Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Быстрая полимеризация распределение

    Изучалась возможность сочетания преимуществ быстрой полимеризации с получением молекулярно-весового распределения, характерного для медленного процесса поликонденсации показано, что реакции межцепного обмена в этом случае значительно ускоряются при добавлении веществ, промотирующих обменные реакции (например, воды, некоторых кислот, солей и спиртов), и представляется возможным получать однородный, годный для прядения продукт за 1—2 часа вместо 15 час. при гидролитической полимеризации [c.185]


    Ассоциаты обнаруживаются также в других олигомерах. В эпоксидных смолах типа ЭД-20 образуются ассоциаты глобулярного типа, которые исследованы путем изучения структуры олигомерной пленки, полученной методом выдувания пузырька (рис. 3.3). При быстрой полимеризации таких пленок при 150—180 °С размер ассоциатов, обнаруженных в олигомере, сохраняется в отвержденных пленках. При осуществлении полимеризации при более низкой температуре наблюдается агрегация структурных элементов в процессе полимеризации. Значительное уменьшение числа ассоциатов в единице объема имеет место в олигомерах со статистическим распределением функциональных групп, например в ненасыщенных полиэфирах. [c.130]

    При введении в расплав инертных веществ (например, двуокиси титана для матирования) необходимо добиться возможно быстрее равномерного распределения их в расплаве уже в процессе предварительной полимеризации, чтобы избежать установки дополнительных аппаратов с мешалками при добавлении матированного расплава к основному расплаву непосредственно перед фильерой на прядильной машине. [c.145]

    Изменения в характере кривой распределения для полиамидов, полученных методом быстрой полимеризации, по сравнению с нормальной формой этой кривой будут подробно рассмотрены в разделе 1.7 части II. [c.260]

Рис. 116. Кривые молекулярновесового распределения полимеров, полученных при быстрой полимеризации капролактама после нагревания его в течение различного времени [267]. Рис. 116. <a href="/info/1707662">Кривые молекулярновесового распределения</a> полимеров, полученных при <a href="/info/943841">быстрой полимеризации</a> капролактама после нагревания его в <a href="/info/318187">течение различного</a> времени [267].
    Вопросы изучения механизма реакции быстрой полимеризации были затронуты в работах Сондерса, попытавшегося использовать техно-экономические преимущества, создаваемые этим методом, для разработки процесса, который мог бы найти практическое применение в промышленности. Сондерсом был предложен способ [272, 274], позволяющий быстро достигнуть нормального молекулярновесового распределения путем введения добавок веществ, ускоряющих реакцию гидролиза или обмена между отдельными сегментами. В качестве таких добавок можно применять воду, соль АГ, аминокапроновую или уксусную кислоту и др. Очевидно, что эти добавки можно вводить только после того, как будет завершена первая стадия процесса, характеризующаяся высокой скоростью реакции. С точки зрения возможности практического использования этих результатов представляет интерес тот факт, что обе стадии процесса могут быть осуществлены по непрерывной схеме. Общая продолжительность реакции составляет 1—2 час (см. также часть П, раздел 1.5.5). [c.285]


    Алфиновые катализаторы вызывают очень быструю полимеризацию дивинила и подобных ему соединений в необычайно крупные полимер-молекулы. Кривые распределения молекулярных весов получающихся полимеров располагаются в промежутке от [c.358]

    Распределение времени пребывания реакционной смеси всегда имеет место в реакторах с перемешиванием (рис. 2.58,а). Какая-то часть входящего потока быстро достигает выхода. Время для превращения веществ будет небольшим. Другая часть потока долго находится в реакционной зоне. На выходе все части потока перемешиваются. Если за время пребывания каждой порции реакционной смеси акт химического превращения (т. е. превращения молекулы исходного вещества в продукт) заканчивается, то распределение времени пребывания не скажется на общем превращении. Но возможны длительные, многоэтапные преврашения. Полимеризация - последовательное присоединение молекул мономера к растущей цепочке образующегося продукта. Длина полимерной цепи зависит от времени проведения реакции. В проточном реакторе с перемешиванием из-за различного времени пребывания отдельных частей потока в нем на выходе будем иметь смесь полимерных молекул с различной длиной цепи, или с различной молекулярной массой. Неоднородность молекулярно-массового состава продукта сказывается на его качестве. [c.130]

