% С4, 34,1 (0,0)% бензина. Выход углеводородов j—С4 растет с увеличением степени превращения и достигает максимума при 85—95% [c.77]

    Вторая фракция (85—120°) направляется на каталитическую ароматизацию (каталитический риформинг) для производства ароматических углеводородов. Каталитический риформинг осуществляется при помощи молибденового или платинового катализаторов. Если требуется вырабатывать бензол, то первую фракцию (компонент автомобильного бензина) отбирают в интервале н. к. — 65°, так как максимальный выход бензола каталитическим рифор-мингом получается переработкой фракций, выкипающих в пределах 65—85°. - [c.55]

    Побочный бензин пиролиза. Этот материал после гидрирования используется для производства ароматических углеводородов [8—10]. Вследствие весьма высокой избирательности сульфолана оказалось возможным получать бензол сорта для нитрования после частичного гидрирования со значительно сниженным расходом водорода. На ступени гидрирования диены (главным образом циклические), вызывающие весьма обильное образование отложений при высоких температурах, превращаются в моноолефины, которые не мешают процессу экстракции сульфоланом. Схема процесса во многом аналогична рассмотренной выше. До сего времени, однако, имеются лишь данные полузаводских испытаний. Ниже приводятся некоторые характеристики бензола, получаемого при помощи этого процесса  [c.247]

    В результате очистки избирательными растворителями, как и особо подобранными адсорбентами, коренным образом изменяется химический состав нефтепродуктов. Например, при помощи фенола, жидкого 80 или других растворителей можно из бензиновой фракции со значительным содержанием ароматических углеводородов получить бензин, совсем не содержащий этих углеводородов. Последние окажутся в экстракте. [c.324]


    Выделение ароматических углеводородов. Двуокись серы применяют также для выделения ароматических углеводородов из легких нефтепродуктов, богатых этими углеводородами. Так, из продуктов каталитического гидроформинга получают бензол, толуол и ксилол высокой чистоты. При помощи экстракции двуокисью серы можно получать и высокооктановый бензин образующийся при этом рафинат, богатый парафинами, можно использовать в качестве реактивного топлива. [c.638]

    Экстракция ароматических углеводородов из бензинов производится в жидкой фазе и при низких температурах. Из фракции бензина, применяющегося в качестве сырья, нельзя, при помощи одного растворителя экстракцией получить чистые ароматические-углеводороды. Получаются концентраты, содержащие 75—90% ароматических углеводородов, остальное парафиновые и нафтеновые углеводороды. Для того чтобы получить чистые ароматические углеводороды, эти концентраты подвергаются перегонке с испаряющим агентом. Одним из таких методов является экстракция жидким сернистым ангидридом или фенолом. [c.149]

    Это каталитический процесс, при помощи которого из фракции тяжелого бензина и керосина получается большое количество ароматических углеводородов и газообразных олефинов. Процесс пред- [c.268]

    Реакция изомеризации — диспропорционирования отличается рядом практически весьма важных особенностей, с которыми необходимо предварительно ознакомиться для рассмотрения возможности промышленного осуществления процесса. Весьма важно отметить, что в реакциях этого типа в качестве сырья вероятнее всего будут использованы псевдокумол и ж-ксилол. Действительно, при производстве п- и о-ксилола и этилбензола высокой чистоты в виде остатка ароматической риформинг-фракции Сз будет получаться фракция, содержащая около 75% ж-ксилола. Эта фракция может использоваться как сырье для получения других изомерных ксилолов реакцией изомеризации или для получения ароматических углеводородов диспропорционированием. Аналогично псевдокумол высокой чистоты можно получать из фракции С,, риформинг-бензина путем выделения головных и хвостовых компонентов. Изомеризацией этой фракции можно получать смесь трех изомерных триметилбензолов, из которой мезитилен можно выделить перегонкой. Можно также осуществить диспропорционирование псевдокумола для получения фракции Сю, из которой кристаллизацией можно выделить дурол. Выше уже указывалось, что при помощи известных в настоящее время методов мезитилен нельзя выделить из ароматической фракции Сд риформинг-бензина. Хотя, как указывалось в патентной литературе [70—72], дурол можно выделить из риформинг-бензинов С кристаллизацией, суммарные ресурсы дурола, которые удастся получить из этого источника, недостаточны для крупнопромышленного применения. Помимо увеличения потенциальных ресурсов дурола при помощи процесса диспропорционирования, получаемая таким процессом фракция Сц, будет содержать значительно больше дурола, чем фракция Сщ риформинг-бензина, что дает заметные преимущества на последующих ступенях очистки. [c.331]

