Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация взаимодействие полимера с инициаторами

    В реальных условиях процесс радикальной полимеризации осложняется реакциями, которые нами до сих пор почти не принимались во внимание. Речь идет о взаимодействии растущих цепей с различными веществами, присутствующими в реакционной среде, — с растворителем, полимером, инициатором или со случайными примесями, в том числе с кислородом. Все эти реакции, которым в наиболее общем виде отвечают уравнения (1У-6) [c.245]


    Взаимодействие макромолекулярных инициаторов с мономером. В качестве макромолекулярного инициатора (радикального пли ионного типа) используют полимеры, содержащие одну или две активные концевые группы, способные в определенных условиях инициировать полимеризацию мономера, образующего второй блок. Активными концевыми группами могут являться долгоживущие концы растущих цепей (при радикальной, ступенчатой, ионной или координационно-ионной полимеризации) и различные группировки, способные нри соответствующих условиях выполнять роль инициаторов полимеризации. Таким способом синтезируют Б., состоящие из двух-трех блоков, типа (А) — (В) или (В) — (А) — (В) . Если при получении Б. типа (А) — (В) активный центр генерируется на конце второго растущего блока (В) (наир., нри анионной полимеризации) с образованием живущих полимеров, то в принципе можно получать Б., состоящие из двух [c.132]

    Поливинилхлорид (ПВХ), получаемый эмульсионной полимеризацией в присутствии инициаторов перекисного типа, используют для получения как жестких пленок, так и пластиката — эластичной пленки, содержащей до 40% пластификатора. Аморфный характер полимера наряду со значительными силами межмолекулярного взаимодействия обусловливает некоторую прочность расплава даже выше температуры текучести. Это позволяет перерабатывать поливинилхлорид в пленку методами каландрования и экструзии с раздуванием. [c.17]

    Полихлорвинил, полученный в присутствии инициаторов радикальной полимеризации, имеет типичную аморфную структуру. В последнее время найдены условия получения кристаллизующегося поливинилхлорида ионной полимеризацией [85, 86]. Полимеризацию проводят в тетрагидрофуране, к-гептапе или бензине. Катализатором служат комплексы, возникающие при взаимодействии триизобутилалюминия и треххлористого ванадия или три-алкилалюминия и треххлористого титана. Полимеризация протекает при 30—40° в металлических реакторах, снабженных мешалкой и обогревающей рубашкой. Полимер образуется в виде тонкого порошка. Стереорегулярную фракцию полимера можно выделить экстракцией циклогексаном и осаждением полимера из раствора метиловым спиртом. [c.801]

    Участие ПАВ в стадии инициирования полимеризации отмечено в ряде работ, например [143]. Увеличение скорости процесса и снижение степени полимеризации наблюдалось в системе, инициированной персульфатом, и под действием анионных ПАВ. При этом уменьшается значение энергии активации [143], что свидетельствует об изменении механизма инициирования процесса. Возникновение же радикала в макромолекуле неионогенных ПАВ в результате взаимодействия с инициатором или передачи цепи обусловливает возможность прививки акриламидной цепи к ПАВ, что отражается на свойствах получающегося полимера [144]. [c.46]


    На практике применяется ограниченный круг соединении спирты и галогеналкилы, химически взаимодействующие с одним из компонентов катализатора с образованием новых соединений, которые изменяют активность катализатора, а также добавки донорного типа — простые эфиры и кетоны, образующие аддукты с комплексными катализаторами. В качестве регуляторов молекулярной массы при полимеризации на комплексных катализаторах используются кислород, вода, насыщенные и ненасыщенные галогенуглеводороды. Однако универсальным и наиболее эффективным регулятором является водород, ограничивающий рост цепи полимера. При полимеризации на радикальных инициаторах для регулирования молекулярной массы наиболее широко используется пропан — эффективный переносчик цепи. [c.94]

    Соотношение различных типов центров в катионоактивных системах зависит от диэлектрической проницаемости среды е, основности компонентов и наличия примесей, способных взаимодействовать с инициатором. Иногда в ходе полимеризации происходит заметное изменение соотношения между активными центрами, находящимися в виде ионных пар и свободных ионов, что фиксируется по изменению е. Скорость роста цепи при образовании свободного иона больше, чем в случае ионной пары примерно в 10 раз (в анионной полимеризации примерно в 10 раз). Кроме того, активные центры могут находиться в несольватированной форме, а также в форме, сольва-тированной мономером, полимером и растворителем. Уравнение баланса активных центров в момент времени t для этой системы имеет вид  [c.35]

    Реакции передачи цепи относятся к одному из методов получения привитых сополимеров. Исходная реакционная смесь состоит из подлежащего модификации полимера, инициатора и мономера. Мономер может применяться в чистом виде (реакция в блоке), в виде растворов или в газообразном состоянии. В указанной системе протекает гомополимеризация мономера и привитая полимеризация в результате передачи цепи, полимеру. Эффективность прививки зависит от склонности активного центра, образующегося при распаде инициатора, взаимодействовать с мономером или полимером и различных конкурирующих реакций (рекомбинация и диспропорционирование макрорадикалов, [c.245]

    Латексная полимеризация. При латексной полимеризации эмульсия мономера в воде стабилизируется поверхностно-активными веществами типа мыл. Образующаяся эмульсия с диаметром капель около 1 мкм и получаемый после полимеризации латекс полимера с размером частиц 0,1—1 мкм представляют собой устойчивые коллоидные системы. Для латексной полимеризации используются инициаторы, растворимые в воде. При промышленном оформлении процесса чаще всего применяют перекись водорода или персульфат аммония. Активными инициаторами являются окислительно-восстановительные системы. Взаимодействие между окислителем и восстановителем протекает со значительно меньшей энергией активации, чем термический распад перекисей и азосоединений. Так, энергия активации реакции перекиси водорода с солью двухвалентного железа составляет 10,1 ккал/моль, в то время как энергия активации распада перекиси равна 30—35 ккал/моль. Это позволяет получить достаточные концентрации радикалов и проводить процесс полимеризации с высокими скоростями при низких температурах. [c.364]

    Необходимая для проведения привитой сополимеризации активация макромолекул ПВХ может быть достигнута в результате реакции передачи цепи на полимер при полимеризации мономеров в присутствии ПВХ, создания в полимере активных центров путем окисления кислородом или озоном, облучения и механодеструкции ПВХ. Известны также методы активации ПВХ, основанные на нерадикальном взаимодействии полимеров между собой или с мономерами [29]. Характерная для процесса полимеризации винилхлорида высокая интенсивность реакции передачи цепи позволяет довольно легко проводить модификацию ПВХ путем полимеризации различных мономеров в латексах или растворах ПВХ в присутствии инициаторов радикальной полимеризации. Таким способом к ПВХ, сополимерам винилхлорида и перхлорвинилу могут быть привиты акрилонитрил [30, 31], 4-винил-пиридин [32], 2-метил-5-винилпиридин [30, 33]. [c.428]

    Свободный радикал инициатора или растущая полимерная цепь (макрорадикал) могут взаимодействовать с неактивными молекулами полимера и отрывать атом водорода, находящийся в середине молекулы. В этом месте возникает возможность присоединения мономера. При этом образуется полимерная цепь, направленная в сторону от основной полимерной молекулы. Это —реакция разветвления полимера. Кроме наличия примесей, на разветвление полимерной цепи влияет увеличение конверсии мономеров, так как столкновение растущих полимерных цепей с молекулами полимера становится более вероятным, чем с молекулами мономера. Разветвление происходит также при повышении температуры полимеризации, так как энергия активации разветвления больше, чем энергия активации роста полимерной цепи (58,8 и 21,0— 25,2 кДж/моль соответственно) [19]. [c.142]


    Получаемый эфир целлюлозы содержит двойную связь. Благодаря этому при взаимодействии еГО СО СКЛОННЫМИ К полимеризации виниловыми или диеновыми соединениями в присутствии инициаторов образуется привитой разветвленный полимер. Например, реакция акрило- [c.257]