    Около 150 г триоксана кипятят (с воздушным холодильником) над 9 г натрия или калия в атмосфере сухого азота 48 ч (т. кип. 115°С). Навеску 20 г очищенного таким образом мономера перегоняют в сухую колбу емкостью 50 мл, обожженную пламенем горелки (при откачивании), снабженную впаянной в стекло магнитной мешалкой. Колбу закрывают пробкой с самозатягивающейся прокладкой (см. раздел 2.1.3), нагревают до 70 °С и с помощью шприца вводят 0,05 мл (4-10" моля) эфирата трехфтористого бора ( /20= 1,125) в 10%-ном растворе нитробензола. Неооходимо следить за тщательностью перемешивания расплава триоксана при введении инициатора, за его быстрым и гомогенным распределением в реакционной смеси. Сразу после введения инициатора образуется полиоксиметилен, выпадающий в осадок из расплава мономера примерно через 10 с вся реакционная смесь затвердевает. Полимеризацию прекращают добавлением ацетона и после тщательного перемешивания (при необходимости дробления) полимер фильтруют на стеклянном фильтре. Затем образец дважды кипятят в 100 мл ацетона по 20 мин, фильтруют и сушат в вакуумном шкафу при комнатной температуре. Выход полимера составляет около 50% интервал плавления 177—180 °С. Определяют характеристическую вязкость полученного образца в 1%-ном растворе диметилформамида при 140°С (Луд/Сл 0,06 л/г примерно соответствует молекулярной массе 60 000). Исследуют термическую [c.165]

    Температура оказывает также существенное влияние на кривую распределения молекул полимера по молекулярным массам. Это находит свое выражение в увеличении низкомолекулярных фракций и особенно заметно при полимеризации мономеров в отсутствие растворителей или разбавителей (блочная полимеризация), когда полимеризация в отдельных слоях мономера протекает при более высоких температурах (ухудшение условий отвода теплоты полимеризации из-за быстрого возрастания вязкости системы). [c.120]

    Большая часть пронумерованных пиков на рис. 17-21 соответствует олигомерам, для которых значения п указаны на пиках. Заметим снова, что элюирование происходит в порядке уменьшения размеров молекул. Небольшая серия промежуточных пиков указывает на присутствие олигомеров, цепь которых заканчивается фенольной группой. Такую детальную картину распределения продуктов Полимеризации нельзя получить каким-либо другим методом, позтому применение гель-проникающей хроматографии в химии высокомолекулярных соединений быстро развивается. [c.601]

    С 1964 г. гель-проникающую хроматографию (ГПХ) стали щироко применять в химии и технологии полимеров как быстрый и надежный метод определения молекулярных масс и молекулярно-массовых распределений (ММР) пластмасс, смол, каучуков и т. п. В настоящее время этот метод практически полностью вытеснил ранее существовавшие трудоемкие методы фракционирования полимеров. В промышленности ГПХ используют для идентификации и анализа новых полимеров, а также для контроля за качеством продукции [1]. При помощи метода ГПХ можно не только быстро установить несоответствие полимера техническим требованиям, но даже иногда указать причину нарушения технологии, поскольку кривая молекулярномассового распределения непосредственно отражает условия получения полимера. Это относится как к процессам полимеризации и поликонденсации, так и к процессам приготовления полимерных композиций на основе заранее синтезированных компонентов [2]. В таких случаях нет необходимости иметь хроматограмму в виде истинной кривой распределения, поскольку прямое сопоставление графиков, полученных методом ГПХ в стандартных условиях, дает достаточную информацию о соответствии полимера техническим требованиям. Хроматограммы можно получать за 3—4 ч, причем очередной образец полимера можно вводить в колонку, не дожидаясь выхода предыдущего. Как метод разделения веществ по молекулярной массе ГПХ применяют для определения концентрации и типа низкомолекулярных добавок к полимеру, например органических растворителей, антиоксидантов, пластификаторов и пр. В настоящее время выпускают различные хроматографические материалы, предназначенные для разделения методом ГПХ низкомолекулярных веществ, а сам метод успешно используют для анализа смазочных материалов, полигликолей, асфальтенов и ряда других олигомерных соединений. [c.280]