    Г. С. Ландсберг и Б. А. Казанский с сотрудниками предложили комбинированный метод определения индивидуального углеводородного состава бензинов прямой гонки. Этот метод включает адсорбционное разделение метано-нафтеновых и ароматических углеводородов, дегидрогенизационный катализ циклогексановых углеводородов и последующее адсорбционное выделение полученных ароматических углеводородов. Выделенные группы углеводородов, а также метановые и циклопентановые углеводороды разгоняются на колонках четкой ректификации на узкие (1—2° С) фракции, которые затем исследуются с помощью спектра комбинационного рассеяния. Определение индивидуального углеводородного состава фракции бензина прямой гонки, выкипающей до 150° С, комбинированным методом представляет трудоемкую и сложную задачу. Кроме того, применяемый в этом случае оптический анализ не всегда дает возможность точного определения не только количественного, но и качественного содержания индивидуальных углеводородов. Однако этот метод нашел широкое применение и с его помощью получено немало ценных сведений об индивидуальном углеводородном составе бензинов прямой гонки [27, 78, 79]. [c.74]

    В настоящее время каталитический риформинг является основным процессом, при помощи которого повышают детонационную стойкость низкооктановых бензинов и лигроинов прямой гонки. Подвергая риформингу бензино-лигроиновые фракции, получают высокооктановые компоненты автомобильного бензина (октановое число без этиловой жидкости по моторному методу 70—80 и выше). Для получения ароматических углеводородов каталитическому риформингу подвергают узкие фракции. [c.35]


    В отогнанном бензине определяют йодное число, чтобы проконтролировать полноту удаления непредельных углеводородов. При правильно проведенной обработке полухлористо серой (охлаждение льдом, медленное прибавление реагента при умеренном содержании непредельных углеводородов в исходном бензппе) получают низкие йодные числа, свидетельствующие о небольшом остатке непредельнь х углеводородов (0,5—1,5%). Этот остаток следует при расчете учесть и удалить из бензина, например по-вторг ой обработкой бензина полухлористой серой или, что проще и быстрее, обработкой его двумя объемами 85%-ной серной ки-слоть[ (в течение 20 мин при охлаждении льдом). Полностью очищенный бензин готов для определения в нем ароматических углеводородов при помощи смеси серной кислоты и фосфорного ангидрида. При этом содержание ароматических углеводородов мон ет быть определено с точностью 0,3—0,5%. [c.206]

    С помощью катализаторов риформинга получают следующие продукты бензины с высоким октановым числом, ароматические углеводороды (С — g), сжиженный нефтяной газ, легкие индивидуальные углеводороды (Сз, С4) и водород. Поэтому катализаторы должны обладать полифункциональными свойствами расщепляющими (гидрокрекинг парафиновых углеводородов) изомеризующими (изомеризация парафиновых углеводородов) они должны также способствовать дегидрогенизации (нафтеновых углеводородов), дегидроциклизации (парафиновых углеводородов) и т. д. Катализатор включает два основных компонента матрицу — носитель (необходимую главным образом для расщепления) и гидрирующий металл, вызывающий реакции гидрирования, дегидрирования и дегидроизомеризации. В группу активных носителей входят окись алюминия, аморфный и кристаллический (цеолит) алюмосиликаты, и др. В качестве гидрирующих компонентов используют в основном металлы VI и VIH групп периодической системы элементов. [c.137]

    При первичной перегонке большинства нефтей, особенно сернистых парафинистых, получаются бензиновые фракции с низким октановым числом. При помощи каталитического риформинга низкооктановые бензиновые фракции превращают в высокооктановые компоненты автомобильного и даже авиационного бензина. Наряду с этим при риформинг особенно более узких бензиновых фракций, можно получать ароматические углеводороды (бензол, толуол и ксилолы), являющиеся важным сырьем для органического синтеза. В настоящее время получение ароматических углеводородов при помощи каталитического риформинга является наиболее экономичным. Поэтому каталитический риформинг стал сейчас одним из ведущих процессов нефтеперерабатывающей промышленности. С его помощью. решаются важные проблемы, имеющие большое значение для развития народного хозяйства получение ароматических углеводородов, улучшение качества автомобильных бензинов и даже возможность получения авиационных бензинов. [c.179]

