Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь как мера делокализации

    Металлы характеризуются специфическим блеском, высокой электропроводностью, теплопроводностью и пластичностью. В то же время пары металлов — такие же диэлектрики, как и инертные газы, и отличаются от последних сравнительно малой энергией ионизации. Большая электропроводность и теплопроводность металлов, их термоэлектронная эмиссия обусловливается наличием свободных электронов. Считают, что при сближении атомов в процессе формирования металла происходит делокализация валентных электронов. Металл рассматривается как система правильно расположенных в пространстве положительных ионов и перемещающихся среди них делокализованных электронов. Эти электроны компенсируют силы отталкивания между ионами и связывают их в единую кристаллическую решетку. Металлы отличаются большой прочностью связи, мерой которой служит теплота сублимации, т. е. энергия, которую необходимо затратить для разделения твердого металла на изолированные атомы. Значение этой энергии достигает 836 кДж/моль. [c.167]


    Строение бензола плоский шестиугольник с равными длинами связей (1,397 А), валентные углы равны 120°, Все шесть атомов углерода равноценны и находятся в состоянии р2-гибридизации. Шесть я-электронов образуют делокализованное я-электрон-ное облако. Мерой делокализации и, следовательно, ароматического характера может служить величина кольцевого тока. Перекрывание р-орбиталей атомов углерода приводит к образованию замкнутой молекулярной орбитали. [c.217]

    Наблюдаемые переходы видимого цвета эпоксидных композиций свидетельствуют о происходящем при облучении углублении цвета, т. е. поглощении более длинных волн (от 400 до 500 нм и выше) по мере нарастания радиационного эффекта. Изменение цвета при этом носит гиперхромный характер, т. е. усиливается одновременно с возрастанием поглощенной дозы излучения. При этом энергия возбуждения молекул должна уменьшаться, что, согласно квантово-механической теории, связано с делокализацией л-электронов в химической структуре молекул. С ростом делокализации происходит дальнейшее снижение энергии возбуждения молекул, в результате чего цвет становится еще глубже и интенсивнее. Для объяснения этого явления можно использовать некоторые выводы химической теории цветности [19]. Из них следует, что почти все окрашенные вещества содержат в качестве обязательного элемента структуры более или менее длинные цепи сопряжения простых и двойных связей (полиеновые структуры), возникновение которых обусловлено возбуждением чрезвычайно подвижных электронов. Начало изменения окраски эпоксидных композиций в соответствии с этой теорией связано с появлением цепей сопряжения достаточной длины. Дальнейшее увеличение их длины в молекулах эпоксидных композиций под облучением ведет к углублению цвета. [c.47]

    Возможность осуществления взаимодействия через две 0-связи (дифенилметан) и особенно через три (дибензил) представлялась с точки зрения классической химии совершенно невероятной. Не следует думать, однако, что полученные данные находятся в каком-либо противоречии с давно установленными и проверенными на опыте представлениями. По-видимому, дело заключается в том, что существующие представ.чения следует дополнить некоторой количественной мерой сопряжения. В случае взаимодействия через одну сг-связь частоты делокализации настолько велики (10 — [c.155]

    В дальнейшем молекулы бутадиена присоединяются в основном к четвертому атому углерода, так как в бутадиене облако я-электронов концентрируется преимущественно в области кратных связей. Однако вследствие делокализации неспаренного электрона и близкого значения энергий активации роста цепей в положениях 1,4- и 1,2- (28,8 и 31,5 кДж/моль соответственно) в некоторой мере образуются и звенья 1,2- [18]. [c.141]


    Более совершенную модель металлической связи позволяет создать теория молекулярных орбиталей. Согласно этой модели, весь кристалл металла следует рассматривать как одну гигантскую молекулу. Все атомные орбитали определенного типа взаимодействуют в кристалле, образуя совокупность делокализованных орбиталей, простирающихся по всему кристаллу. Число валентных атомных орбиталей в отдельном кристалле достигает 10 . Чтобы представить себе, как происходит взаимодействие столь большого числа валентных орбиталей, рассмотрим гипотетическую последовательность линейных молекул лития, Ыг, з, в которых основную роль играют валентные 25-орбитали. На рис. 14-24 показано образование молекулярных орбиталей для трех указанных молекул. Отметим, что вследствие делокализации молекулярных орбиталей ни одному из электронов не приходится располагаться на разрыхляющей орбитали. По мере удлинения цепочки атомов в молекуле расстояние между орбитальными энергетическими уровнями все более сокращается. В предельном случае для кристалла, состоящего из 10 атомов, комбинация атомных орбита-лей приводит к возникновению широкой полосы, или, как говорят, зоны, тесно расположенных энергетических уровней. [c.625]

