Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Координационные свойства ионов металлов и лигандов

    К числу наиболее важных природных хелатирующих агентов относятся производные порфина, молекула которого схематически изображена на рис. 23.6. Порфин может образовывать координационные связи с ионом металла, роль доноров при этом выполняют четыре атома азота. При комплексообразовании с металлом происходит замещение двух указанных на рисунке протонов, которые связаны с атомами азота. Комплексы, полученные с участием производных порфина, называк тся шорфи-ринами. Различные порфирины отличаются друг от друга входящими в них металлами и фуппами заместителей, присоединенными к атомам углерода на периферии лиганда. Двумя важнейшими порфиринами являются гем, который содержит атом желе-за(П), и хлорофилл, который содержит атом магния(П). О свойствах гема мы уже говорили в разд. 10.5, ч. 1. Молекула гемоглобина-переносчика кислорода в крови (рис. 10.10)-содержит четыре гемовые структурные единицы. В геме четыре атома азота порфиринового лиганда, а также атом азота, который принадлежит бе1сковой структуре молекулы гемоглобина, координированы атомом железа, который может координировать еще молекулу кислорода (в красной форме гемоглобина, называемой оксигемоглобином) либо молекулу воды (в синей форме гемоглобина, называемой де-зоксигемоглобином). Схематическое изображение оксигемоглобина дано на рис. 23.7. Как отмечалось в разд. 10.5, ч. 1, некоторые группы, например СО, действуют на гемоглобин как яды, поскольку они образуют с железом более прочные связи, чем О2. [c.376]


    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]

    Координационные свойства поверхностных атомов непереходных металлов очевидно будут определяться теми же факторами, что и координационные свойства ионов металла в растворе. Устойчивость комплексов ионов металла в растворе с одним и тем же зарядом е растет с уменьшением его радиуса г. Для ионов примерно одинакового радиуса она повышается с ростом заряда иона металла, например Л а+ <Са + < [170]. В качестве меры устойчивости комплекса применяют, поэтому, поляризующее действие катиона, определяемое отношением е г. Устойчивость некоторых комплексов (логарифм константы устойчивости) линейно связана не с величиной е/г, а с е/г или е /г и.ии + Г- (где — сумма радиусов катиона и лиганда). С поляризующим действием симбатно изменяются потенциал ионизации атома металла и сродство иона металла к электрону. Эти величины также употребляются в качестве меры сравнения устойчивости комплексов. [c.73]

    Подробное исследование геометрии координации и соответствующей электронной структуры ионов металлов в белках с необходимостью требует рассмотрения аналогичных свойств простых координационных соединений ионов металлов. Хотя и не все комплексы металлов с аминокислотами и пептидами будут нам встречаться в дальнейшем изложении, между этими металлокомплексами существуют определенные геометрические соотношения, которые характеризуются замечательным постоянством [77]. Важно установить, выполняются ли эти соотношения, например относительные длины связей металл—лиганд, геометрические структуры комплексов металлов с имидазолом и т. д., в более сложных биологических системах. Значительные отклонения от постоянных геометрических соотношений будут свидетельствовать об искажении структуры и электронных свойств координационного центра в белке по сравнению с соответствующими комплексами с аминокислотами. [c.27]


    Предполагается, что в определении стереохимии значительная роль принадлежит лиганду, являющемуся партнером в образовании координационной связи. Координационное число иона металла по отношению к монодентатным лигандам определяется главным образом размером лиганда и числом потенциальных донорных атомов. Детальная стереохимия для данного координационного числа в большинстве случаев зависит от требований иона металла (эффекты кристаллического поля) и в изменяющейся степени от стереохимии лиганда, хелатообразующих свойств и природы донорных атомов, принимающих участие в образовании связи. [c.54]