    Алкилирование — реакция, при которой парафиновые или ароматические углеводороды, соединяясь с олефиновыми, образуют углеводороды более высокой молекулярной массы. Реакцию проводят как в присутствии катализатора, так и без него, при высоких температурах. Наряду с основным углеводородом образуются и другие, менее ценные. При помощи алкилирования получают изопарафины — высокооктановые компоненты автомобильных и авиационных бензинов, исходные продукты для производства синтетических каучуков, пластических масс, присадок к маслам, поверхностно-активных и других важных веществ. Наибольшее промышленное значение имеет каталитическое алкилирование изопарафинов олефинами с получением высокооктановых компонентов. [c.223]

    Большое значение имеет процесс алкилирования углеводородов. При помощи алкилирования изобутана бутиленом получают высокооктановый компонент бензинов — изооктан. Процесс протекает при О—10°С в присутствии крепкой серной кислоты в качестве катализатора. Над плавиковой кислотой изоалканы алки-лируются пропиленом, бутиленами, амиленами. Реакция алкилирования экзотермична. На 1 кг бутиленов выделяется 330 ккал тепла. Продолжительность реакции 5—30 мин. Для алкилирования ароматических колец алифатическими радикалами в качестве катализаторов применяют хлористый алюминий, серную и фосфорную кислоты, смеси фтористого бора и фтористого водорода и др. Реакция протекает при 30—45°С [c.16]

    Большие объемы ароматических углеводородов можно получать риформингом тяжелых бензпновых. фракций, образующихся нри крекинге средних дистиллятов. Весьма высоким содержанием ароматических углеводородов и цикланов отл ичаются бензины, получаемые гидрокрекингом средних дистиллятов нри помощи недавно разработанных процессов изокрекинг и юни-крекинг (процессы каталитического крекинга в присутствии водорода на стационарном катализаторе прямогонных дистиллятов, выкипающих в пределах 230—315° С, и термического или каталитического циркулирующего крекинг-газойля). Опубликованные данные по гидрокрекингу легкого цир- [c.246]

    Наша нефтяная промышленность стоит перед проблемой организации производства высокооктановых топлив, требующихся для развивающегося в стране моторного парка. Задача получения высокооктановых топлив может быть в значительной степени разрешена путем получения бензина из естественных нефтяных газон и газов термической переработки пефтяных продуктов (жидкофазный и парофазный крекинги и пиролиз). Получение бензина наиболее легко осуществимо из олефиновых газов. Процесс каталитической полимеризации олефинов позволяет получить высокооктановый бензин наиболее просто и дешево. Предельные газы путем термической или каталитической дегидрогенизации могут быть превращены в олефипы. Первым процессом, использованным для получения бензина из газообразных углеводородов, был процесс фирмы Пюр Ойл, основанный на пиролизе этих газов при повышенном давлении. Этот путь приводит к получению богатого ароматическими углеводородами бензина с высоким октановым числом. В настоящее время этот процесс имеет ограниченное применение, так как выхода, полученные с его помощью, невелики, а современные авиационные моторы требуют бензина с минимальным содержанием ароматики. В силу этого были предприняты поиски новых путей, причем исследовательская мысль развивалась по трем направлениям  [c.410]

    Сульфокислотный слой отделяли от деароматизирован-ного бензина, разбавляли трехкратным объемом воды и разлагали по Кижнеру [19]. Разбавленные сульфокислоты помещали в колбу Вюрца и перегоняли до 210°. Температуру мерили термометром, опущенным в жидкость. Ароматические углеводороды, выделенные в результате гидролиза сульфокислот, отделялись от водного слоя, промывались 10%-ным раствором соды, затем водой, сушились над хлористым кальцием и перегонялись над металлическим натрием. Имея большое количество выделенных ароматических углеводородов, при помощи многократной фракционировки, получили индивидуальные углеводороды. Константы полученных аро-.матических углеводородов сведены в табл. 2. [c.16]