    Для простоты мы и в вопросах, относящихся к методу МО, ограничиваемся описанием электронных связей только между двумя рассматриваемыми атомами, т. е. на основе двухцентровых орбит, как это было раньше общепринято в химии и как это принято в методе ВС — валентных схем (локализованных электронных пар). Однако для многоатомных молекул это отнюдь не является единственно возможным. В частных случаях могут рассматриваться орбиты, охватывающие три или большее число атомов. В других же случаях метод МО, по крайней мере в некоторых формах его применения, описывая состояние данного электрона в поле действия всех атомных ядер и электронов, содержащихся в молекуле, использует представления о делокализации электрона, как это принято в аналогичных теориях атома. [c.68]

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]

    В аллил-катионе подвижные я-электроны двойной связи Сз=Са могут в значительной мере компенсировать положительный заряд на атоме Сь способствовать его рассредоточению делокализации) по всей системе, уменьшить энергию частицы и тем самым увеличить вероятность образования аллил-катиона по сравнению с метил ьным. [c.90]

    В результате смешения критической точки цикла к связи С1 — СЗ эллиптичности двух других связей трехчленного цикла значительно уменьшаются. Их свойства близки к свойствам обычной связи СС с порядком, равным 1. Таким образом, смешение критической точки цикла от центра цикла к мостиковой связи сильно уменьшает степень делокализации заряда в поверхности трехчленного цикла, и лишь мостиковая связь трехчленного цикла принимает в значительной мере участие в сопряжении в семичленном цикле. [c.67]

    При атаке бромом, сравнительно нереакционноспособным (разд. 2.25), переходное состояние достигается в процессе реакции позднее связь углерод — водород в значительной мере разорвана и органическая группа уже приобрела в значительной степени характер свободного радикала. Делокализация свободного электрона — важный фактор при определении устойчивости переходного состояния (хотя на реакционную способность может сильно влиять и полярный фактор). [c.376]

    Хотя справедливость правил Хьюза — Ингольда впервые была продемонстрирована на примере реакций нуклеофильного алифатического замещения и -элиминирования, они должны быть применимы и для любых других гетеролитических реакций в растворах, в которых образование активированного комплекса связано с возникновением, делокализацией или нейтрализацией заряда. В последующих разделах будет обсуждаться влияние растворителей на другие органические реакции в свете классификации последних по Косоверу [15, 468]. Это обсуждение поможет читателю оценить эффекты растворителей в более полной мере, а при необходимости и подобрать растворитель для проводимой им реакции. [c.217]


    Если вместо одной двойной связи в молекуле содержится ряд сопряженных двойных связей, можно считать, что я-элект-роны этих двойных связей делокализованы по всей системе сопряженных связей. По мере увеличения длины такой системы возрастает и степень ее стабилизации в результате резонансной делокализации, причем для максимальной резонансной стабилизации система сопряженных двойных связей должна быть плоской. В возбужденном состоянии такая стабилизация даже больше, чем в основном, так что при увеличении длины системы двойных связей разница энергий двух состояний становится меньше. Таким образом, в сопряженной системе электронное возбуждение (я— -я -иереход) достигается значительно легче, чем в случае изолированной двойной связи. При удлинении сопряженной системы двойных связей требуемая для возбуждения энергия становится меньше и в конце концов может быть [c.20]

    Мезомерные граничные структуры ни в коей мере не представляют собой электронно-возбужденных состояний сопряженной системы. Они являются лишь вспомогательными средствами для формального описания делокализации я-электронов в основном состоянии такой системы. Чем меньше оцениваемая энергия граничной структуры, тем больше ее процентный вклад в основное мезомерное состояние. Наибольший вклад дает самая бедная энергией граничная структура. Поскольку такая структура имеет наибольший вес и лучше всего отображает основное состояние, то ее называют основной структурой. Тем не менее она все же богаче энергией, чем основное мезомерное состояние. Разность между этими энергиями называют энергией мезомерии. Выше приведенные заключения иллюстрирует рис. 1.2.25. Гипотетическая молекула с альтернирующими Е,, длинами связей, изображенная на рис. 1.2.21, соответствует кекулевской структуре бензола. [c.73]