    При взаимодействии такого полиэфира с ненасыщенным низкомолекулярным соединением (мономером) в присутствии инициатора реакции полимеризации происходит их совместная полимеризация, приводящая к образованию неплавкого полимера сетчатой структуры  [c.725]

    Катализаторы ускоряют взаимодействие олигомеров между собой или с отвердителем при отверждении по реакции поликонденсации или ионной полимеризации. В отличие от инициаторов и отвердителей они не входят в состав отвержденного полимера. Катализаторы обладают избирательной способностью в зависимости от типа олигомера. Например, реакции эпоксисоединений, в том числе и при отверждении, активизируются третичными аминами, активность которых повышается в присутствии протонодонорных веществ (спиртов, кислот и др.) и снижается под влиянием протоноакцепторных веществ (амидов кислот, альдегидов и т.д.). [c.107]

    Само по себе присутствие эмульгатора в неэмульсионной системе не влияет на скорость инициированной персульфатом калия полимеризации, если нет специфического взаимодействия между ним и инициатором. Это показано при дилатометрическом исследовании иолимеризации акриламида в водном растворе в присутствии неионогенного, анионогенного и катионогенного эмульгаторов [33]. При концентрациях ниже ККМ ни один из них не влияет на скорость, тогда как выше ККМ только катионогенный эмульгатор способствует уменьшению скорости полимеризации и молекулярной массы полимера. Последнее объяснено электростатическим взаимодействием мицелл катионогенного эмульгатора с ионами персульфата, что приводит к более медленному разложению последнего по сравнению с разложением его в растворе. Возможно также предположить, что к снижению скорости приводит быстрый расход перекисного инициатора при взаимодействии его с катионогенным эмульгатором. [c.89]

    Вследствие того что инициаторы, выбираемые для полимеризации в эмульсии, обычно растворимы только в водной фазе, где концентрация мономера крайне мала (исключение представляют немногие мономеры, такие, как акрилонитрил и метилметакрилат, в заметной степени растворимые в воде), очевидно, что в отсутствие эмульгатора скорости реакции очень малы. В действительности в присутствии эмульгатора реакции протекают с высокими скоростями и, более того, в противоположность полимеризации в массе сопровождаются образованием полимера с высокой степенью полимеризации. Эти наблюдения показывают, что реакция обрыва затруднена и что присутствие эмульгатора делает возможным взаимодействие между радикалами и мономером. Эмульгатор выполняет свою главную роль на ранних стадиях реакции, но тем не менее он определяет кинетику реакции до ее завершения. [c.165]

    Ввиду наличия большого количества двойных связей в макромолекулах каучуков их сшивание возможно и без серы за счет взаимодействия с веществами типа инициаторов полимеризации (перекиси, азосоединения и др.), которые, атакуя двойные связи, вызывают их разрыв с образованием свободных радикалов. Эти радикалы реагируют друг с другом или с двойной связью, причем образующиеся поперечные углерод-углеродные связи имеют ту же природу, что и химические связи в основной цепи полимера  [c.45]

    Кинетика и механизм полимеризации. Изучение кинетики и механизма суспензионной полимеризации ТФЭ в воде представляет собой очень сложную задачу. Независимо от условий полимеризации уже на начальной стадии роста макрорадикала образуется твердая фаза полимера, и на протяжении всего процесса полимеризация носит ярко выраженный гетерогенный характер [47]. Инициирование полимеризации осуществляется в водном растворе, где в результате взаимодействия радикалов инициатора с растворенным ТФЭ начинается рост молекулы полимера. За счет дифильностн макрорадикалов происходит агрегация молекул с образованием нерастворимых частиц полимера, которые в дальнейшем и становятся центрами полимеризации. Образующиеся частицы имеют рыхлую структуру и из-за несмачиваемости ПТФЭ водой всплывают на поверхность. Их поры заполнены мономером, и полимеризация в дальнейшем протекает непосредственно в газовой фазе с резко возрастающей скоростью. Первая гомогенная стадия полимеризации непродолжительная и длится секунды или доли секунды. [c.37]

    В результате полимеризации стирола в присутствии перекиси водорода и сульфата же.11еза(П) при низкой температуре образуется полистирол, содержащий на концах цепи гидроксильные группы [203, 204]. Полистирол, обладающий концевыми гидроксильными группами, был получен также при проведении полимеризации в растворе в присутствии в качестве инициатора системы перекись п-бромбензоила — соль желе-за(П) — бензоин. При взаимодействии полимера, содержащего на конце молекул гидроксильные группы, с диизоциаиатом образуется блок-сополимер [c.306]

    Образование свободных радикалов под действием только тепла (термическая полимеризация) осуществляется редко, так как ма-лейщие примеси кислорода или других веществ могут также играть роль инициаторов. При нагревании увеличивается кинетическая энергия молекул, и приводит к разрыву связи во взаимодействующих молекулах мономера, в результате чего образуются бирадикалы. Скорость этой реакции мала и сильно зависит от температуры. Однако при повышении температуры могут развиваться реакции окисления, деструкции, что отрицательно сказывается на свойствах полимера. Поэтому при термической полимеризации получаются полимеры нерегулярного строения с пониженной молекулярной массой и высокой степенью полидисперсности. [c.30]

    В связи с механизмом полимеризации циклических эфиров под действием инициирующих систем на основе цинк- и алюминийалкилов следует упомянуть промотирующее влияние трехчленных циклов [эпихлоргидрина (ЭХГ), окиси пропилена] на полимеризацию циклов большего размера (ТГФ, бис-хлорметилциклооксабутан), что, по-видимому, обусловлено легкостью образования триалкилоксониевых ионов при взаимодействии комплексов инициатор—мономер с промотором [86]. К числу последних работ в этой области принадлежат интересные исследования Саегусы и др. [7, 86—89], в которых на примере системы ТГФ—Е1дА1-Н2О —ЭХГ измерена концентрация активных центров на разных стадиях процесса и установлено хорошее соответствие между величинами М, полученными непосредственным путем и из данных по молекулярным весам образующихся в системе полимеров. Как показано, реакция при 0° протекает с индукционным периодом, в течение которого концентрация активных центров постепенно возрастает, далее она остается неизменной (рис. 85). Изменение соотношения между компонентами инициирующей системы, существенно отражающееся на общей скорости процесса, мало влияет на константу скорости реакции роста (табл. 71) следовательно, различия между системами разного состава сводятся преимущественно к разному числу активных центров и практически не влияют на их природу. [c.224]

    Прививку полимера к пов-сти наполнителя можно осуществить разл. способами. Эффективность прививки определяют после длит, обработки продукта р-рителем по доле нерастворимого полимера, связанного с наполнителем. Наиб, изучена радикальная прививка. Так, привитые полимеры образуются при измельчении минер, наполнителей в присут. жидких или газообразных мономеров, напр, стирола, метилметакрилата (кол-во привитого полимера обычно 1-2% по массе), а также при радиац. обработке смеси наполнителя (напр., целлюлозы) с мономером (образуется также нек-рое кол-во гомополимера). Прививкой к пов-сти наполнителя в-в (в т. ч. инициаторов), содержащих функц. группы, осуществляют фиксацию на частицах наполнителя активных центров, используемых в дальнейшем для получения наполненных полимеров заданного состава. Подобным способом получены наполненные материалы на основе, напр., полистирола, поливинилхлорида, политетрафторэтилена. В случае прививки к минер, наполнителям полиолефинов используют способность катализатора Циглера-Натты, а также катализатора на основе Сг или Zr взаимодействовать с группами ОН, имеющимися на пов-сти таких наполнителей. Сначала наполнитель подвергают термообработке с целью удаления нежелат. примесей, затем обрабатывают катализатором, после чего проводят жидко-или газофазную полимеризацию олефинов. Полученные в этом процессе наполненные материалы обладают необычным комплексом св-в. Напр., высокомол. полиэтилен, содержащий 50-60% по массе минер, наполнителя, обладает высокими износостойкостью и ударной вязкостью, к-рые невозможно достигнуть при мех. смешении полимера с наполнителем фафито- и саженаполненный полипропилен имеет необычно высокую электропроводность. Методом П. на н. можно получить структуры, в к-рых частицы наполнителя окружены равномерными слоями полимеров и сополимеров разл. типа. Особенно перспективен этот метод для получения сверхвысоконаполненных материалов с равномерным распределением наполнителя в матрице полимера. [c.638]

    Термическое инициирование заключается в самоинициирова-нии при высоких температурах полимеризации чистых мономеров без введения в реакционную среду специальных инициаторов. В этом случае образование радикала происходит, как правило, вследствие разложения небольших количеств перекисных примесей, которые могут возникать при взаимодействии мономера с кислородом воздуха. На практике таким путем получают так называемый блочный полистирол." Однако широкого распространения метод термического инициирования полимеризации не нашел, так как он требует больших затрат энергии, а скорость полимеризации в большинстве случаев невелика. Ее можно увеличить, повышая температуру, но при этом снижается молекулярная масса образующегося полимера. [c.41]

    Изучению структуры и конформации полиалкилакрилатов методом ЯМР и в особенности изучению направления присоединения к двойной связи в ходе роста цепи посвящено много работ [1—9] (см. гл. 8). Этот класс полимеров очень удобен для подобных исследований, так как в этом случае разница в химических сдвигах /п-метиленовых протонов, как и в метакрилатах, весьма велика. На рис. 4.1, а представлен снятый на частоте 100 МГц спектр ЯМР протонов основной цепи изотактического полиизопропилакрилата, полученного полимеризацией в присутствии реактива Гриньяра [2, 3]. (На спектре не показаны не используемые для анализа сигналы протонов боковой цепи — дублет метильных групп при 8,76т и септет метинильного протона при 4,96-с). На рис. 4.1,г показан спектр атактического (преимущественно синдиотактического) полимера, полученного в присутствии свободнорадикального инициатора. Независимо от конфигурации цепи а-протон в обоих спектрах дает сигнал с центром при 7,42г, представляющий собой квинтет, который можно было ожидать при условии, что константы спин-спинового взаимодействия а-протона с четырьмя соседними р-протонами приблизительно равны (см. ниже). В работе Иосино и др. [5] на основе ряда остроумных опытов на модельных соединениях установлено, что мультиплет при 7,86т принадлежит син(или эритро)-протону, а мультиплет при 8,31тг — анти (или трео)-протону (см. разд. 2.2). [c.101]

    Применение техники меченых атомов (полимеризация под влиянием меченого инициатора в присутствии меченого хинона) привело к установлению других важных фактов. Как показано, сравнительно небольшая часть хинона взаимодействует с радикалами, образующимися при разложении инициатора. Основными продуктами реакции являются низкомолекулярные полимеры, содержащие связанный хинон, что указывает на слабо выраженную способность семпхиноидных радикалов инициировать новые цепи. [c.254]

    Матида [172, 173], исследовавший полимеризацию этиленимина, показал, что вода является инициатором реакции полимеризация, так же как двуокись углерода и различные кислоты. Полиэтиленимин можно получить также из окиои этилена я м-очевины при. нагреваиии. Растворы полимера в воде обладают основными свойствами при взаимодействии с формальдегидом образуется сшитый полимер. [c.243]

    Были описаны различные примеры сшивания насыщенных полимеров при взаимодействии их с мономерами. Так, например, в молекулах полимеров могут содержаться разнообразные функциональные группы, способные реагировать с молекулами мономера при анионной полимеризации. Ковачик [367] сообщил о сшивании полимеров, содержащих аминогруппы, при взаимодействии их с диимидами малеиповой кислоты. Второй возможный вариант сшивания насыщенного полимера при взаимодействии с мономером может быть осуществлен для полимеров, содержащих перекисные группы [368, 369]. В этом случае полимер является полифункцио-нальным инициатором процесса полимеризации мономера, и образование поперечных связей происходит в результате актов обрыва растущих цепей. Третий вариант основан на возможности образования сшивок еще в процессе самой полимеризации в результате интенсивных реакций передачи цепи между растущими цепями и макромолекулой полимера. Обычно при этом наблюдается образование лишь разветвленных макромолекул, но в определенных условиях возможно получение сшитого полимера [370]. [c.201]

    Исходный мономер — винилхлорид — обычно получается при взаимодействии хлористого водорода с ацетиленом [19] или при дегидрохлорировании дихлорэтана. В отсутствие кислорода мономер вполне устойчив и не требует стабилизации при хранении. В присутствии инициаторов винилхлорид как в жидком состоянии, так и в растворе или эмульсии легко превращается в бесцветный полимер. Полимеризация винилхлорида в промышленности как и других галоидолефинов, наиболее часто проводится по эмульсионному или суспензионному методам. В 1953—1956 гг. был опубликован ряд работ, посвященных фотополимеризации и полимеризации жидкого винилхлорида, которые рассматриваются при о лсании соответствующих методов получения поливинилхлорида. [c.261]

    При к < к2 процесс протекает нестационарно и ур-ние (И) соблюдается лишь после завершения инициирования. В таких случаях образуются полимеры с широким молекулярно-массовым распределением. Ассоциация обычно обусловливает дробный порядок реакции по инициатору и растущим цепям, т. к. ассоциированные формы, как правило, обладают низкой реакционной способностью и в равновесных системах (МеК) пМеВ (12а) развитие процесса практически целиком обеспечивается мономерной (МеК) или менее ассоциированной формой. В частности, известны факты, в соответствии с к-рыми кинетически эффективными частицами при реакциях литийалкилов являются их димерные формы (взаимодействие литийбутила с бутилброми-дом в присутствии оснований Льюиса, полимеризация винилхлорида под действием литийбутила и др.). В этих условиях кажущиеся константы скоростей элементарных актов включают в себя соответствующие константы равновесия. Подобные черты свойственны многим процессам полимеризации, протекающим в неполярных средах под действием литийалкилов, где растущие цепи различных полимеров (стирола, бутадиена, изопрена) обычно существуют в виде ассоциатов, содержащих 2 молекулы. Дополнительные осложнения возникают из-за образования перекрестных ассоциатов растущих цепей с инициатором. Образование ассоциатов обнаружено и при полимеризации с использованием в качестве катализаторов калийорганических соединений в углеводородной среде. [c.74]

    Низкая эффективность инициирования (1 —10%), типичная для многих систем металл алкил — полярный мономер, может быть обусловлена образованием неактивных продуктов на стадии первичного взаимодействия инициатора с мономером, а также конкуренцией реакций олигомеризации и полимеризации. Последнее оС-стоятельство способно оказаться решающим, как это, в частности, показано на примере А. п. акрилонитрила в углеводородной среде. Характерная особенность процессов А. п. полярных мономеров с низким коэфф. использования инициирующего агента из-за побочных реакций — относительно большая устойчивость растущих цепей, к-рые часто ведут себя в тех же условиях как живущие полимеры. Это относится, напр., к акрилатам и акрилонитрилу. Пониженная склонность высокомолекулярных металлорганических соединений данного типа (т. е. карбанионных растущих цепей, отвечающих полярным мономерам) к реакциям дезактивации, по сравнению с обычными металлалкилами, пока не нашла строгого объяснения. Анализ возможных причин этого явления приводит к необходимости принимать во внимание внутримолекулярную циклизацию активного центра с функциональной группой той же цепи, а также возможность его стабилизации вследствие комплексообразования с продуктами дезактивации инициатора (с алкоксидами металла, металлсодержащими циклоолигомерами и т. п.), обычно присутствующими в реакционной смеси в большом избытке по отношению к активным центрам. [c.75]


Смотреть страницы где упоминается термин Полимеризация взаимодействие полимера с инициаторами: [c.189]    [c.100]    [c.135]    [c.223]    [c.100]    [c.100]    [c.174]    [c.37]    [c.223]    [c.113]    [c.275]    [c.165]    [c.25]    [c.171]    [c.275]    [c.77]    [c.319]    [c.225]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.378 ]




ПОИСК





Смотрите так же термины и статьи:

Инициаторы

Инициаторы полимеризации



© 2024 chem21.info Реклама на сайте