    В настоящее время в нефтепереработке существует целый ряд технологических каталитических процессов, в ходе которых в той или иной степени осуществляются различные превращения углеводородов. В качестве примера можно привести каталитический риформинг один из важнейших современных нефтехимических процессов, с помощью которого осуществляется глубокое изменение углеводородного состава бензинов. Каталитический риформинг позволяет получать в широких масштабах ароматические углеводороды — бензол, толуол, ксилолы. Они образуются в этом процессе путем нескольких реакций дегидрирования шестичленных нафтенов, Сз-дегидроциклизации алканов в алкилциклопентаны с последующей дегидроизомеризацией и, наконец, Се-де-гидроциклизации алканов. Этот и другие подобные производственные процессы возникли в результате чисто технологических разработок. Однако сейчас пути технологических и фундаментальных исследований постепенно сближаются. Эта тенденция дает определенный положительный эффект. Так, исследование механизма и кинетических закономерностей каталитических реакций углеводородов, а также использование опыта, накопленного при эксплуатации нескольких поколений моно- и биметаллических катализаторов риформинга, позволило создать ряд высокоэффективных и экономичных разновидностей процесса риформинга. [c.257]

    Некоторый интерес представляет обработка циклических фракций каталитического крекинга водородом для того, чтобы получить продукты, менее стойкие к повторному каталитическому крекингу. Ароматические углеводороды большей частью превращаются в нафтеновые на этот факт указывает то, что процесс гидрирования легко принимает направление очистки. В табл. П-81 приводятся результаты каталитического крекинга газойля прямой перегонки, циклического дистиллята и гидрированных циклических фракций. Обычно несколько экономичнее гидрирование проводить при низком давлении (52,0 кПсм ) при 370° С, применяя в качестве катализаторов сульфиды металлов. При этом уменьшается содержание серы, некоторые конденсированные полициклические ароматизированные углеводороды превращаются в ароматику с простыми кольцами и нафтены, и в результате при крекинге получается бензин удовлетворительного качества [226]. При помощи гидрирования можно превратить низкосортные масляные дистилляты в очищенные фракции парафинистого характера, но, как известно, при этом значительно уменьшается выход фракции и уровень вязкости. В табл. П-9 приведены продукты, полученные гидрированием двух дистиллятов масляных фракций при 400° С. Гидрированные фракции имеют низкое содержание серы и улучшенный цвет [223—226, 200, 228—231]. [c.96]

    При спнтезе Фишера — Тропша образуются главным образом углеводороды с нормальной цепью. Это — его особое преимущество перед другими процессами прямого или непрямого превращения угля в моторное топливо. Так, способы прямой гидрогенизации угля, а также способ фирмы Экссон гидрогенизации угля в жидкой фазе путем переноса водорода от растворителя дают продукты с высоким содержанием ароматических углеводородов, являющиеся превосходным сырьем для получения бензина. Но для получения из них дизельного топлива необходимо еще проводить гидрогенизацию в жестких условиях. По способу фирмы Мобил уголь сначала газифицируют и затем из синтез-газа получают метанол, который с помощью специального цео-литного катализатора превращают в высококачественный бензин с большим содержанием ароматических углеводородов. Но дизельного топлива при этом не образуется. [c.197]

    Каталитический риформинг. С помощью этого процесса на современных НПЗ получают высокооктановые базовые компоненты автомобильных бензинов, а также индивидуальные ароматические углеводороды — бензол, толуол, ксилолы. Наилучшим сырьем при производстве высокооктановйх бензинов являются прямогонные бензиновые фракции 85—180°С и 105—180 С, для получения ароматических углеводородов используются узкие бензиновые фракции 62—85°С, 85—105°С, 105—140°С или их смеси. Разработка процесса риформинга ведется в НПО Лен-нефтехим . Исследовательская часть объединения выдает проектному подразделению следующие основные сведения о процессе характеристику сырья и катализата, выход и состав газообразных продуктов, рекомендуемые режимы - работы в цикле реакции (температура, давление, кратность циркуляции водородсодержащего газа, объемная скорость подачи сырья, температурный перепад по реакторам) и регенерации (количество кокса, температура регенерации), тип катализатора и срок его службы, продолжительность цикла реакции. [c.40]