    Иногда бензоидные ароматические соединения представляют с использованием гексагона с включенной в него окружностью, тем самым подчеркивая делокализацию связей и близкое значение их длин (абсолютно одинаковые по длине связи присутствуют только в незамещенном бензоле). Однако такое представление ни в коей мере не помогает при описании реакций ароматических соединений и поэтому не используется в этой книге. [c.16]

    Ароматичность—совокупность свойств, отражающих структурные и энергетические особенности, а также реакционную способность плоских циклических систем, содержащих (4п + 2) л-электронов, которые вовлечены в замкнутую цепь сопряжения. Ароматичность характеризует повышенную термодинамическую устойчивость ароматического соединения, обусловленную делокализацией л-электронов. Мерой ароматичности является энергия резонанса (или энергия делокализации), которую необходимо дополнительно затратить на разрушение циклической системы делокализованных сопряженных двойных связей. Следовательно. энергия резонанса характеризует вклад циклического сопряжения в теплоту образования соединения. См. также Бензол. [c.36]

    Проблема измерения ароматической стабилизации на основании модели простоя несопряженной т-электронной системы состоит в том, что энергия делокализации не является уникальным свойством циклических систем. Например, на основе простого метода МО Хюккеля можно показать, что энергия делокализации бутадиена составляет 0,472/3 другие ациклические сопряженные системы также имеют некоторую энергию делокализации. Пытаясь найти меру ароматичности, необходимо оценивать дополнительный вклад в общую энергию делокализации вследствие того, что соединение имеет циклическую структуру. В связи с этим было высказано предположение [36], что при расчете энергии резонанса следует использовать энергии связей неароматических систем, а не несопряженных систем в качестве эталонных структур. Было показано, что энергия т-связи линейных полиенов прямо пропорциональна длине цепи. Каждая дополнительная простая или двойная связь С—С в полиене вносит в общую т-энергию такой же вклад, как и в случае бутадиена или гексатриена. Это, конечно, не означает, что отсутствует сопряжение, но показывает, что сопряжение также влияет на энергию связи в нециклических системах. Следовательно, можно рассчитать эталонные энергии т-связей для любой циклической или ациклической т-системы, складывая величины, соответствующие определенным типам связей. Этот аддитивный принцип применим к т-связям с гетероатомами в такой же степени, как и к связям углерод — углерод. [c.36]

    Можно предполагать, что основной вклад в энергию взаимодействия между адсорбентом и адсорбатом вносят места непосредственного контакта поверхностных атомов с адсорбированными частицами. Это относится прежде всего к хемосорбции, в процессе которой, как правило, образуются действительно химические связи, и в значительной мере к физической адсорбции. Возможным исключением является полимолекулярная адсорбция, которую можно рассматривать как результат проявления слабых дальнодействующих силовых полей. Еще одно возможное исключение — адсорбция ароматических молекул, сопровождаемая делокализацией электронов. [c.432]

    Однако ни один из этих фактов не служит однозначным доказательством существования сверхсопряжения в основном состоянии изолированной молекулы. Действительно, а) укорочение связей объясняется, по крайней мере частично, изменением гибридизации б) не следует ожидать, что а-связи между двумя р -гибридизованными атомами углерода или между и 8р гибридизованными атомами С будут обладать такой же энергией, как а-связи между двумя хр -гибридизованными атомами в) 5р -гибридизованный атом более электроотрицателен, чем 5/ -гибридизованный атом, вследствие чего а-связи будут приобретать небольшие дипольные моменты, даже если нет никакой л-делокализации [311] г) при поглощении света мы имеем дело с разностью энергий в основном и возбужденном состояниях, так что никаких определенных выводов нельзя сделать о каком-либо из этих состояний в отдельности д) реакционная способность лишь частично определяется свойствами изолированной невозмущенной молекулы, но весьма существенно зависит от легкости, с которой молекула может быть выведена из основного стационарного состояния, причем многие характеристики переходного состояния совершенно от" 1 ны от характеристик изолированных реагентов. [c.385]