    Полимеризацией в тяжелых углеводородных растворителях ( -гексане, и-гептане или бензине с т. кип. 80—110 С) Э.-п. к. получают при — ЗОХ. Технологич. схема синтеза аналогична используемой при получении стереорегулярных бутадиеновых каучуков. Процесс проводят непрерывно в одном полимеризаторе, снабженном рубашкой для отвода теплоты реакции (хладагент — рассол) и мешалкой, или в каскаде из 2—5 таких аппаратов. В реактор поступает заранее приготовленная смесь очищенных мономеров и растворителя, а также компоненты катализатора. При использовании каскада полимеризаторов облегчается теплоотвод, но одновременно усложняется регулирование процесса. В частности, из-за того, что этилен полимеризуется значительно быстрее, чем пропилен, перед поступлением реакционной смеси в след, полимеризатор вводят дополнительные количества первого сомономера. Мол. массу и молекулярно-массовое распределение Э.-п.к. регулируют, изменяя концентрацию катализатора. [c.511]

    Анализируя работу по исследованию полимеризации в твердом состоянии, Н. Н. Семенов [192] постулировал, что большое число определенным образом ориентированных молекул мономера присоединяется к частицам инициатора на одной кинетической стадии. К сожалению, лишь в редких случаях кинетические данные дополняются сведениями о зависимости молекулярного веса полученного полимера от времени и температуры полимеризации, так что кинетические параметры для развития цепи в общем остаются неопределенными. Процессы полимеризации при весьма низких температурах и с низкой энергией активации часто протекают гораздо быстрее в твердом состоянии, чем это следовало бы из экстраполяции кинетических данных о полимеризации в жидкой фазе. Примером может служить поведение акрилопитрила [127, 133, 162]. Полимеризация акрилопитрила, по-видимому, принципиально отличается от полимеризации таких мономеров в твердом состоянии, как акриламид и соли акриловой кислоты [178], для которых характерны высокие энергии активации и продолжение полимеризации после удаления мономерного образца из зоны облучения. Отсутствие эффекта последействия при низкотемпературной полимеризации акрилонит-рила [140] и винилацетата [128] обусловлено отнюдь не исчезновением радикалов, так как спектр ЭПР весьма устойчив после удаления образца из зоны облучения. По-видимому, полимеризация в этих условиях зависит от присутствия короткоживущих возбужденных частиц. Было найдено, что акриламид, полученный постполимеризацией кристаллов, предварительно облученных при низкой температуре, обладает необычно узким молекулярно-весовым распределением [129]. Такого распределения можно ожидать, если основные цепи растут со сравнимыми скоростями, т. е. на одинаковую длину в тот же промежуток времени, при отсутствии какого-либо механизма завершения цепей. [c.278]

    Общая задача расчета молекулярно-массового распределения не решена. Приближенное решение получено для двух предельных случаев быстрого и медленного обрыва. Для первого из них выражение среднечисленной степени полимеризации имеет вид  [c.487]

    Осуществлена быстрая полимеризация метилметакрилата в тетрагидрофуране в присутствии нафталиннатрия или диэтилалюми-нийхлорида и литийорганических соединений и в присутствии одного литийалкила. В настоящее время вполне возможно получение полимера гомогенного в смысле стереорегулярности и молекулярновесового распределения [c.18]

    Аналогичная проблема, относящаяся к полимерам, получаемым быстрой полимеризацией в присутствии щелочных катализаторов, которая делает эти полимеры, по мнению Гриля [158], непригодными для формования волокна, рассматривается в работе Сондерса [161]. Снижение вязкости расплава обычно продолжается, как показал Гриль, сравнительно длительное время, до тех пор пока не будет достигнуто стабильное молекулярновесовое распределение, соответствующее состоянию равновесия при полимеризации капролактама в присутствии воды (см. часть II, раздел 1.6.3). В связи с этим исчезают преимущества, обусловливаемые быстрым протеканием процесса полимеризации. Сондерс, однако, указывает, что этот недостаток может быть в значительной степени устранен, если проводить быструю полимеризацию, как обычно, в присутствии NaOH или ЫагСОз, а на второй стадии процесса к образующемуся полимеру добавлять небольшие количества реагента, ускоряющего гидролиз или обмен между поликапроамидными звеньями и тем самым перераспределение между отдельными макромолекулами поликапроамида. В качестве таких реагентов могут быть использованы вода, соль АГ, аминокапроновая и уксусная кислоты и др. По данным автора, этот метод позволяет в течение 2—3 час получить поликапроамид, пригодный для формования. [c.244]

    В работе Гриля было показано изменение молекулярновесового распределения во время быстрой полимеризации. Кривые раснре- [c.284]

    Интересно сравнить определения предельной температуры, данные Дейнтоном и Тобольским. Оба имеют одно и то же математическое выражение. Определение Дейнтона относится только к химическому изменению свободный мономер мономерное звено высокомолекулярного полимера и не учитывает самого процесса построения макромолекулы. Определение Тобольского учитывает многоступенчатость реакции полимеризации и процесс инициирования. Кроме того, крутизна перехода, которая отсутствует в определении Дейнтона, оговаривается в трактовке Тобольского. Однако определение Дейнтона применимо к системам, в которых равновесие между различными живущими макромолекулами еще не установилось, например к деструкти-рующим под действием света полимерным системам, изученным Айвином, или к псевдоравновесным системам, в которых в результате быстрой полимеризации живущих полимеров получено распределение Пуассона. Определение Тобольского применяется только после достижения полного равновесия как между всеми полимерными молекулами, так и между полимером и мономером. [c.138]

    При отсутствии агентов обрыва или переноса растущей полимерной цепи под влиянием лптийалкилов образуются полиизопрены с очень узкпм молекулярно-массовым распределенпем, которое приближается к распределению Пуассона. Такой характер ММР свидетельствует о быстром инициировании реакции полимеризации. В тех случаях, когда скорости стадий инициирования и роста цепи сопоставимы (полимеризация литийбутилом в цикло-гексане [39]) молекулярно-массовое распределение расширяется до значений Ми,/М = 1,5 — 2,5. [c.210]

    Можно констатировать, что очень высокие скорости полимеризации в сочетании с экзотермичностью процесса (Яжж 54 кДж/моль) создают ситуацию, при которой даже очень медленное введение инициатора и быстрое перемешивание недостаточны для отвода выделяющегося в реакции тепла. В общем случае реакция полимеризации ИБ начинается еще до того, как инициирующие частицы успевают продиффундировать достаточно далеко. Даже с помощью скоростной киносъемки ( 3 ООО кадр/с) не удалось установить, каков промежуток времени между попаданием капли раствора А1С1з на поверхность ИБ (при 195 К) и появлением полимера. Отсюда следует, что в этих, да и многих других весьма быстрых ионных и неионных системах, не обеспечивается равномерность распределения реагентов и температуры в реакционном объеме, а это означает, что на практике процессы катионной полимеризации ИБ и другие подобные им весьма быстрые химические реакции трудно управляемы. Это обстоятельство требует поиска и разработки новых подходов к кинетическому изучению быстрых процессов полимеризации (да и другргх быстрых реакций), а также методов управления этими процессами непременно с использованием уравнений химической кинетики, теплоотдачи, диффузии и конвекции. [c.115]

    Если в системе остался газообразный мономер, то после прекращения кипения будет идти разогрев всей системы, при этом несколько меняется теплоемкость смеси газ-жидкость и существенно возрастает теплота полимеризации Яжж м- Соответственно, наклон кривой АТ от АМ в этой области будет равен aз q J / p (при Т>Т , если мономер остался в жидкой фазе) или о з (Яжж+ мУСр (при Т>Т, , если мономер перешел в газовую фазу). Здесь Ср-средняя теплоемкость газожидкостной смеси. Схематическая кривая АТ от АМ во всем возможном диапазоне изменения температур представлена на рис. 3.26. Графическая зависимость позволяет определять распределение средних температур по зонам реактора с многоступенчатой подачей катализатора, если известно количество хюлимера, получающегося в каждой зоне, которое однозначно связано с количеством подаваемого катализатора. В частном случае, когда константы скорости роста и гибели активных центров полимеризации не зависят от температуры, а кинетическая схема полимеризации соответствует быстрому инициированию и первому порядку скорости реакции роста цепи по мономеру и гибели активных центров по их концентрации, имеем выражение для выхода полимера в виде  [c.162]

    Впервые систематизируются научные исследования в области макроскопической модели протекания быстрых процессов олиго- и полимеризации изобутилена. Обсуждаются диффузионная, гидродинамическая и зонная модели. Рассмотрено математическое моделирование процесса полимеризации изобутилена как быстрой химической реакции. Раскрыты основные принципиально новые, в большей мере не имеющие аналогов, закономерности процесса и выявлены три макроскопических типа протекания реакции, прежде всего факельного и квазиидеального вытеснения в турбулентных потоках ( плоский фронт реакции). Рассмотрен нетрадиционный подход к оценке кинетических констант реакции полимеризации изобутилена Кр и К . Детально проанализированы методы регулирования основных молекулярно-массовых характеристик полиизобутилена благодаря изменениям различных факторов в первую очередь не имеющих аналогов в режиме квазиидеального вытеснения в турбулентных потоках, где выявлен ряд критических параметров. Рассмотрено влияние теплосъема как внешнего, так и внутреннего (за счет кипения мономера и/или растворителя). Детальный анализ теплового режима реакции полимеризации изобутилена и его влияния на молекулярную массу и молекулярно-массовое распределение полимера позволили предложить новый метод оценки молекулярно-массовых характеристик с использованием зонной модели. На базе этой модели разработаны принципы регулирования молекулярных масс и молекулярно-массового распределения полиизобутилена в зависимости от числа зон подачи катализатора и его количества, подаваемого в каждую зону. [c.378]

    Необходимо отметить, что большинство цитируемых работ выполнено в системах без поверхностно-активных высокомолекулярных СЭ, обязательно присутствующих в процессах суспензионной полимеризации ВХ. Экспериментальные исследования [50, 51, 62, 90] показали значительное влияние высокомолекулярных СЭ на процесс эмульгирования. В отсутствие СЭ равновесный размер капель эмульсии устанавливается очень быстро (не более 30 с) [50], тогда как при наличии СЭ он не был достигнут и через час [62, 90]. Авторы предложили, что данный факт объясняется значительным снижением частоты коалес-цениии капель в присутствии СЭ и неоднократным распределением диссипируемой энергии по аппарату. Прямые измерения частоты коалесценции капель в присутствии СЭ [62,90] показали, что при наличии 0,2% желатина или 0,1% МЦ частота коалес11енции не превышает 0,1 ч , что на 2-3 порядка меньше частоты коалесценции в нестабили-зированных системах [229, 238, 241]. [c.24]

    Когда, чтобы получить гидратированный гель, смешивают растворы алюмината и полисиликата, эти анионы, несомненно, вступают в реакцию полимеризации. Полученный в результате гель является аморфным и находится в предельно простом состоянии. Состав и структура такого геля определяются размером и структурой полимеризующ,ихся частиц. Поскольку силикаты могут отличаться и по химическому составу и молекулярновесовому распределению, структура гелей также может быть различной. Следовательно, процесс гелеобразования регулирует процесс образования ядер кристаллизации цеолитов. Это положение в обш,ем подтверждается данными о размерах и морфологии кристаллов цеолитов, выращ,енных из гелей. Полученные кристаллы очень малы (несколько микрон), однородны и часто имеют совершенную форму. Большая степень пересыщения ионами, содержащимися в геле, должна привести к быстрому гетерогенному ядрообразованию и возникновению большого числа центров кристаллизации. Причем образование ядер происходит после индукционного периода (рис. 4.7). [c.349]

    Перенос реакционноспособной металлорганической группы от одного олефина к другому имеет значение в ходе превращения этилена в высщие а-олефины в присутствии алюминийтриалкилов в качестве катализаторов. Скорость описанной выще реакции вытеснения увеличивается незначительно в присутствии катализатора вследствие самопроизвольного протекания ее при высокой температуре и может быть использована для антиста-тистической полимеризации, дающей узкую кривую распределения [7]. Подробнее этот вопрос здесь рассматриваться не будет. Следует сказать лишь о вытеснении, катализируемом никелем [7]. В присутствии следов коллоидального никеля (0,1%) равновесие реакции вытеснения быстро устанавливается уже при температуре на 100° ниже, чем без катализатора. Характер действия никеля еще не выяснен. Возможно, он ускоряет действительную реакцию вытеснения (при двойных столкновениях) типа [c.93]

    Такегами и сотр. [ 203] получили сополимер типа ABA (ПММА-ПЭГ-ПММА) при полимеризации метилметакрилата (ММА). В качестве инициатора использовали натриевую соль полиэтиленгликоля (ПЭГ), реакция проводилась в присутствии дициклогексил-18-краун-6. Содержание синдиотактических полимеров было намного выше, чем в продукте, полученном в отсутствие краун-эфира. Результаты исследований, посвященных улучшению растворимости щелочных металлов в присутствии краун-эфиров (разд. 3.2.4 и 3.3.2.В), были применены для использования щелочных металлов как инициаторов анионной полимеризации. Используя дициклогексил-18-краун-6, Кемпф и сотр. [ 204] провели гомогенную анионную полимеризацию бутадиена, изопрена и метилметакрилата с растворами Na, К, НЬ и s в ТГФ и бензоле- Во всех случаях полимеризация шла настолько быстро, что превращение мгновенно происходило нацело. Микроструктура полимера, полученного при Ю°С в бензольном растворе, аналогична структуре полимера, полученного в полярном растворителе. Молекулярная масса полимера оказалась намного выше, чем значение, рассчитанное, исходя из отношения (мономер)/ иниЩ1атор). Молекулярно-массовое распределение полимера было широким = 3-4). Полимеры существенно отличались от полученных другими известными методами полимеризации. [c.255]

    При анализе уравнений (2.34) для случаев медленного и быстрого обрывов можно сделать заключение о применимости по отношению к ним принципа Боденштейна—Семенова. Числовые расчеты, проведенные Гардоном [20], подтверждают этот вывод для произвольных значений параметра а, определяемого формулой (2.28). Следовательно, через определенное время с начала второй стадии эмульсионной полимеризации, равное двум-трем t, распределение радикалов по частицам может быть определено с достаточной степенью точности из формул, полученных Стокмаером [11] и О Тулом [12]. [c.69]

    В случае быстрого обрыва среднее время жизни радикала в частице равняется среднему интервалу времени между двумя последовательными попадавиями радикалов в частицу, т. е. и. Если то за время жизни радикала в частице он практически не успевает принять участие в реакциях передачи цепи, и поэтому их. можно не учитывать при расчете молекулярной массы. Если iи > то значение средней степени полимеризации полимеров не будет зависеть от коллоидных характеристик латекса, оно будет определяться только скоростями химических реакций роста и передачи цепи. В частности, значение среднечисловой степени полимеризации в этом случае определится простым соотношением Риг = Ар[Л1]/(йв[5]), известным в теории гомогенных процессов. Молекулярно-массовое распределение продуктов эмульсионной полимеризации при также будет описываться формулами этой теории. [c.74]

    Была решена задача расчета молекулярно-массового распределения, в приближении быстрого обрыва теории Смита—Юэрта без учета реакций передачи цепи [32, 33]1. Причем Зайдель и Кац [32] це находили функцию молекулярно-массового распределения, а ограничились вычислением таких ее важнейших характеристик, как среднечисло1вая и среднемассовая Pw степени полимеризации и их отно1шения K=Pw PN, называемого коэффициентом полидисперсности. В частности, для второй стадии эмульсионной полимеризации были получены следующие выражения ([32]  [c.75]

    Для расчета распределения латексных частиц по объемам в случае быстрого обрыва был использован статистический подход [41, 42]. Причем если в более ранней работе [41] допускалось, что во все частицы попадало одинаковое число ра1Дикалов, то позднее [42] это ограничение было снято. На основании расчетов, приведенных в этих двух работах, можно сделать вывод об увеличении дисперсии распределения частиц латекса по размерам в ходе процесса эмульсионной полимеризации, Онако если характеризовать ширину распределения F(V,i) коэффициентом вариации, равным отношению дисперсии этого распределения к его среднему значению, то эта величина будет со временем уменьшаться. Аналогичные выводы следуют из решеиий соответствующих кинетических уравнений для случая быстрого обрыва в теории Смита—Юэрта [39, 40]. Попытки проведения расчета распределения латексных частиц по размерам для случая медленного обрыва были предприняты в работе О Тула [40] . [c.83]

    Смесь мономера, инициатора, агента передачи цепи и привитого сополимера-стабилизатора в гептане непрерывно подают в верхнюю часть реактора с мешалкой, обеспечивающей быстрое распределение подаваемой шихты в полимерной дисперсии, заполняющей реактор. Этим обеспечивается быстрая адсорбция мономера на частицах полимера, способствующая микроблочной полимеризации, ускоренной благодаря гель-эффекту. Дисперсионная полимеризация проводится с азоинициатором при 90—95 С, т. е. несколько ниже температуры кипения гептана. Для достижения конверсии полимера 97—99% время пребывания в реакторе составляет 10—20 мин. В случае метилметакрилата получена полимерная дисперсия с содержанием твердых веществ 60%, а полимер обладает высокой однородной молекулярной массой и размером частиц в интервале 0,1—5 мкм. [c.249]

    Подобные системы, естественно, усложнены наличием большого числа ингредиентов и их распределением между двумя фазами. При перемешивании мономера, мыла и воды сначала образуется водная фаза, содержаш ая эмульгированный мономер в виде капелек диаметром около 1(х и мицеллы мыла диаметром около 0,005 л, причем ббльшая часть мыла находится в виде мицелл. При полимеризации согласно Харкинсу из мицелл мыла образуются новые частицы мономер — полимер, причем именно в этих частицах и происходит ббльшая часть полимеризационных процессов. Конечно, реакция может идти и в других частях системы, поскольку мономер в зависимости от его растворимости распределен во всей системе. Водная фаза, но-видимому, является вторичньш местом инициирования. При применении персульфатных катализаторов радикалы образуются, вероятно, в водной фазе эти радикалы довольно быстро внедряются в мицеллу мыла, где находится достаточное количество молекул мономера, способных к росту. Капли мономера являются теми резервуарами, за счет которых активированные мицеллы превращаются в большие частицы мономер — полимер реакция продолжается вплоть до истощения резервуар ов, но канли мономера не могут быть тем местом, где протекает реакция, поскольку экспериментально доказано, что они по крайней мере в тысячу раз больше образующихся частиц полимера. [c.218]

    Дополнительной причиной возникновения широкого молекулярновесового распределения, обнаруженного Веслау, служит то обстоятельство, что исследованные полимеры были получены при довольно высоких степенях превращения. Возможно, что на более поздних стадиях полимеризации диффузионные процессы нарушают нормальный ход реакции и приводят к образованию более коротких молекул за счет их более быстрого удаления с активной поверхности катализатора. [c.223]

    Во многих живущ,их системах при полимеризации растут все макромолекулы одновременно. Иногда к Ж. п. относят только такие системы, однако это неверно. Напр., при полимеризации под действием литийорганич. соединений в углеводородной среде в каждый момент растет лишь небольшая доля макромолекул, а подавляющее большинство активных центров находится в виде неактивных ассоциатов. Однако благодаря быстрому обмену между ними в суммарном процессе принимают участие все цепи (см. Анионная полимеризация, Диенов полимеризация), и система обладает всеми свойствами Ж. п. К этому случаю близки образующиеся при синтезе гетероцепных полимеров системы, в к-рых отсутствуют обрыв и передача цепи через мономер, растворитель и т. д., но протекает передача цепи на полимер с разрывом цепи полимера, в результате к-рой происходит непрерывный обмен активными центрами между цепями. Эти системы сохраняют большинство признаков Ж. п. (кинетически стабильные активные центры, рост мол. массы пропорционально количеству образовавшегося полимера, достижение равновесия полимеризация — деполимеризация). Но в отличие от ранее рассмотренных примеров в этих системах передача цепи с разрывом в конечном счете приводит к установлению равновесного распределения макромолекул как по размеру ( наиболее вероятное ММР с Мц,/Ж =2), так и по составу. [c.386]


Смотреть страницы где упоминается термин Быстрая полимеризация распределение: [c.28]    [c.542]    [c.82]    [c.80]    [c.288]    [c.109]    [c.136]    [c.71]    [c.275]    [c.148]    [c.389]    [c.542]    [c.241]    [c.146]   
Синтактические полиамидные волокна технология и химия (1966) -- [ c.284 ]




ПОИСК







© 2025 chem21.info Реклама на сайте