    Примером разделения систем этого типа служит экстрагирование растворителями, впервые примененное в нефтеперерабатывающей промышленности для очистки керосина и смазочных масел от ароматических углеводородов. Этот метод можно использовать с успехом и в случае низкомолекулярных углеводородов, присутствующих в бензине, поскольку его применение почти не зависит от молекулярного веса и температуры кипения обрабатываемых смесей. Однако, чтобы в последнем случае образовались две жидкие фазы, надо работать при низкой температуре. Из применяемых растворителей следует назвать жидкую двуокись серы, нитробензол, хлорекс ( , б-ди-хлордиэтиловый эфир), фурфурол, фенол, а также жидкий пропан, В результате получают экстракт (раствор извлекаемых углеводородов в данном растворителе) и раффинат (углеводороды, нерастворимые в данном растворителе) в первом продукте отношение углерода к водороду высокое, во втором — низкое. Иначе говоря, с помощью этого метода можно экстрагировать ароматические углеводороды из их смесей с парафинами и нафтенами. Экстракция растворителями является сейчас распространенным техническим приемом. [c.38]

    Одними из первых практическое осуществление крекинга в присутствии А1С1., начали проводить Н, Д, Зелинский с сотрудниками. Были проведены [261 чрезвычайно интерес ные исследования по крекингу отечественных керосинов и нефтей в бензины с помощью А1С1. , Подвергая крекингу разли.чные масла (вазелиновое, машинное), керосины, парафины, церезины и т. п. из различных месторождений, Н. Д. Зелинский устан звил, что при 100—200 из них получается 40—70% бензина, состоящего из парафиновых углеводородов и нафтенов с примесью ароматических углеводородов. Ему удалось доказать, что при этом процессе получаются бензины, имеющие высокое октановое число. [c.333]

    Изомеризацию бензинов или лигроиновых фракций проводят при помощи процессов риформинга, которые заключаются в обработке под давлением 30—70 ат и 450—550", в результате чего происходит изомеризация парафинов, обогащение ароматическими углеводородами. При этом октановое число повышается с 40—50 до 75— 84. В настоящее время термический гидроформинг вытеснен каталитическим. В качестве катализаторов чаще всего применяют, как уже отмечено выше, сероустойчивые смеси AljOg с Сг.Ля и добавками Sb, W, V, Zr и других металлов в виде промотеров. Так как при риформинге получается много кокса, что снижает выход бензина, то процесс лучше вести под давлением водорода (гидроформинг) с применением активных дегидрирующих катализаторов, обладающих в то же время и высокой изомерпзующей способностью. Гид-роформ-бензины содержат большое количество ароматических углеводородов (до 40% и больше), главным образом бензол и толуол. Изомеризация парафинов при гидроформинге протекает в меньшей степени, вследствие чего этот процесс применяют для синтеза ароматических углеводородов. [c.582]

    Эти реакции послужили основой для создания промышленного процесса каталитического риформинга (платформинга), с помощью которого получают ароматические углеводороды ряда бензола, широко используемые как высокооктановые компоненты к бензинам и сьфьё для нефтехимического синтеза. При риформинге нефтяных фракций содержащиеся в них циклопентановые углеводороды изомеризуются в циклогексановые с последующим дегидр(фованием в ароматические углеводороды. Эта же реакция легко протекает в присутствии хлористого алкз.миния  [c.37]

    Не менее важны платиновые катализаторы в нефтеперерабатывающей промышлершости, С их помощью на установках каталитического риформинга получают высокооктановый бензин, ароматические углеводороды и технический водород из бензиновых и лигроиновых фракции нефти. Здесь платину обычно используют в виде мелкодисперсного порошка, нанесенного на окись алюминия, керамику, глину, уголь. В этой отрасли работают и другие катализаторы (алюминий, молибден), но у платиновых — неоспоримые преимущества большая активность н долговечность, высокая эффективность. [c.226]

    Один из путей улучшения бензинов основывается на превращении гидроароматических нафтенов бензина в ароматические углеводороды типа бензола. Бензол и его гомологи хорошо отвечают условиям бесшумной работы мотора. С этой целью в 1949 г. в США был разработан процесс платформинга. Свое наименование он получил вследствие применения в этом процессе платинового контакта. Преимуществом же нашего способа служит употребление вместо дорогих платиновых контактов дешевых контактов Ni—ZnO, которые к тому же содержат очень немного 1шкеля. При помощи как платиновых, так и никелевых контактов можно перерабатывать только бензины, не содержащие серу, однако если контакт в конце концов отравится, то регенерация никелевого контакта требует несравненно меньших затрат, чем в случае платинового контакта. Поэтому надо полагать, что новый способ сможет в корне изменить и удешевить технологию каталитического облагораживания бензинов. [c.448]