    Органические П. принципиально отличаются от неорганических П. Все твердые неорганические П. образуют координац. соединения, в то время как органические XI.-молекулярные кристаллы. Они так же, как и неорганические П., обладают положит, температурным коэф. проводимости, но механизм проводимости иной. Для органических П. характерны многоцентровые связи, характеризующиеся делокализацией я-электронов и проявлением коллективного электронного взаимод. по системе сопряжения. Делокализация электронов сопровождается выигрышем энергии, наз. энергией сопряжения это приводит, в частности, к уменьшению энергетич. щели Д между основным и низшим возбужденным состояниями я-электронов по мере увеличения числа сопряженных связей в молекуле. В полимерах с системой сопряжения в осн. цепи макромолекулы А м.б. порядка энергии теплового движения кТ. Виеш. воздействие (гл. обр. освещение) вызывает возбуждение в системе я-электронов, к-рое может мигрировать по кристаллу и при распаде (на дефектах структуры, примесных атомах, а также при взаимод. друг с другом) дает своб. носители заряда. Проводимость в органических П. обеспечивается гл. обр. перескоками электронов между состояниями с разной энергией, причем дефицит энергии покрывается за счет энергии тепловых колебаний атомов (прыжковая проводимость). С этим связана характерная температурная зависимость органических П. при умеренно низких т-рах, когда доминируют прыжки между соседними состояниями, между уд. электрич. сопротивлением р и т-рой Т наблюдается зависимосгь In р Т К С понижением i-ры длина прыжка увеличивается и 1пр Т"(я < 1). [c.58]

    Установление типа структурных элементов бензола и его алифатических производных, участвующих во взаимодействии с поверхностью, затруднено, поскольку многие колебания этих молекул совсем не локализованы на отдельных связях и углах, а являются колебаниями, в которых в значительной мере принимают участие все связи С—С, внутренние углы СССиуглыССН. Эта делокализация колебаний, по-видимому, связана с делокализацией и я-связей по всему кольцу. Для получения наибольшей информации о роли я-электронной системы в специфическом взаимодействии с поверхностными гидроксильными группами исследовались бензол [76—78] и его производные с алифатическими заместителями [79], а также с заместителями, имеющими атомы со свободной парой электронов, т. е. с такими заместителями, которые изменяют свойства я-электронной системы бензольного ядра и сами способны к сильному специфическому взаимодействию [80, 81]. [c.249]

    ЦИИ находятся в квантовом состоянии, промежуточном между р- и -состояниями (стр. 17). Предполагают, что тенденция простой связи к делокализации возрастает по мере того, как состояние этих электронов приближается к состоянию р и удаляется от состояния 5. Это предположение приводит к заключению, что сг-связи тетраэдрического атома углерода, электроны которых находятся в состоянии зр -гибридизации, более способны к делокализации, чем 0-связи дигональных или тригональных атомов углерода, электроны которых находятся в состоянии соответственно 5р - или хр -гибриди-зации (стр. 18, 19). [c.46]

    Для взаимодействия электронных оболочек радикала и молекулы в контактной паре существенны, по-видимому, оба возможных механизма спиновая поляризация ван-дер-ваальсовой связи и делокализация спиновой плотности через донорно-акцепторные взаимодействия в паре. По крайней мере в настоящее время их следует рассматривать на равных основаниях. Детальных расчетов этих взаимодействий нет, хотя первые попытки осуществления таких расчетов были сделаны [106]. Одним из результатов этих попыток является вывод о том, что СТВ с тяжелыми ядрами ( С, 19р, З1р JJ. р молекул в контактных парах должно значительно превосходить СТВ с протонами. Этот вывод согласуется с экспериментальными результатами о динамической поляризации этих ядер и о парамагнитных сдвигах в контактных комплексах (см. [c.327]

    Простейшие неорганические полимеры — гомоцепные — состоят из цепей, слоев или трехмерных каркасов, построенных из одинаковых атомов. Кроме углерода еще многие другие легкие элементы могут участвовать в построении гомоцепных макромолекул. В образовании ковалентных связей между атомами таких элементов участвуют главным образом гибридные орбиты, например 5р -орбиты, электронная плотность которых сосредоточивается в пространстве между связываемыми атомами. Но ковалентные связи в неорганических полимерах могут осуществляться и за счет чистых атомных или сложных гибридных орбит, например р или 5рУ2.ор5лг Такие связи возникают иногда с разных сторон атома, что приводит к предпочтительной направленности связи и делокализации электронов. Этим определяются некоторые характерные особенности неорганических полимеров у них появляются небольшая тепло- и электропроводность, окраска и склонность к существованию в виде аллотропических модификаций, т. е. соединений одинакового элементарного состава, но с разной организацией молекул. По мере увеличения атомного веса элементов эти свойства усиливаются, и конечным итогом является переход от типичных неорганических полимеров к металлам. Причина потери полимерных свойств связана, следовательно, с ослаблением ковалентных связей, с изменением их характера, с постепенным переходом от ковалентной связи к металлической по мере увеличения атомных весов элементов в группах периодической системы. [c.99]

    Поскольку в подобном я — я-взаимодействии МО участвуют четыре электрона, то будет иметься вторая МО, которая менее выгодна, чем первая, и именно эта первая МО в основном ответственна за ту энергию делокализации, которую может иметь молекула. На деле энергия делокализации сопряженного диена с открытой цепью намного меньше энергии >кесткой циклической молекулы и составляет не более 3—4 ккал/моль (12,5-10 — 16,7-10 Дж/моль). Эта величина мала в сравнении с высокими значениями энергии для циклических соединений, для которых энергия делокализации составляет 5—7 ккал/моль (20,9-10 — 29,3-10 Дж/моль) на каждый п-электрон. Меньшим значениям энергий соответствуют меньшие отклонения от нормальных длин простой и двойной связей. В бутадиене-1,3 связи — Сг и Сз — С4 не длиннее, чем нормальная двойная связь, хотя длина связи С2 — Сз 1,48 А (14,8-10 нм), т. е. меньше, чем длина простой связи 1,54 А (15,4-10 нм), так что эта связь имеет до некоторой степени характер двойной связи. Мера одинарного, двойного или тройного характера той или иной связи часто выражается при помощи числа, называемого порядком связи, который коррелируется с длиной связи. Порядки связей можно рассчитать, используя либо метод валентных схем, либо метод МО, но строгое определение смысла этого термина меняется в зависимости от метода, хотя числовые значения, получаемые в каждом из них, хорошо совпадают. Порядок связи для тройной связи в этине составляет 3,0, для двойной связи в этене — 2,0, а для простой связи в этане — 1,0. Это значение для связи С = С в бензоле является промежуточным между длинами одинарной и двойной связей и равно 1,66. [c.61]

    В приведенных выше определениях изоморфизма отражены два основных фактора ограничения пределов изоморфных замещений. Однако полученные результаты замещения большой группы катионов на высококремнистых цеолитах показывают, что для этих минералов характерно изоморфное замещение катионов, значительно различающихся как своими размерами [Ма Сз (РЬ, Ва , 5г , РЬ )], так и физико-химическими свойствами [Ма гСс (Си , ]. При этом при изовалентном изоморфизме имеет место полная смесимость обменных катионов в твердой фазе, а при гетерювалентном изоморфизме, происходящем с изменением числа атомов, смесимость наблюдается в широком диапазоне концентраций. Такой характер изоморфизма, характерный только для замещений, реализуемых по ионообменному механизму, обусловлен, вероятно, следующими причинами. Во-первых, связь обменных катионов с алюмокремнекислородным каркасом цеолита чисто ионная и к тому же в значительной мере ослабленная за счет трансляции заряда через водородные связи и делокализации заряда на атомах кислорода. При этом, как было показано выше, прочность связи зависит от размера и заряда катиона и местоположения его в структуре цеолита. Другая важная причина, обусловливающая особенности изоморфизма в цеолитах, — сложный состав этих минералов и большой размер их общей структурной единицы, т.е. элементарной ячейки. [c.103]

    Физически предположение (4.1) связано с тем, что в окрестности ядра состояние молекулярного электрона г) должно быть подобным состоянию атомного электрона ф . Совершенно аналогично вблизи другого ядра V состояние молекул рного электрона имеет сходство с состоянием фг и т. д. Такое предположение соответствует действительности, когда атомы молекулы находятся на больших расстояниях друг от друга. Опыт показывает, что при соединении атомов в молекулу изменение состояния электрона в молекуле по сравнению с исходным состоянием можно считать не селишком большим. Поэтому приближенно МО в окрестности данного атома весьма близка по своим свойствам к соответствующей АО, что и отражает соотношение (4.1). Коэффициенты разложения (4.1) являющиеся мерой вклада отдельных АО в МО, позволяют определить специфику свойств молекулярного электрона (в первую очередь особенности его делокализации по всей молекуле) по сравнению с атомными электронами (последние локализованы на своих ядрах). Метод определения МО в виде (4.1) называется методом МО ЛКАО. [c.52]

    Увеличение отталкивания связывающих пар, возникающее из-за такого повышения электронной плотности в области связи, ведет к увеличению угла в молекуле фторида по сравнению с молекулой водородного соединения, где такая связь невозможна. Тенден ция более тяжелых галогенов к делокализации своих несвязываю щих пар электронов с образованием частичной двойной связи б> дет в значительной мере понижена, так как их валентные уровни пространственно значительно больше и поэтому не настолько заполнены электронами. [c.227]

    Предполагалась возможность образования простых связей сера—сера и азот — азот, а также кратных связей сера—азот. В действительности, как показали последующие расчеты по методу молекулярных орбиталей, ни одна из них не реализуется. Необычная геометрическая структура привела некоторых авторов к предположению, что в эюй молекуле определяющую роль могут играть вышележащие орбитали / -типа. Впоследствии расчеты убедительно показали, что / -орбитали атома серы играют незначительную роль в формировании электронной структуры Равенство расстояний сера—азот в цикле 84 напоминало химию ароматических углеводородов, й поэтому совсем не удивительно, что высказано предположение об электронной структуре с делокализацией электронов в цикле. Но это также оказалось неверным Теперь читатель, надеемся, начинает представлять себе трудности, существующие в этой области. Наша классическая теория валентности, по-видимому, оказывается неадекватной, когда применяется к бинарным системам, образованным азотом и серой (по крайней мере для тетранитрида тетрасеры). Каким именно является истинное описание электронной структуры 84 N4  [c.169]

    Теплота гидрирования диена почти вдвое больше теплоты гидрирования циклогексена, и, следовательно, теплота гидрирования трех двойных связей в структуре Кекуле, при условии их локализации, должна была бы иметь порядок величины —28,6 X 3 = —85,8 ккал/моль. Однако в действительности, как показывает опыт, при гидрировании бензола выделяется только 49,8 ккал/моль. Поэтому можно считать, что взаимодействие л-электронов в молекуле бензола делает ее более стабильной на 36 ккал/моль по сравнению с гипотетической моделью, для которой такого взаимодействия нет (стабилизация, возникающая в результате подобного рода взаимодействия в сопря 1 енных диенах, составляет всего лишь около 6 ккал/моль). Энергию, на величину которой молекула бензола стабилизована по сравнению с молекулой гипотетического циклогексатриена, имеющего локализованные двойные связи, правильно было бы называть энергией стабилизации. Тем не менее, ее часто называют энергией делокализацни, хотя вопрос о том, в какой мере стабилизация действительно обусловлена делокализацией, далеко не ясен. Широко используется также термин энергия резонанса, однако этот термин совершенно неудовлетворителен с семантической точки зрения, поскольку слово резонанс ассоциируется обычно с быстрыми переходами, осцилляциями между различными структурами (например, в случае бензола — между структурами Кекуле), которых в действительности нет. [c.32]

    Относит, устойчивость К. зависит от их строения и изменяется в очень широких пределах, увеличиваясь по мере увеличения степени делокализации заряда. Эффективно де-локализуют заряд ненасыщ, фрагменты (двойная связь, ароматич. кольцо и т.п.), заместители с неподеленными парами электронов (OR, NR2 и др.) или содержащие атом переходного металла (ферроценил и др.). [c.318]

    Наиб, существенной особенностью сопряженных систем с делокализованными связями является их повьпп. термодинамич. устойчивость. В ароматич. системах теплоты образования значительно вьппе, чем значения, найденные с учетом аддитивности локальных параметров, а связи характеризуются полной выравненностью длин (см. Ароматичность). Количеств, мера повыш. термодинамич. устойчивости таких систем-энергия резонанса (сопряжения, делокализации). В сопряженных системах правилам аддитивности не подчиняются также параметры ИК спектров, величины дипольных моментов и поляризуемости, диамагнитной восприимчивости и др. в этих случаях при расчете разл. характеристик вводят поправочные члены экзальтации и т. п. [c.388]

    Представляет интерес рассмотреть влияние заместителей в фенильном радикале на эти константы. Как известно, скорость реакции роста цепи определяется в основном активностью полимерного радикала, а не мономера. Обобществление я-электронов в системе, т. е. появление сопряжения винильной связи с какими-либо группами, в большей степени снижает реакционную способность радикала, чем мономера. В молекулах метакриламидов наличие заместителей в бензольном кольце, связанном с азотом ЫН-группы, обладающим свободной парой электронов, смещает электронное облако в сторону сопряженной карбонильной группы, чем в определенной мере повышает электронную плотность на двойной связи С = С. Этим самым повышается реакционная способность радикала, обусловливающая скорость гомополимеризации. Таким образом, за счет наличия групп, отталкивающих электроны в направлении СО-группы, повышается реакционная способность полимерных радикалов и возрастает скорость полимеризации. При введении в бензольное кольцо электронофильных заместителей свободная пара электронов оттягивается в сторону фенильного радикала тем самым облегчается взаимодействие неспаренных электронов с карбонильной группой. За счет этого увеличивается степень делокализации электронов в радикале, что, в свою очередь, снижает реакционную способность такого радикала, а следовательно, и скорость гомополимеризации (см. табл. 21). Так как в реакции электровосстановления принимает участие двойная связь С = С, то полярографические характеристики также зависят от величины электронной плотности на этой группе. [c.188]

    Прочность же карбоний-иона растет, по мере того как нон становится все более разветвленным при положительно заряженном центре. Это явление обусловлено гиперконъюгацией, или делокализацией электронов в ордина])ных связях р-углеродных атомов, как показано на рис. 11,2. [c.236]

    В противоположность 2Я-азпринам, химия которых довольно хорошо изучена [4], 1Я-азирины до сих пор не охарактеризованы и известны только как нестабильные интермедиаты. Их неустойчивость обусловлена не только большим ангулярным напряжением, присущим каждому ненасыщенному трехчленному циклу, но также перекрыванием свободной пары электронов атома азота с двойной углерод-углеродной связью, что приводит к дестабилизующей антиароматической 4я-электронной системе. О величине этой дестабилизации можно судить по результатам расчетов неэмпирическими методами [5], которые показывают, что 2Я-ази-рин на 169 кДж/моль устойчивее 1Я-изомера. Это различие мо->кет быть уменьшено, если вывести атом азота из плоскости цикла [все атомы трехчленного цикла, естественно, лежат в одной плоскости, так что речь должна идти о выведении атома азота из плоскости R = R2 в структуре (1)], и последующие теоретические исследования [6] показали, что величина АН (теплота гидрирования), принятая как мера антиароматической дестабилизации, уменьшается с 263—277 кДж/моль до 162—> 199 кДж/моль при переходе от планарной к непланарной струк туре 1Я-азирина. Азиринил-катион (3) характеризуется существен ной я-делокализацией [7] и его можно получить как стабильную [c.687]

    В гетероморфны.х рт. — йхг системах мы обнаруживаем интересное и фундаментальное отличие. Нижняя кривая на рисунке относится к шестичленному кольцу, а центральная, как и прежде, — к восьмичленному. Очевидно, что восьмичлеиные кольца оказываются более стабильными при расчете на один электрон, по крайней мере для плоских систем. В пределе, при больших разницах в электроотрицательности ( хг-орбиты будут больше и рыхлее по сравнению с ри-орбитами) к-электронный эффект невелик, так что единственным важным структурным фактором является остов, образованный а-связями, что приводит к большей стабильности шестичленного цикла. Когда разность электроотрицательностей понижается вследствие присоединения более электроотрицательных лигандов к атому, предоставляющему йи-орбиту, вклад тг-электронной делокализации в общую энергию возрастает, что приводит к относительно большей стабильности восьмичленного кольца. [c.45]


Смотреть страницы где упоминается термин Связь как мера делокализации: [c.235]    [c.18]    [c.177]    [c.146]    [c.331]    [c.154]    [c.33]    [c.153]    [c.84]    [c.608]    [c.331]    [c.188]    [c.59]    [c.247]   
Гетероциклические соединения и полимеры на их основе (1970) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Делокализация

Делокализация связей



© 2025 chem21.info Реклама на сайте