Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород содержание в двуокиси углерода

    Обозначим начальные концентрации компонентов сухого газа в долях единицы (принимая за единицу количество сухого начального газа при нормальных условиях) Оо — окись углерода Ьо — водород, Со — двуокись углерода, do — азот, инертные газы, а равновесные концентрации этих газов соответственно Ьт, Ст, dm — и выразим содержание водяных паров в газе как объемное отношение п (пар газ). Тогда в момент равновесия реакции (1) концентрации компонентов во влажном газе (в долях единицы) можно выразить следующим образом  [c.131]


    Сжигая полимер в смеси с разными количествами углеводородного масла, можно в широких пределах варьировать содержание четырехфтористого углерода в продуктах сгорания. Теплота сгорания политетрафторэтилена, полученная в результате такой реакции, слагается из тепла, которое затрачивается на образование четырехфтористого углерода и двуокиси углерода, и тепла, расходуемого на превращение четырехфтористого углерода во фтористый водород и двуокись углерода. Измерение общей теплоты сгорания полимера как функции состава продуктов горения позволяет таким образом определить совместно теплоты образования полимера и четырехфтористого углерода. [c.341]

    Чтобы добиться максимального превращения метана в водород и двуокись углерода и, следовательно, свести к минимуму содержание в полученном газе примесей окиси углерода и метана,, каждую из этих стадий необходимо проводить при определенном режиме. Оказалось, что для каждой стадии существуют свой наиболее эффективный катализатор конверсии, определенные температурные интервалы и соотношения между газом и водяным паром, обеспечивающие наибольшую степень конверсии сырья и максимальную скорость реакции. [c.124]

    Решение. В тех случаях, когда смесь содержит более двух компонентов, для расчета требуется знать содержание в смеси остальных компонентов. Из условия задачи следует, что водород и двуокись углерода составляют ЬЬЪ от объема всей смеси. Используя его и опираясь на правило смешения, вычисляем плотность водорода и двуокиси углерода в смеси, рассматривая всю смесь как двухкомпонентную систему, в которой одним компонентом является смесь водорода и СОа, а другим — азот. [c.10]

    Для удаления растворенного кислорода через раствор пропускают полярографически инертный газ (водород, азот, двуокись углерода). Поскольку растворимость газа пропорциональна его парциальному давлению (закон Генри), по мере уменьшения содержания кислорода в газовой фазе концентрация в растворе также падает. Для полного удаления кислорода достаточно пропускать инертный газ 8—12 мин. Следует отметить, что двуокись углерода можно применять, только если компоненты раствора не реагируют с ней. При тех же условиях можно использовать для удаления кислорода некоторые восстановители, например сульфит натрия или метол. [c.51]


    В Руре на всех заводах газ синтеза получался из кокса в стандартных генераторах синего водяного газа . На некоторых заводах этот процесс дополнялся другими процессами, как, например, термическим разложением газа коксовых печей. Для получения более высокого отношения Hg СО, требуемого для обычного синтеза из окиси углерода и водорода, часть водяного газа, смешанного с избытком водяного пара, подвергали конверсии на специальных установках, где в результате взаимодействия окиси углерода и воды получались водород и двуокись углерода. Конверсию проводили при 450—500° на катализаторе окись железа—окись хрома. На двух заводах в Руре газ с высоким содержанием водорода, полученный при термическом разложении газа коксовых печей, смешивали с водяным газом, и вследствие этого уменьшалось количество водяного газа, подлежавшего конверсии. [c.282]

    Конверсию проводят во взвешенном слое окиси железа, которая при высоких температурах окисляет природный газ, давая синтез-газ с высоким содержанием окиси углерода и водорода. Полученные газы направляют в верхнюю часть реактора, где находится частично восстановленная окись железа. Сюда же подают газообразный окислитель (кислород, двуокись углерода). Температура в нижней части реактора, куда подают природный газ, равна 870° С, а в верхней его части — 1090—1370° С. Отработанную окись железа выводят из нижней части реактора и регенерируют в присутствии газообразных продуктов горения, содержащих свободный кислород [c.111]