    Современные процессы переработки нефти характеризуются большим разнообразием и мобильностью. При помощи этих процессов можно производить высококачественные топлипа и масла, эффективно перерабатывать сернистые и высокосернистые нефти получать однотипные по химическому строению углеводороды или их смеси, используемые для нефтехимического синтеза, а также в качестве топлив для новых видов транспорта. К основным современным процессам переработки нефтп и нефтяных фракций, кроме прямой перегонки, относится гидроочистка, осу-шестиляемая с целью удаления нежелательных примесей каталитический риформинг бензино-лигроиновой фракции, предназначенный для получения компонента товарного бензина и низкомолекулярных ароматических углеводородов, и каталитический крекинг, в результате которого получают бензин и более высококипящие фракции, используемые после глубокого гидрирования в качестве компонентов для получения высокостабильных топлив типа керосина. [c.9]

    Промышленный крекимг заключается почти исключительно в превращении нефтяных масел, кипящих выше бензина, в низкокипящие жидкости типа бензина. Правда, во время мировой войны с помощью высокотемпературного пиролиза из нефтяных фракций получались также и ароматические углеводороды кроме того, в настоящее время имеются указания относительно развития пиролиза естественного газа с целью получения низших олефинов и ароматических углеводородов. Однако, если сравнить все другие виды пиролиза с ролью и значением промышленности большого крекинга, имеющего целью получение моторного топлива из высших нефтяных фракций, то оказывается, что с экономической точки зрения все они в данный момент не имеют почти никакого значения. [c.106]

    В последнее время применительно к сланцевым бонзипам был разработан каталитический метод очистки активированной отбеливающей глиной. В результате такой очистки удается получать стабильные, некорродирующие бензины. При этом потери продукта значительно меньше, чем при сернокислотно очистке, а детонационная стойкость бензинов выше. Для очистки сырой смолы, ее отдельных фракций, парафинового гача и, главным образом ди-зельного топлива разработаны также различные вариаиты селективной очист1 и. С помощью селективных растворителей удаляются фенолы, нейтральные кислородные соединения, сернистые и асфаль-то-слмолистые вещества, а также частично ароматические углеводороды. В зависимости от состава очищаемого продукта и целей очистки применяют следующие селективные растворители жидкий [c.427]

    Методика исследования. Использованная в настоящем исследовании методика заключается главным образом в разделении сырья при помощи процессов адсорбции (см. главу 8) и дистилляции (см. главу 3). Адсорбция (адсорбент силикагель) применялась для разделения исходного бензина на две части, одна из которых содержит все парафины и цикло-парафины, а другая — все ароматические углеводороды вместе с неуглеводородными компонентами. Небольшое количество неуглеводородных 1 омпонентов, главным образом сернистых соединений, выделялось затем из этой последней при помощи дополнительного адсорбционного разделения в результате этого получалась фракция чистых ароматических углеводородов. Затем парафиц-циклопарафиновая фракция и ароматическая фракция порознь подвергались аналитической разгонке на колоннах с высокой погоноразделяющей способностью и высоким флегмовым числом. Преимущества выщеописанного метода уже обсуждались в главе 19. [c.347]

    Изучение химического состава бензинов и частично лигроинов в настоящее время ведется в основном по спектрам комбинационного рассеяния света [4]. Сравнительно малая точность метода (порядка 5—10%) и трудности, связанные с анализом нафтено-парафиновых фракций, привели к попыткам анализа бензинов и лигроинов при помощи метода инфракрасной спектроскопии. С этой целью были получены спектры поглощения парафиновых, нафтено-парафиновых и ароматических углеводородов, температура кипения которых лежит в пределах выкипания бензино-лигроиновых фракций. Первоначально метод количественного анализа был разработан для нафтено-парафиновых фракций, кипящих до 140°. Применение его для изучения состава нафтено-парафиновой части бензинов из месторождения Виргиния (Восточный Тексас) с т. кип. -< 132° (состав ароматической части определялся по спектрам поглощения в ультрафиолетовой области) показало возможность анализа с точностью 1,4%, если число компонент во фракции не превышает восьми. Определение изомеров циклопентанов проведено с большей ошибкой, доходящей для транс-1, 2- и 1, 3-диметилцикло-пентанов до 5%, что является результатом отсутствия сильных полос поглощения у нафтено-парафиновых углеводородов, перекрытием полос поглощения нафтено-парафиновых и изопара-финовых углеводородов и, по-видимому, недостаточной чистотой эталонных циклопарафиновых веществ [42]. Анализ количественного состава многих искусственных смесей, составленных из парафинов нормального и изостроения, с т. кип. не выше 124°, и бензиновых фракций алкилата дает большую точность, порядка 1 % [43, 44]. [c.425]