    Для /-металлов наиболее характерно образование координационных соединений с разнообразными, в том числе и биогенными, лигандами, что в основном и определяет их биологическую активность. Наличие /-орбиталей, лишь частично заполненных электронами, позволяет катионам этих металлов взаимодействовать с лигандами — анионами или электродонорными молекулами. Геометрия образующихся комплексов МЬ зависит от природы иона металла-комплексообразователя. Комплекс может иметь структуру тетраэдра, плоского квадрата, тригональной бипирамиды или октаэдра. При анализе структуры, физико-химических и биохимических свойств этих комплексов особое внимание обращается на природу связи М—Г и на геометрию комплекса МГ . В координационных соединениях ионы /-металлов способны образовывать кроме а-связей прямые и обратные дативные л-связи. Это обусловливает высокую комплексообразующую способность и непостоянство координационных чисел /-металлов. Как правило, в биокомплексах это четные координационные числа от 4 до 8, реже 10 и 12. [c.191]

    Большинство растворителей, используемых в химии координационных соединений, обладают электронодонорными свойствами, в то время как ионы металлов являются акцепторами пары электронов при растворении ионы металлов сольватируются донорным растворителем (О). Если в растворе нет никаких других лигандов, все координационные места иона металла будут заняты молекулами растворителя  [c.182]

    Каждая теория должна удовлетворять по крайней мере двум требованиям она должна давать возможность объяснить известные экспериментальные факты и предсказывать новые. Для комплексов нам нужно объяснение и предсказание их термодинамических, кинетических, спектральных, стереохимических и магнитных свойств. Если иметь в виду большое разнообразие ионов металлов, лигандов и типов комплексов, можно понять трудность такой задачи. Известно, что нет всеобъемлющей теории, а скорее, есть несколько удачных теорий, каждая из которых обладает отдельными достоинствами при рассмотрении той или иной группы комплексов. Ранее упоминалось, что большинство известных комплексов — комплексы с координационным числом 4, имеющие приблизительно плоскую или тетраэдрическую конфигурацию, и комплексы с координационным числом 6, имеющие приблизительно октаэдрическую конфигурацию. Поэтому в дальнейшем мы ограничимся рассмотрением комплексов с.координационными числами 4 и 6. [c.396]

    Перенос заряда от лиганда к иону металла, изменение окислительно-восстановительного потенциала последнего, ненасыщенность координационной сферы ионов металла лигандными группами ионита предопределяют каталитические свойства ионитных комплексов в [c.313]

    Являясь донорами или акцепторами электронов, одни лиганды могут существенно влиять на распределение электронной плотности в других реагирующих молекулах, вошедших вместе с ними в состав комплекса, и изменять энергию отдельных связей. Эти свойства лигандов и ионов металла катализаторов дают возможность регулирования каталитической активности ионов введением в координационную сферу лигандов определенного строения. Лиганды, повышающие каталитическую активность иона металла в данной реакции, называют активаторами каталитической реакции. Лиганды, понижающие каталитическую активность иона металла, называют ингибиторами каталитической реакции. [c.627]

    Порядок избирательности в хроматографии с обменом лигандов зависит от свойств иона металла в меньшей степени, чем от природы матрицы обменника. Со смолы на основе полистирола и с никелем в качестве координационного катиона амины вымываются в последовательности диэтаноламин, этаноламин, диметиламин и rt-бутиламин, причем диэтаноламин удерживается слабее [c.228]

    Стереохимические свойства иона металла играют менее важную роль в циклообразовании, чем стереохимические свойства лиганда. Очень часто наблюдаются нетипичные для данного катиона конфигурации внутренней координационной сферы, а значит, и способы гибридизации его акцепторных орбиталей, если при этом возрастает устойчивость комплекса, например за счет увеличения числа связей между металлом и лигандом. Возникающие при этом конфигурации комплексов называют вынужденными. Например, в комплексе Pt + с р, р, "-триаминотриэтиламином N( H2 H2NH2)3 четыре донорных атома азота занимают вершины тетраэдра, а не квадрата, являющегося обычной координационной фигурой для Pt +. В хлорофилле — зеленом пигменте растений — комплекс Mg + имеет необычную для этого катиона плос- [c.123]