    В результате процесса конверсии ОКись углерода конвертируется в водород, вследствие чего содержание последнего повышается от 35—45 об. % на выходе печи риформинга до 70— 75 об. % на выходе конвертера. Двуокись углерода, присутствующая в сырьевом газе и дополнительно образующаяся во время конверсии, затем удаляется в скруббере с помощью растворов аминов или углекислого калия, и поток почти чистого водорода рециркулируется после конечной стадии метанизации (для удаления следов окислов углерода) и смешивается с сырьевым потоком лигроина на входе подогревателя. [c.107]

    В результате одновременного протекания всех трех указанных реакций может получаться равновесная смесь газов, содержащая пять компонентов, т. е. метан, водяной пар, окись углерода, двуокись углерода и водород (табл. 12) [19]. Приведенные данные показывают, что для наибольшей полноты превращения метана необходимы температуры 1200° К и выше. В этих условиях содержание двуокиси углерода в равновесной смеси незначительно и конверсия метана водяным паром сопровождается почти исключительно образованием окиси [c.30]

    Высокотемпературная паровая конверсия СО, превращающая окись углерода и пар в двуокись углерода и водород, увеличивает эффективность использования водорода и вследствие этого применяется на большинстве аммиачных установок. Низкотемпературная конверсия СО — относительно новый процесс, который требует применения чистого газа и пара, а также современной технологии производства катализаторов. В процессе происходит небольшое увеличение концентрации водорода, но главное его преимущество заключается в снижении содержания окиси углерода до такого уровня, который позволяет исключить применение дорогостоящего абсорбционного оборудования. Метанирование (получение метана в реакции СО и СОа с водородом) не является новым процессом, но его применение в производстве синтез-газа для аммиака стало возможным после разработки низкотемпературных катализаторов паровой конверсии СО. [c.117]

    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]


    Нефтезаводские газы образуются при термических и каталитиче ских процессах переработки продуктов перегонки нефти. Из них наиболее часто встречаются газы термического и каталитического крекинга, пиролиза и коксования тяжелых нефтепродуктов. Эти газы отличаются сравнительно высоким содержанием непредельных углеводородов этилена, пропилена и бутиленов, суммарное содержание которых достигает в отдельных случаях 40%. Искусственные газы, получаемые в результате термической переработки углей и сланцев, содержат водород, метан, окись углерода, непредельные углеводо-, роды (от этилена до бутиленов), а также двуокись углерода, кислород и азот. Эти газы, различные по калорийности, используются главным образом в качестве топлива. [c.15]

    Летучие вещества выделяются из сажи при ее нагревании без доступа воздуха. Состав и количественное содержание летучих в большой степени зависит от условий термического воздействия на сажу, т. е. температуры и длительности нагревания. Поэтому говорят не о содержании, а о выходе летучих и условно принимают температуру 800—820° С и длительность нагрева 15 мин. При этом режиме из сажи выделяются адсорбированные водород, кислород, азот, частично образовавшиеся окись и двуокись углерода, углеводороды (не сгоревшие и не разложившиеся до углерода) и влага. [c.238]

    Фтор, бром, хлористый и фтористый водород не вызывают коррозионного разрущения латуней в отсутствие влаги при обычной температуре. Двуокись серы при концентрации выше 0,9% и относительной влажности воздуха выше 70% приводит к образованию окиси меди. Латуни с повышенным содержанием цинка более устойчивы к сероводороду, чем чистая медь и красная латунь влага уменьшает скорость коррозии, а высокая температура ее повышает. Во влажном сероводороде при 100°С мунц-металл и адмиралтейская латунь корродируют со скоростью 29—37 г/м -24 ч. При обычной температуре двуокись углерода только в присутствии влаги вызывает незначительную коррозию с образованием основных карбонатов меди, в то время как при высоких температурах образуется окись.цинка. Азот не вызывает коррозию, а аммиак действует как в жидкой, так и в газовой фазе в присутствии влаги, способствуя возникновению коррозионной усталости. [c.121]

    Сущность одной из них состоит в том, что конвертированный газ направляется на разделение методом короткоцикловой адсорбции на молекулярных ситах [37]. В результате получают отдельно окись и двуокись углерода и технический водород. Применение такой схемы предпочтительно, когда наряду с водородом требуется получить окись углерода. К недостаткам ее следует отнести сложность управления, снижение выхода водорода, а также то, что водород получают при давлении, близком к атмосферному (так как десорбция осуществляется сбросом давления). Перечисленные недостатки отсутствуют при получении водорода по схеме III, которая заключается в поглощении углекислоты окисью кальция на стадии конверсии углеродов. Поглощение углекислоты позволяет сдвинуть равновесие реакций (5) и (8) вправо, что дает возможность получить конвертированный газ с малым содержанием окислов углерода и направить его на стадию метанирования, минуя другие стадии. Другим преимуществом этой схемы является более высокая равновесная степень превращения метана, достигаемая вследствие вывода углекислоты из зоны реакции [38]. [c.249]

    Парциальное давление паров воды в синтетическом хлористом водороде зависит от влажности исходных хлора и водорода, а также от содержания в них кислорода. Свободный кислород соединяется с водородом, образуя пары воды. Двуокись углерода также может частично восстанавливаться до окиси углерода с образованием некоторого количества паров воды. [c.484]

    Анализ многокомпонентных газовых смесей, одновременно включающих кислород, азот, двуокись углерода, с одной стороны, и углеводородные газы - - с другой, можно провести либо совмещением химического метода анализа (для определения содержания двуокиси углерода и кислорода) с хроматографическим, используя при этом промышленные газоанализаторы (для определения содержания водорода, окиси углерода в малых количествах и углеводородных газов), либо путем разработки специальной схемы организации полного разделения газов в сорбционных колонках хроматографических газоанализаторов. [c.148]

    Эффект сепарации можно повысить, если в разделяемую смесь добавить инертный по отношению к смеси газ с более низкой молекулярной массой. Содержание инертного газа должно превышать 60% обшего объема смеси. В качестве инертного выбирают газ с как можно меньшей молекулярной массой (например, водород или гелий). Можно использовать также азот, метан, этан, окись углерода, двуокись углерода и воду. При использовании инертного газа процесс может происходить при давлении исходной смеси выше 0,133 МПа (практически до 50 МПа). В этом случае верхним пределом является давление сжижения при рабочей тем- [c.165]

    В продуктах окисления пропилена кислородом и воздухом на ванадиевых контактах содержатся альдегиды, кислоты, окись и двуокись углерода, водород, метан и вода. По данным Тихомировой [33], при окислении этилена содержание окиси углерода в газе [c.138]

    Рей [1] на колонке с активированным углем при температуре 20° С анализировал ацетилен на содержание водорода, метана и этилена. Паттон [2] на колонке с древесным углем при температуре 180° С разделил смесь водорода, кислорода, метана, двуокиси углерода. Бреннер [3] анализировал смесь водорода, азота, окиси углерода и метана па колонке, заполненной силикагелем, при комнатной температуре. Для разделения смеси, содержащей кислород, азот, окись азота, окись углерода, двуокись углерода и закись азота, оказался пригодным силикагель при низкой температуре 14]. Хорошие результаты по разделению смесей гелия, кислорода, азота, окиси углерода и метана были получены Яна-ком [5]. В качестве сорбента использовался искусственный цеолит. [c.199]

    Из продуктов сгорания улавливают водяные пары концентрированной серной кислотой и двуокись углерода 40%-ным раствором едкого кали и делают соответствующий расчет содержания углерода и водорода в сухом коксе. Минеральные составляющие кокса при сжигании переходят в золу. Количество золы определяют после полного сгорания навески кокса, количество азота и кислорода вычисляют как разность между 100% и суммой про-.центных содержаний углерода, водорода, серы и золы. Для непосредственного определения азота может быть применен метод Кьельдаля. [c.29]

    Навеску анализируемого соединения (0,3—0,5 мг) сжигали в платиновой лодочке при 950° С в потоке гелия с кислородом (3%). Продукты сжигания проходили через слои окиси меди и серебряной ваты. Затем газовый поток направляли в реактор, в котором при 500° С на слое меди восстанавливались окислы азота. Кроме того, в этом реакторе избыток кислорода удалялся в результате окисления меди. Поток гелия вместе с двуокисью углерода, азотом и водой поступал через небольшую колонку с силикагелем, на которой адсорбировалась вода, в первую ячейку катарометра. Площадь регистрируемого пика ири этом отвечала сумме двуокиси углерода и азота. Далее газовый поток проходил через короткий реактор, в котором абсорбировалась двуокись углерода, и поступал на вторую ячейку катарометра. Площадь регистрируемого пика в этом случае была пропорциональна количеству азота. При быстром нагревании ловушки с силикагелем до 200° С вода десорбировалась и регистрировалась первой ячейкой катарометра. Десорбцию воды осуществляли через 12 мин. после введения образца в аналитическую систему. Зависимость площадей соответствующих пиков от содержания анализируемых элементов линейна. Для получения калибровочных коэффициентов рекомендуется проводить 1—2 сжигания в день для стандартных соединений. За один день может быть проведено 32 анализа. Отклонения по углероду +0,3%, по азоту +0,4%, по водороду +0,1%. Отмечается, что точность по углероду приближается к точности классических методов, а для водорода точность в несколько раз выше [34]. [c.152]

    При определении общего содержания углерода и водорода прямым сжиганием необходимо принять меры для того, чтобы сжигание было полным, чтобы двуокись углерода не связывалась и не удерживалась золой, чтобы не образовалась окись углерода, чтобы вся двуокись углерода и вода поглотились абсорбентами, чтобы были удалены галогены, окислы серы и азота, а также другие соединения, помимо СОа, которые могли бы быть поглощены применяемыми поглотителями, чтобы влажность воздуха при входе и выходе из поглотительной системы была одинакова и, наконец, чтобы воздух, вводимый в систему, был свободен от углеродсодержащих веществ, двуокись углерода, водорода и воды. [c.850]

    Водород вначале получали из водяного газа, удаляя окись углерода путем сжижения, азот вырабатывали из жидкого воздуха. В 1915 г. Бош, применив каталитическую конверсию окиси углерода и водяного пара, получил водород и двуокись углерода. Требуемый для синтеза аммиака азот вводили в синтез-газ в виде воздушного таза. Очистка газа проводилась по общепринятому в настоящее время способу — отмывкой СОг водой под давлением 25 ат и поглощением СО аммиачным раствором м 1ра выино1 ислой меди иод да1влеиием 290 ат. На первой установке это давление являлось рабочим давлением в колонне синтеза. Остатки СОг отмывали раствором едкого натра. Данные о чистоте газа, поступавшего в цикл синтеза, не опубликованы. По небольшому содержанию аммиака в газе, выходящем из колонны синтеза, можно судить о низкой степени очистки газа. [c.551]

    Прн производстве ацетилена нз углеводородного сырья различными методами содержание его в реакционных газах колеблется от 8 до 30 объемн. %. В этих газах кроме ацетилена содержатся также водород, метан, двуокись углерода, этилен, окись углерода и в небольших количествах имеются ацетиленовые и другие ненасыщенные углеводороды. Поэтому очень важной представляется проблема выделения и концентрирования ацетилена. Процессы выделения и концентрирования пиролизного ацетилена достаточно полно исследованы в СССР (Ф. П. Ивановский, Е. Р. Шендерей, С. П. Сергеев, В. В. Днльман, И. Л. Лейтес, Г. Е. Брауде, С. Ф. Шахова, И. Г. Дрей-цер, Н. А. Кочергин и др.) и за границей (Заксе, Бартоломе, Хассель-ман, Холлеман, Фаузер и др.). [c.215]

    Д. Элей (D. D. Eley, Nottingham University) Недавно в Ноттингеме Люли провела изучение разложения муравьиной кислоты на водород и двуокись углерода на проволоках из сплавов палладий — золото, примененных ранее мною и д-ром Купером при исследовании конверсии параводорода. Было найдено, что при увеличении содержания золота выше 30% происходит возрастание энергии активации, хотя в этом случае еще имеется значительное число незаполненных уровней в d-зоне, в противоположность реакции конверсии параводорода, при которой низкая энергия активации, характерная для палладия, сохраняется до 60%-ного содержания золота, когда d-зона полностью блокируется. [c.785]

    Совершенно новым направлением применения рассматриваемога процесса является получение водородсодержащего газа из бензина-при низких температурах. Понижение температуры до 260° С, снижение давления до близкого к атмосферному и уменьшение степени газификации жидкого сырья приводят к тому, что процесс низкотемпературной конверсии бензина оказывается ориентированным, в основном, на получение водорода. Побочно получающая-ся двуокись углерода может быть легко удалена обычными способами. Повышение температуры процесса приводит к увеличению содержания окиси углерода в газе конверсии бензина. При пониженных температурах этим способом можно получить газ, практически не содержащий окиси углерода (см. табл. 25). [c.41]

    В промышленности уже в течение многих лет применяется окисление прямогонных нефтяных остатков, главным образом с целью изменения реологических свойств получаемых из них битумов. В процессе продувки остатков воздухом кислород взаимодействует с компонентами сырья при температуре 200—350 °С. При этом химический состав и соответственно молекулярная структура и свойства остатков изменяются. Соотношение углерод водород для асфальтенов снижается при окислении с 11 1 до 10,5 1. Для смол и масел это соотношение уменьшается, но в меньшей степени (с 8 1 до 7,7 1). Пары воды, двуокись углерода и низкомолекулярные продукты окисления (эфиры, кислоты и альдегиды) удаляются из реакционного объема вместе с продувочными газами. Целевым продуктом является окисленный битум, который существенно отличается от исходного, неокисленного сырья. При окислении изменяется его групповой состав уменьшается содержание масел и значительно возрастает количество асфальтенов, продуктов поликонденсации. Количество силикагелевых смол в некоторых случаях уменьшается, а в других несколько возрастает. [c.32]

    Перед использованием в процессе катализатор восстанавливается водородом при постепенном подъеме температуры до 300 °G с последующим выдерживанием при 8ТОЙ температуре в течение 6 ч. Параметры процесса гидрирования температура — 160—300 С давление — 2—3,5 МПа объемная скорость подачи сырья — 5 ч"1. Остаточное содержание непредельных. <0,1% (масс.). Ядами для катализатора являются окись и двуокись углерода, тяжелые металлы. [c.409]

    Насыщенный раствор разветвляется на три потока первый - холодный поток (около 10 ) - направляется на одну из верхних тарелок (холодный байпас) второй поток ( 45II) нагревается до 90-95°0 и направляется в средшсш часть регенератора третий поток дополнительно нагревается до 104-107°С и подается еще ниже. Парогазовая смесь ( / / 7 ) выходит из генератора при температуре около 80 с, давлении 0,17 кШа и поступает в конденсатор воздушного охлаадения. Полученная двуокись углерода имеет чистоту 98-99 содержание водорода в ней 1-2%. [c.221]

    Можно предполагать, что при высокой температуре (например, в условиях облагораживания нефтяных коксов при 1200—1500 °С) реакция окисления углерода кислородом воздуха, несмотря на возможные диффузионные торможения процесса, будет протекать настолько быстро, что весь кислород практически мгновенно вступит Б реакцию в нижних слоях кокса в топочной камере миогосек-циоино-иротивоточкого аппарата с образованием в качестве первичных продуктов СО и СО2. При благоприятных условиях (температура, время контакта, реакционная способиость кокса) первичная двуокись углерода, в свою очередь, может реагировать с углеродом с образованием вторичной окиси углерода около поверхности углерода или в газовом объеме. При наличии свободного кислорода (мгновенно не прореагировавшего) будет протекать реакция окисления, при которой часть СО превратится в СО2. Это хорошо видно при анализе работы многосекционно-иротивоточных анпаратов, используемых для облагораживания. В результате контакта на верхних ступенях многосекционно-противоточного аппарата нефтяного кокса с дымовыми газами, кокс нагревается до высоких температур (ЮОО—1200°С) и попадает в топочную камеру с небольшим содержанием водорода (менее 0,5%). В этих условиях в качестве первичных продуктов сгорания предварительно прокаленного кокса следует ожидать получение равных количеств СО и СО2. При этом из-за отсутствия в верхнем слое топочной камеры кислорода реакции догорания СО не происходит. Повышение температуры в топочной камере способствует интенсивному протеканию восстановительной реакции С+СО2. В связи с этим фактическое отношение СО2 СО становится меньше единицы. При полном восстановлении первичной двуокиси углерода, которое наблюдается в высокотемпературных условиях обессеривания сернистых коксов [165], это отношение становится равным нулю. [c.238]

    Система очистки водорода. Обычно из конвертированного газа необходимо по возможности полностью удалить окись и двуокись углерода. Основную массу окиси углерода превращают в двуокись реакцией конверсии (3) в отдельном адиабатическом реакторе, следующем после печи конверсии. Выбор процесса для удаления двуокиси углерода и остаточной окиси углерода определяется требованиями, предъявляемыми к чистоте водорода, и обычными экономическими соображениями. В тех случаях, когда в очищенном водороде депускается содержание метана 1 % или больще, остаточную окись углерода обычно превращают в мета в противном случае ее удаляют промывкой аммиачным раствором медных солей или превращением в двуокись углерода с последующим ее удалением. [c.174]

    Сущность метода состоит в том, что навеску исследуемого органического вещества сжигают в кварцевой трубке в токе воздуха и кислорода. Газообразные продукты разложения проходят над катализатором (окись меди или хромовокислый свинец), находящимся в трубке, в результате чего углерод окисляется до двуокиси углерода, а водород —до воды. Воду, выделяющуюся при сожжении, поглощают в трубке с хлористым кальцием или перхлоратом магния Mg( 104)2, жадно соединяющимися с водой двуокись углерода поглощают в трубке с натронной известью. Взвешивая трубки до и после опыта, устанавливают количество образовавшейся воды и двуокиси углерода. Из этих данных можно вычислить процентное содержание углерода и водорода во взятом для исследования вещест е. [c.96]

    Приведенные выше аналитические данные охватывают только содержание водорода и углеводородов, которые могут рассматриваться как нормальные составные части крекинг-газов. Содержание примесей , как двуокись углерода, окись углерода, азот и сероводород, обычно очень незначительно, не превышает одного-двух процентов. Иногда содержание сероводорода бывает значительно выше, это зависит от природы сырья. Для некоторых видов сырья Мексики, Вене-цуэлы и Калифорнии оно может достигать 5—10%. Образование сероводорода в таких больших количествах при крекинге высокосернистого сырья вызывает сильную коррозию оборудования, поэтому в таких случаях применяют специальные сплавы или покрытие корро-зиоустойчивыми сплавами. [c.383]

    Потенциометрический метод аналогичен объемному с той лишь разницей, что двуокись углерода поглощается титрованным раствором едкого бария, который заранее приливают к раствору электролита (1%-ный раствор ВаС1а, содержащий 5 мл этилового спирта и 5 мл 3%-ной перекиси водорода в 1 л электролита). В электролит погружают электроды на расстоянии 5—7 мм. Двуокись углерода, поглощаясь электролитом, изменяет pH раствора и тем самым потенциал платинового электрода (который измеряют по отношению к насыщенному каломельному элементу). Значение pH раствора устанавливают перед началом анализа добавлением титрованного раствора едкого бария и отмечают по гальванометру исходное положение в процессе поглощения СО pH уменьшается и стрелка гальванометра отклоняется. Доводят значение pH до первоначального добавлением титрованного раствора Ва (ОН)2, который продолжают добавлять до тех пор, пока стрелка гальванометра не вернется в исходное положение. По количеству Ва (ОН) 2, израсходованному на титрование, определяют количество углерода в анализируемом образце. Этот метод дает более Точные результаты, чем баритовый метод, и применяется для определения углерода при содержании его менее 0,01%. [c.275]

    В другом приборе химик проводит окисление в камере сгорания, а продукты подаются потоком гелия в восстановительную камеру, где удаляется избыток кислорода и различные окислы азота восстанавливаются до молекулярного азота. Результирующая смесь (СО2, Н2О, N2 и Не) приводится в термическое равновесие под давлением около двух атмосфер, а затем через систему пробоотбора поступает в Ьерию кювет для измерения теплопроводности. Между первой парой кювет находится поглощающая ловушка, содержащая обезвоживающий реагент, который удаляет из потока газа водяные пары. Количество водорода в исходном образце измеряется по разности в теплопроводности, вызванной удалением воды. Аналогичные дифференциальные измерения проводят для второй пары кювет, расположенных по две стороны ловушки, которая удаляет двуокись углерода. Содержание азота в оставшейся смеси гелий — азот определяют сравнением теплопроводности в кюветах со смесью и с чистым гелием. Все сигналы детекторов направляются в самописец, и с помощью соответствующих калибровочных факторов по величине пиков определяют процентный состав образца. После ввода образца процесс производится автоматически вплоть до стадии интерпретации графиков. [c.544]

    Проходя через слой разработанного фирмой Импириал кемикл индастриз катализатора, загруженного в печные трубы, водяной пар и сырье превращаются в окись и двуокись углерода, водород и метан. Смесь газа пиролиза и водяного пара выходит из печи при температуре около 700—850°С и охлаждается либо теплообменом с технологическими потоками, либо в котле-утилизаторе, после чего поступает в конвертор окиси углерода, в котором протекает реакция водяного газа СО. превращается в дополнительное количество Нг плюс СОг. Если синтез-газ предназначен для синтеза аммиака, то в систему включается второй реактор, куда вводят азот, необходимый для синтеза аммиака, тем самым уменьшая содержание метана в конвертированном газе. [c.165]

    Позже Stor h и Golden заметили, что при 1500° и времени контактирования, равном 0,03—0,04 сек., -смесь метана с двуокисью углерода (1 3) давала 10% ненасыщенных углеводородов (главным образом ацетилена), 10% о-киси углерода, 35% водорода и 45% неизмененного -метана. При несколько большем врем-енк к-01нтактирования процентное содержание водорода и окиси углерода увеличивалось, причем процент ненасыщенных углеводородов оставался приблизительно постоянным. При такой высокой температуре водяной пар является менее пригодным разбавителем, чем двуокись углерода, вследствие потери метана в виде утля, отлагающегося в реакционной трубке. С двуокисью углерода эта по теря не превышала нескольких процентов, тогда как с водяным паром она доходила до 15—20%. [c.310]

    Фогель и Куаттроун [173] недавно сообщили, что им удалось определить процентное содержание углерода и водорода с относительной ошибкой 0,5% для углерода и 0,8% для водорода. Проба превращается в двуокись углерода и воду в атмосфере кислорода путем сжигания в специально сконструированной цилиндрической латунной бомбе для сжигания. Окислы азота и серы удаляются пропусканием продуктов сжигания через поглотительную трубку, содержащую гранулы металлического ципка. Процентное содержание углерода и водорода определяется по площади пика двуокиси углерода и воды. [c.405]

    Превращение органических соединений в летучую форму, удобную для анализа на масс-спектрометре, может быть осуществлено одним из лшогих методов, предложенных для прямого определения кислорода [42, 579]. Одним из наиболее важных является метод Тер-Мейлена [1390], по которому кислород, содержащийся в органических соединениях, количественно превращается в воду при испарении в токе чистого водорода, крекинге или пиролизе соединения при высокой температуре и пропускании продуктов реакции над никелевым катализатором при 350°. Другой метод был предложен Шютце-[1806] и модифицирован Унтерцаухером [669, 2066]. В методе Шютце — Унтерцаухе-ра образец термически разлагается в токе чистого азота, и полученные продукты пропускаются над углеродом при температуре около 1000°, причем они превращаются в окись углерода и далее в двуокись углерода под действием пятиокиси иода. Дёринг и Дорфман [501], используя этот метод, получили хорошие результаты. В случае работы на масс-спектрометре с высокой разрешающей силой превращение окиси углерода в двуокись необязательно. Для исследования смеси СО и N2 необходимо, чтобы отношение М/АМ было равно 2300. Если применяется метод анализа Тер-Мейлена, то вода может быть исследована непосредственно, как и при определении дейтерия, либо по двуокиси углерода. Для этого перемешиванием воды и двуокиси углерода в запаянных стеклянных трубках в течение нескольких часов при комнатной температуре, как это описано Коуном и Юри [368], достигают состояния равновесия [1403]. Содержание 0 в воде может быть вычислено из состава равновесной смеси двуокиси углерода и воды по константе равновесия обменной реакции, равной 2,094 при 0° 2141]. [c.89]

    Некоторые масс-спектры приведены на рис. 82. Материал, летучий при температуре жидкого азота, был в основном представлен окисью углерода и содержал малое количество метана и следы сероводорода и хлористого водорода. Материал, летучий при температуре твердой углекислоты, в дополнение к указанным выше соединениям содержал бромистый водород, сероуглерод, двуокись серы, сероокись углерода и двуокись углерода. При комнатной температуре в газообразных продуктах был найден дихлорбензол, В дополнение были обнаружены следы бензола и ряд углеводородных осколков, характерных для распада конденсированных ароматических систем. Пик с массой 50 был необычайно велик. Некоторая часть твердого продукта, оставшегося в системе, была помещена в емкость, непосредственно соединенную с масс-спектрометром без промежуточного натекателя при этом для различных температур был получен ряд спектров, которые не позволили провести полной идентификации всех продуктов. Было идентифицировано лишь два соединения бензофенон и следы нафталина. Один из полученных спектров приведен на рис. 82. Из полученных результатов следует, что соединение содержало углерод, водород, кислород, серу, хлор и бром. Весь хлор представлен дихлорбензолом, наличие которого подтверждает существование бензольного кольца, замещенного двумя атомами хлора в исходном соединении. Бром был идентифицирован в виде бромистого метила, что указывает на наличие группы — СНгВг. Кислород и сера в подавляющем большинстве представлены СО, OS, СО2, SO2 и S2. Группы, ответственные за появление такой сложной смеси, могут быть определены следующим образом. Образование СО связано с соединениями типа простых эфиров и кетонов, содержащих лишь один атом кислорода в молекуле. Двуокись углерода образуется с большой вероятностью из соединений, содержащих два и более атомов кислорода в молекуле очень близко один от другого (ангидриды кислот и карбоновые кислоты). По аналогии можно считать, что SO2 характеризует группу сульфокислот. Группы, ответственные за появление OS и S2, не могут быть установлены точно. Они свидетельствуют, конечно, о соседстве атомов кислорода и серы и наличии более чем одного атома серы. Содержание нафталина мало (так же как и содержание бензола), и это может свидетельствовать о наличии конденсированной системы, а не присоединенной нафталиновой группы. Присутствие бензофенона позволяет сделать очень важные выводы о структурной группе исследуемой молекулы этот факт свидетельствует также, что бензофеноновая группа не очень прочно связана с остальной частью скелета. Эта часть молекулы, как показали дальнейшие исследования, представлена структурой [c.180]

    Радиационное воздействие на сополимер вшшлацетатй с этиленом позволяет определить количественный состав сополимера. При облучении образца полимера 100 мград [43] у-излучепия образуются пизкомолекулярпые углеводороды, окись углерода, двуокись углерода, водород. Количество окиси углерода, не обнаруженной в продуктах деструкции чистого полиэтилена, пропорционально содержанию винилацетата в сополимере. Точность определения +1 %. [c.206]


Смотреть страницы где упоминается термин Водород содержание в двуокиси углерода: [c.114]    [c.293]    [c.94]    [c.238]    [c.331]    [c.102]    [c.313]    [c.405]   
Очистка технических газов (1969) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Водород содержание



© 2025 chem21.info Реклама на сайте