    В дальнейшем была разработана методика количественного анализа смесей ароматических углеводородов с т. кип. не выше 200°. Инфракрасные спектры были получены на веществах, имевших чистоту более 99%, за исключением метилинданов и о-цимола. При помощи этого метода изучен состав ароматической части виргинскэго бензина в интервале температур кипения от 95 до 193° и трех фракций гидроформинга состава Се, [c.425]

    Рис. 11.17 иллюстрирует возможности идентификации компонентов смеси выхлопных газов автомобилей. Хроматограммы получены на насадочных колонках с различными НЖФ и с применением ПИД. Поскольку достаточно хорошо известно, что городской воздух загрязнен в значительной степени углеводородами бензина, для их идентификации можно построить зависимости типа 1 Уа1 - 1еУш1 и по ним идентифицировать нормальные и изопарафины С4 - Сд и ароматические углеводороды С - С9, что и было сделано в этой работе. Чтобы идентифицировать присутствующие в городском воздухе галоидуглеводороды, в работе [23] было использовано хроматографирование пробы на одной колонке, но с разными детекторами (ПИД и ЭЗД), последний из которых селективен и чувствителен к галогенсодержащим ЛОС. Техника идентификации с помощью селективных детекторов подробно разбирается в гл. УШ. [c.77]

    Другим приемом идентификации с помощью ФИД является использование отношения сигналов ФИД/ПИД и ФИД с другими детекторами. Эта техника была впервые реализована Дрисколом с сотр. [40] для идентификации ароматических углеводородов, парафинов и олефинов в природном газе, используемом в качестве сырья для нефтехимии. Этот способ групповой идентификации ароматических и алифатических углеводородов оказался полезным при исследовании продуктов газификации каменного угля [41] и расшифровке состава бензинов [42]. Результаты идентификации, основанные на измерении отношения сигналов ФИД/ПИД для 21 соединения, были получены после хроматографирования ЛОС на капиллярной колонке со скваланом длиной 100 м. [c.406]

    По своему составу бензины крекинга — жидкофазного и парофазного — отличаются от бензинов прямой гонки высоким содержанием непредельных и отчасти ароматических углеводородов эта особенность их состава не мон<ет, очевидно, не отразиться на характере тех химических процессов, которые имеют место при кислотной очистке крекинг-бензинов. Задача очистки — получить стабильный бензин стандартных качеств — в данном случае, вообще говоря, чрезвычайно осложняется. Очевидно, и здесь эту задачу надо понимать как удаление из бензина наиболее изменчивых его компонентов, с присутствием которых связаны образование и выделение смол, изменение цвета бензина и вообще понижение его стабильности. К таковым компонентам крекинг-бензинов в первую очередь должны быть отнесены присутствующие в них так называемые диеновые углеводороды, т. е. углеводороды с двумя двойными связями типа бутадиена и ему подобные, особенно легко осмоляющиеся возможно, что сюда же следует отнести некоторые наименее устойчивые непредельные углеводороды с одной двойной связью. Очевидно, однако, что очистка крекинг-бензинов ни в коем случае не должна быть направлена к полному удалению из них ненредельных углеводородов, так как такая очистка сопровождалась бы слишком большими потерями не только в количественном, но и в качественном отношении вследствие снижения антидетонационных свойств бензина. Таким образом, при очистке крекинг-бензинов приходится иметь дело с задачей удаления из них легко подвергающихся осмолению, наименее устойчивых углеводородов при условии возможно меньших потерь более устойчивых систем предельного и непредельного характера. Надлежащее решение этой сложной задачи при помощи сернокислотной очистки нредставляет значительные трудности, которые лишь отчасти разрешены обширной практикой крекинговых заводов. [c.576]