    Эта неблагоприятная ситуация может быть преодолена, если молекула лиганда будет сконструирована так, чтобы она наилучшим образом вписывалась в координационную сферу иона металла, насыщая ее сразу — за один прием. Такими свойствами обладают полидентатные органические реагенты, включающие в состав молекулы не один, а несколько донорных атомов, образующих своеобразный координационный узел. Именно высокая координационная емкость органического лиганда (т. е. его дентатность) обеспечивает, как правило, соответствие реакции комплексообразования его с ионами металлов упомянутым выше требованиям титриметрии. Органический синтез представляет широкие возможности в конструировании различных по-лидентатных реагентов рассмотренного типа, однако в аналитической практике особое место занимают только некоторые из них. В первую очередь это различные аминополи-карбоновые кислоты, молекулы которых содержат донорные атомы азота —N— и карбоксильные группы —СООН. Впервые эти соединения были предложены для титрования ионов металлов швейцарским химиком Г. Шварце нбахом в 1945 г. под общим названием комплексоны . [c.329]

    Степени окисления Си, Ад, Аи являются переменными ( + 1, + 2, +3). Металлические свойства у них доминируют и оксидов с кислотными свойствами эти металлы не образуют. Соли этих металлов, образованные ионными связями, могут переходить в комплексные (лиганды С1 , СЫ , NHз, Н2О) с координационными числами К = 2 для степени окисления ( + 1), а для более высоких степеней окисления (+2, +3) /С = 4. [c.386]

    Наконец, ионы металлов играют очень важную роль агентов транспорта электронов [37], в особенности в одноэлектронных переносах, где обычно используются окислительно-восстановительные системы типа Fe (И) Fe (П1) и Си (I) 5 Си (И). Окислительно-восстановительный потенциал является чувствительной функцией связывания лигандов. Во многих случаях (гемоглобин, цитохромы, хлорофилл, витамин В,2) металл комплексуется не только с белком, но и с макроциклическими тетрадентатными лигандами (например, порфирин в геме), которые оставляют свободным только одно координационное место с весьма специфическими и тщательно контролируемыми свойствами [42]. [c.476]

    Координационные свойства природных соединений. Накопление функциональных групп в органических молекулах, которые могут выступать как лиганды, особенно в соединениях полимерного характера (полисахариды, полипептиды, белки, нуклеиновые кислоты и др.), сильно осложняет картину комплексообразования с ионами и солями металлов. Это происходит в результате того, что свойства функциональной группы будут зависеть от расположения в сложной молекуле, от конформации этой молекулы и от стерического экранирования реакционного центра окружающими фрагментами молекул. Эта ситуация создает много трудноразрешимых затруднений для физико-химического исследования такого комплексообразования и для его термодинамического описания. [c.179]

    Наличие большого числа валентных орбиталей (одна пз, две пр и пять (п - l) ), часть которых остается вакантной, придает ионам переходных металлов свойства акцепторов электронных пар. Это обеспечивает им возможность образовывать координационные связи с донорными лигандами и выступать в качестве центральных ионов в многочисленных комплексных соединениях. Таким образом, строение атомов переходных элементов создает предпосылки для образования множества соединений, в том числе комплексных, с разнообразными степенями окисления. [c.334]

    Молекулы кристаллизационной воды в таких солях во многих случаях можно считать лигандами, что особенно справедливо для переходных и высокозарядных ионов непереходных элементов. Кристаллизационную воду солей щелочных металлов не всегда можно считать координационной водой. Спектры поглощения этих комплексов подобны спектрам водных растворов солей соответствующих металлов, и это показывает, что в водных растворах ионы металлов находятся в виде аква-комплексов. С другой стороны, свойства кристаллов и водных растворов комплексов металлов группы платины, а также Со(П1) и Сг(1П), содержащих неводные лиганды, совпадают, что обусловлено в данном случае медленно идущей реакцией обмена лигандов и сохранением в водном растворе вокруг катиона тех же лигандов, как в кристалле. Быстрый обмен лигандами в водном растворе, характерный для других катионов металлов, объясняет, почему в этом случае эти катионы в водных [c.225]

    Если максимальное координационное число ионов металла М"+ по отношению к лиганду К равно N. таких уравнений будет также Л . В зависимости от характера лиганда координационное число может меняться. Так, известен хлоридный комплекс кобальта СоС1 в котором координационное число кобальта равно 4. При взаимодействии Со2+ с молекулами аммиака возможно образование Со(ЫНз)б , в котором координационное число кобальта равно 6. Аналогично при взаимодействии А1 + с ионами С1- возможно образование А1СЦ, т. е. максимальное координационное число для ионов АР+ равно 4. При взаимодействии же ионов алюминия с ионами Р- образуется ряд комплексов с координационным числом от I до 6 А1Р ,. .... ... А1Рб, т. е. максимальное координационное число ионов алюминия равно 6. Таким образом, координационное число является не только свойством металла, но также зависит от свойств лиганда. Между константами устойчивости, или константами образования К1 [c.240]

    Окраска является отличительным свойством координационных соединений переходных металлов. Октаэдрические комплексы кобальта могут иметь самую различную окраску в зависимости от того, какие группы координированы вокруг атома этого металла (табл. 20-2). Такие координирующиеся группы называются /шгандами. В растворах окраска обусловлена ассоциацией молекул растворителя, выступающих в роли лигандов, с металлом, а не свойствами самого катиона металла. В концентрированной серной кислоте (сильный обезвоживающий агент) ионы Си" бесцветны в воде они имеют аквамариновую окраску, а в жидком аммиаке — темную ультрамариновую. Комплексы металлов с высокими степенями окисления обладают яркой окраской, если они поглощают энергию в видимой части спектра СгО -ярко-желтой, а МПО4-ярко-пурпурной. [c.206]

    Как указывалось ранее (см. стр. 93), возможно, что большие ионы, имевэшие электронную оболочку инертного газа с низкой плотностью заряда, как, например, ионы калия или бария, в водном растворе, по-видимому, гидратированы весьма неполно. В противоположность этому ионы лития и кальция, вероятно, способны образовать первую сферу из молекул воды, но эти молекулы воды едва ли связаны направленными силами связи до такой степени, чтобы образовались акво-ионы с химической связью. Однако это, по-видимому, происходит в случае ионов металлов побочных групп и, вероятно, также ионов, имеющих электронную оболочку инертного газа, с наибольшей плотностью заряда. Пока нет точного доказательства этого, но ранее (стр. 80) было отмечено, что ион металла, который образует определенные комплексные ионы с комплексообразующими лигандами, например, с аммиаком, также, вероятно, должен образовывать акво-ионы с химической связью. Случай будет совсем простым, если ион металла имеет постоянное координационное число, например ионы кобальта (П1) и хрома (П1). Более трудная задача возникает в случае иона металла с более чем одним координационным числом. Тогда следует рассмотреть два вопроса, пренебрегая, конечно, любым стериче-ским препятствием со стороны лиганда 1) ведет ли себя ион металла в отношении координационной валентности по-разному относительно различных лигандов 2) является ли способность проявления двух координационных чисел свойством иона металла, обнаруживающимся в присутствии всех лигандов независимо от силы и типа связи В качестве первого примера можно упомянуть ионы кобальта (II) и никеля, которые проявляют исключительно координационное число 6 в соединениях с водой, аммиаком и этилендиамином, но в других случаях (см. стр. 66 и 96), по-видимому, проявляют характеристическое координационное число 4. В качестве второго примера следует указать ионы меди (П), цинка и кадмия, которые, по-видимому, всегда имеют характеристическое координационное число 4, и ионы меди (I), серебра и ртути (И), которые всегда, очевидно, имеют характеристическое координационное число 2. В случае ионов кобальта (II) и никеля, а также ионов железа (II) и марганца (II) (ср. стр. 96) кажется вполне естественным принять, что эти ионы в водном растворе образуют октаэдрически построенные гексакво-ионы. Но что можно сказать о другом классе ионов металлов, особенно интересных [c.106]

    Однако ионы металлов имеют определенные преимущества перед протоном. Они хотя и больше по размерам, но могут обладать намного большим зарядом, чем у протона. Ионы металлов способны связываться с несколькими донорными атомами молекулы субстрата, что сильно увеличивает поляризацию последнего. Большое значение имеет то свойство ионов металлов, что они могут действовать как катализаторы в среде с очень низкой концентрацией протонов. На этом основании Вестхеймер [2] рассматривает ион металла как суперкислоту, которая может существовать в нейтральной среде. Кроме того, ионы металлов выгодно отличаются от протонов специфичностью своего действия, которая обусловлена их электронным строением, структурой координационной сферы, характером донорных атомов субстрата и других лигандов и т. п. [c.126]

    Подобный механизм образования фермент-металл-субстрат-ного комплекса подтверждается результатами недавно опубликованных работ Каби и сотрудников 1496—499], а также других исследователей [500—502]. В этих работах определялись константы равновесия комплекса субстрат-металл-фермент для некоторых трансфос-форилаз. На основании полученных данных предположили, что число связей между металл-субстратным комплексом и ферментом, по-видимому, равно двум. В образовании таких координационных связей могут участвовать функциональные группы различных аминокислот на поверхности фермента. В частности, такими группами могут быть SH-группа и имидазольное кольцо гистидина [502—505]. Строение подобных группировок может оказывать очень большое влияние на специфичность и скорость каталитических реакций. Так, например, в исследованиях Коти и сотрудников [506] по механизму комплексообразования было показано, что в процессе образования металл-хелатных соединений конфигурации электронных оболочек ионов металлов могут меняться вследствие внедрения электронных пар от лиганда. Показано также, что в зависимости от строения электронных оболочек изменяются и каталитические свойства ионов металлов. [c.596]

    Изучение металлоферментов важно для дальнейшего проникновения в физику ферментативного катализа. Область белка, взаимодействующая с ионом металла в активном центре, представляет собой полидентатный лиганд, образуя несколько координационных связей с металлом. Это справедливо для кофакторов — ионов металлов, но не для простетической группы гема в НЬ и МЬ, в которой такая связь одна. Благодаря мягкости -электронной оболочки, ее большей деформируемости, чем з- и р-обо-лочки, она приобретает напряженное, энтатическое состояние в активном центре (Уильямс и Валли). Это проявляется в от личии электронных свойств переходных металлов в ферментах от этих свойств в модельных низкомолекулярных соединениях. Разнятся спектры ЭПР, спектры поглощения и т. д. [c.218]

    Исследования магнитных свойств и окраски комплексов переходных металлов сыграли важную роль в создании различных теорий химической связи координационных соединений. Теория кристаллического поля успешно объясняет многие свойства координационных соединений. В рамках этой теории взаимодействие между ионом металла и лигандами рассматривается как электростатическое. Лиганды создают электрическое поле, которое вызывает расщепление энергетических уровней -орбиталей металла. Спектрохи-мический ряд лигандов соответствует их нарастающей способности расщеплять энергетические уровни -орбиталей в октаэдрических комплексах. [c.401]

    Комплексные соединения. Многие соли, кислоты и ос-гюванпя, а также и некоторые неэлектролиты относятся к большому классу сложных комплексных соединений, строение и свойства которых впервые были описаны в координационной теории А. Вернера (1893). Такие соединения содержат центральный атом — комплексообразователь. Обычно это положительно заряженный ион металла, координирующий вокруг себя определенное число противоположно заряженных ионов или полярных молекул (ЫНз, Н2О и др.), называемых лигандами (Ь). Таким образом, возникает внутренняя сфера комплексного соединения или комплексный ион, заряд которого определяется алгебраической суммой зарядов комплексообразователя и связанных с ним лигандов Такой суммарггый заряд может быть положительным (катионный комплекс), отрицательным (анионный комплекс) и в частном случае может быть равен нулю (нейтральный комплекс-неэлектролит). Число лигандов при условии, что каждый из них связан с центральным атомом только одной связью, называется координационным [c.44]

    Одним из основных обобщений координационной рии Вернера было то, что число лигандов, входящи внутреннюю сферу комплекса, равнялось шести или тырем. Весьма примечательно, что эти координацион числа проявлялись для ионов металлов, сильно отли щихся валентностью, зарядом и радиусом. Это обоб ние в значительной степени способствовало призна координационной теории. Оно позволяло легко пред зывать строение и свойства вновь получаемых соед ний. Однако уже в то время были известны компле координационное число которых отличалось от Ш( или четырех. Примером могут служить соединения либдена Na4[Mo( N)e] или серебра [Ад(ННз)2]С1, ординационные числа которых соответственно ра восьми и двум. [c.376]

    Молибден — металл второй переходной группы, один из немногих тяжелых элементов, заведомо существенных для жизни. В наиболее устойчивом окисленном состоянии, Mo(VI), молибден содержит заполненную 48-оболочку и имеет 4d-op-битали, доступные для образования координационных связей с анионными лигандами. Предпочтительными являются координационные числа 4 или 6, но к молибдену могут присоединяться по меньшей мере восемь лигандов. Большая часть комплексов образуется с оксикатионом МоО +. Когда с этим ионом координационно связаны две молекулы воды, их протоны приобретают настолько кислые свойства, что полностью диссоциируют, оставляя комплекс в виде молибдат-иона МоОЗ . Другие уровни окисленности находятся в интервале от Мо(П1) до Mo(V). В этих менее окисленных состояниях тенденция протонов в координационно-связанных лигандах к диссоциации выраженд слабее например, Mo(H20)i не от- [c.85]

    Иногда для повышения скорости комплексообразования применяются нагрев или даже кипячение раствора, однако при работе с катионами, являющимися окислителями, такой способ не всегда приемлем. Следует отметить, что существует не только влияние свойств аква-иона металла на скорость образования комплекса, но и обратное явление ускорение обмена молекул воды в координационной сфере металла при координации комплексона. Так, [637] показано, что ЭДТА катализирует обмен лигандов в комплексах СгЗ+, Os +, Rus+, Со , Рез+, Ti +. Например, замещение молекулы воды в ближайшем окружении хро-ма(1П) на монодентатные лиганды в биядерном комплексонате <3.2.1)  [c.345]

    Исследование реакций комплексообразования природных металлопорфиринов с нейтральными электронодонорными (-акцепторными) молекулярными лигандами представляет несомненный интерес как в теоретическом, так и в практическом плане. Многообразие полезных функций металлопорфиринов в первую очередь связано с их координационными свойствами, под которыми понимают дополнительную координацию заряженных или нейтральных частиц на центральном атоме металла. Механизмы протекания данных процессов в значительной степени определяются особенностями формирования сольватного окружения металлопорфиринов в биологических структурах и модельных растворах. В биоструктурах молекулы металлопорфиринов окружены псевдосольватной оболочкой, сформированной за счет универсальных и специфических взаимодействий с гидрофобными и гидрофильными фрагментами аминокислотных остатков белковой части хромопротеинов. Так, Ре(П)протопорфирин, являющийся простетической группой хромопротеинов (гемоглобин, миоглобин, цитохромы, пероксидазы) живых организмов [1], за чет электростатических взаимодействий пропионовых остатков связан с полярными фрагментами белка. При этом центральный атом металла вступает в дополнительное координационное взаимодействие с имидазольным остатком проксимального гистидина [33]. В гемоглобине (рис. 6.5) щестое координационное место остается открытым для взаимодействия с молекулами газообразных веществ (О2, СО, N0) и ионов окислителей (N02, Оз). В цитохромах (рис. 6.5) как пятое, так и шестое координационные места заняты за счет донорно-акцепторного взаимодействия с аминокислотными электронодонорными радикалами (например, гистидина и метионина). В результате проявляется новое свойство металлопорфирина - способность участвовать в легкообратимом окислительновосстановительном процессе переноса электрона, сопровождающемся обратимым изменением степени окисления иона железа Ре " Ре . [c.312]

    Эта константа характеризует термодинамическую устойчивость комплексного иона, т. е. устойчивость, не зависящую от времени. Существует еще кинетическая устойчивость, определяемая константой скорости диссоциации комплекса на составные части. Важнейшим понятием в координационной химии является координационное число центрального атома и лиганда. Для центрального атома, например в [ o(NH2 Hз)б] координационное число равно 6. Оно характеризует число электронодонорных (а иногда и электроноакцепторных) атомов, которые вступают в прямой контакт с центральным атомом металла за счет сил донорно-акцепторной связи. В гек-са(метиламин)кобальт(Ш)-ионе контактными (донорными) атомами являются атомы азота, составляющие вместе с Со(Ш) координационный узел oNg. Координационное число и иона металла зависит от его положения в периодической системе, заряда и радиуса, а также от структурно-энергетических свойств лиганда, особенно природы его контактного атома. Максимальное и стабильное координационное число для Ag Hg" , ТГ равно двум, для Hg u — [c.157]

    Строение и свойства координационных соединений объясняются координационной теорией, основы которой были заложены в 1893 году А. Вернером. Он пришел к заключению, что в состав комплексного соединения входит сложная частица, состоящая из центрального атома, также называемого комплексообразоеателем (ион металла), вокруг которого располагаются (координируются) нейтральные молекулы или анионы, называющиеся лигандами. Число координированных лигандов чаще всего равно 6, 4 или 2. Координация ( удерживание ) лигандов около центрального атома осуществляется за счет образования химических связей. Эти связи называют координационными связями. Количество координационных связей, которые образует один лиганд с комплексообразователем называется дентатностью лиганда ( ди-, три-, тетрадентатный и т.д.). Общее число химических связей, которое комплексообразователь образует с лигандами, называется координационным числом комплексообразователя. [c.108]

    Особое внимание привлекли комплексные соли соединений переходных элементов, например группы платины (Сг, Ре, Со, N1, Си), обладающие рядом особенностей. Их строение и структуру не удавалось объяснить с помощью ионных представлений и для интерпретации их свойств были предложены различные теоретические подходы. Одним из таких подходов явилась координационная теория комплексных соединений, предложенная Вернером в 1895 г. Идея координации, рассматривающая структурную единицу как группу с центральным ионом металла, окруженным определенным числом лигандов, в настоящее время получила широкое распространение. В принципе любую химическую частицу, образованную центральным ионом металла и лигандами, гзыъгют комплексом. [c.219]

    Самые распространенные соединения переходных металлов содержат только один ион металла или иногда нейтральный атом, окруженный несколькими группами, называемыми лигандами, по отношению к которым металлы обладают свойствами лыоисовых кислот (т. е. акцепторов электронов). В качестве лигандов могут выступать отдельные атомы нли одноатомные (простые) ионы, но ими могут быть также многоатомные (комплексные) ионы илн молекулы, Единственным требованием, предъявляемым к лигандам, является наличие у них неподелен-ных пар электронов, которые они могут обобществлять с металлом. Связь такого тнпа, когда оба электрона, образующие связывающую электронную пару, поставляются только одной частицей, принято называть координационной ковалентной связью (иначе донорно-акцепторной или дативной связью). Обсуждаемые комплексы часто называют координационными комплексами. Число лигандов, окружающих металл в комплексе, называется координационным числом металла. [c.313]

    Неподеленные электронные пары aтo юв серы, входящих в состав гетероциклов (например, тиофена), участвуют в создании сопряженной системы связей. За счет зх-сопряжения связей атомы серы в таких фрагментах обладают слабыми донорными свойствами н не образуют устойчивых комплексов с металлами. Поэтому макроциклические лиганды, содержащие только тиофеновые группировки, в этой главе не представлены. Поскольку макроциклические полисульфиды и циклофаны также не образуют устойчивых координационных соединений с ионами металлов, они нами также не рассмотрены. Методы получения таких соединегтй подробно описаны в обзоре [364], посвященном тиамакроциклическим соединениям. [c.138]


Смотреть страницы где упоминается термин Координационные свойства ионов металлов и лигандов: [c.308]    [c.127]    [c.177]    [c.183]    [c.186]    [c.307]    [c.311]    [c.322]    [c.183]    [c.186]    [c.528]   
Смотреть главы в:

Аналитическая химия Том 1 -> Координационные свойства ионов металлов и лигандов




ПОИСК





Смотрите так же термины и статьи:

Лиганд свойства

Металлы лигандами

Металлы свойства



© 2025 chem21.info Реклама на сайте