    Крекинг-процесс осуществляется при атмосферном или повышенном (до 70 атм) давлении в присутствии катализаторов или без них. Крекинг-процесс без применения катализаторов получил название термического, а в присутствии катализаторов— каталитического. С помощью катализаторов удается направить крекинг-процесс в сторону образования меньшего количества непредельных углеводородов, чем при термическом крекинге. Кроме того, увеличивается содержание в крекинг-бенвиве ароматических углеводородов, что повышает качество бензина как карбюраторного топлива. [c.202]

    Блунделл и др. [61] получали фракции парафиновых, олефи-повых и ароматических углеводородов на адсорбционной колонке с силикагелем, используя флуоресцирующий индикатор и обнаружение зон в ультрафиолетовом свете, а затем анализировали эти фракции с помощью газовой хроматографии на колонке длиной б м с 10% силикона на хромосорбе при программировании температуры от 20 до 150° С. К сожалению, первая стадия не давала достаточно четкого разделения групп углеводородов. Эта методика была использована для оценки антидетонационных свойств бензинов на основании значения его состава, о чем специально будет идти речь в главе VIH. [c.170]

    Крекинг нефти. Ввиду того что современные транспортные средства требуют все ббльших количеств бензина, в настоящее время широко применяются методы, при помощи которых более тяжелые нефтяные фракции (керосин, соляровые масла) или парафиновый мазут превращаются в бензин. Главными способами термического крекинга являются крекинг в газо-жидкостной и газовой фазах. Первый осуществляется при сравнительно низкой температуре 390—500° и достаточно высоком давлении для того, чтобы часть вещества оставалась в жидкой фазе (12—50 ат) при этом стремятся получить по возможности больший выход бензина и наименьший выход газа. По способу крекинга в газовой фазе работают при 500—600° и атмосферном или несколько повышенном давлении. Химические превращения углеводородов при такой переработке были описаны в предыдущей главе. Бензин крекинга отличается от бензина, полученного прямой перегонкой, содержанием алкенов, причем бензин, полученный способом крекинга в газовой фазе, обладает также повышенным содержанием ароматических углеводородов и поэтому имеет ббльшее октановое число. Крекинг в газовой фазе применяется главным образом в том случае, если интересуют газы крекинга, которые при этом способе образуются в ббльших количествах. Бензин крекинга рафинируется специальным образом для удаления более реакционноспособных диепов, меркаптанов и фенолов, образующихся в результате ряда различных побочных реакций. [c.400]

    В 1948 г. складывавшийся метод был дополнен применением хроматографии на силикагеле, что позволило выделять ароматические углеводороды в неизмененном виде, и применением нового катализатора для дегидрогенизации циклогексанов. На этом катализаторе последние дегидрировались селективно, без разрыва кольца у одновременно присутствующих в смеси циклопентановых углеводородов. С этими добавлениями метод окончательно оформился и получил название комбинированного метода анализа бензинов прямой гонки. Он основывается на хроматографическом отделении ароматических углеводородов от нафтеновых и парафиновых, последующем аналитическом дегидрировании дезароматизированной части, затем хроматографировании катализата и, наконец, точной ректификации. При помощи высокоэффективной ректификационно11 колонки отбираются узкие фракции первичной и вторичной ароматики и парафино-циклонентановой части бензина. Получаемые таким образом отдельные [c.39]

    Результаты изучения процесса окисления каучука,катализируемого органическими солями металлов, были использованы в Англии фирмой Скот Бадер Ко для изготовления нового производного каучука, получившего торговое название раббон. Предварительно размягченный каучук обрабатывается в резиносмесителе прн 80° С в присутствии нафте-ната кобальта и древесных опилок (целлюлоза при этом служит в качестве сокатализатора). После очистки смесь с помощью растворителей, селективно растворяющих продукты окисления раббон А, В С может быть разделена на три фракции. Раббон А растворим в алифатических бензин, уайт-спирит) и ароматических углеводородах и не растворим в спиртах и ацетоне. Раббон В растворим в тех же самых углеводородах и в ацетоне, но не растворим в спирте. Раббон С растворим в ароматических углеводородах, ацетоне и спирте, но не растворим в алифатических углеводородах. [c.333]


Смотреть страницы где упоминается термин Ароматические углеводороды в бензине, полученном с помощью: [c.359]    [c.277]    [c.22]    [c.321]    [c.30]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте