Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура полимеров и химические реакции полимеров

    Практически часто применяется смешанная классификация химических реакций в полимерах по видам соответствующих превращений макромолекул и видам воздействия на них. В ряде случаев определенный вид воздействия приводит и к одному виду изменений макромолекул, но иногда в зависимости от химической природы полимеров один И тот же вид воздействия может привести к разным изменениям структуры макромолекул. Например, при действии высоких температур может протекать деструкция, т. е. распад линейных макромолекул у одних полимеров (полипропилен, полистирол), циклизация — у других (полиакрилнитрил), образование сетчатых структур — у третьих (1.2-полибутадиен, сополимер бутадиена со стиролом), а также смешанные случаи (полиизопрен и др.). При облучении, например, полиэтилена одновременно протекают реакции соединения макромолекул друг с другом (сшивание) и распада отдельных молекул (деструкция). [c.219]


    Химические реакции полимеров условно можно разделить на два типа реакции, не вызывающие существенного изменения степени полимеризации (полимераналогичные превращения - химическая модификация боковых звеньев и внутримолекулярные превращения, циклизация, миграция двойных связей и др.) реакции, приводящие к изменению молекулярной массы полимера (реакции деструкции, реакции соединения макромолекул - образование разветвлений и сшивание макромолекул с образованием пространственной сетчатой структуры полимера и др.). [c.99]

    Особенности структуры полимеров в поверхностных слоях и наличие границы раздела существенно отражаются как на условиях протекания химических реакций в самих полимерах (окисление, деструкции), так и на условиях образования полимерных молекул. Этот чисто- коллоидно-химический эффект особенно важен при получении армированных пластиков, при склеивании, формировании покрытий и других случаях протекания реакции образования полимеров на границе раздела. Реакции образования полимеров на границе раздела составляют самостоятельную область физико-химии поверхностных явлений в полимерах. В чем особенности этих процессов по сравнению с реакциями образования низкомолекулярных соединений в гетерогенных условиях  [c.315]

    Рассмотрим теперь примеры химических реакций, приводящих к сшиванию полимеров. Одним из давно известных процессов образования сшитых структур является трехмерная конденсация фенола с формальдегидом. Это пример реакции, где сшитый полимер образуется в процессе получения самого полимера по реакции поликонденсации. При избытке формальдегида в смеси его с фенолом (щелочной катализатор) вначале получаются линейные молекулы резола  [c.43]

    Если представить структуру стеклообразного полимера в виде сетки, узлы которой образованы межмолекулярными связями, элементарный акт процесса ползучести можно легко представить как разрыв такой связи. Тогда для описания процесса ползучести можно применить обычное уравнение химической реакции первого порядка, считая, что он состоит из множества одновременно протекающих реакций. Естественно, что при этом необходимо ввести множество дискретных значений энергии активации, В результате удается получить уравнение Андраде для описания процесса ползучести полимеров, [c.171]


    До сих пор рассматривались полимеры линейной структуры,-однако физические свойства ионообменных смол обусловливаются сетчатой структурой, которая достигается определенными условиями химической реакции. Например, при сополимеризации стирола и дивинилбензола получается ионит сетчатой структуры, в котором дивинилбензол осуществляет поперечную связь. Ниже изображена полученная в результате такой реакции ячейка ионита, повторяющаяся г раз. Сетчатая структура предотвращает растворение полимера в воде и растворителях, но делает его способным к набуханию. Степень набухания ионита зависит от числа поперечных связей и с уменьшением их числа возрастает. [c.92]

    При протекании реакции роста цепи присоединение радикала к олефину всегда происходит таким образом, чтобы образовался наиболее устойчивый свободный радикал это подтверждено рядом исследований структуры полимеров химическими методами. Оказалось, например, что атомы хлора в поливинилхлориде расположены у атомов углерода, разделенных одним незамещенным атомом. Показано также, что поливинилацетат, полистирол, полиакрилаты и многие другие полимеры также обладают такой чередующейся структурой. Ниже приведены некоторые примеры установления строения виниловых полимеров. [c.69]

    Химические свойства полимеров. Химические свойства зависят от состава, молекулярной массы и структуры полимеров. Им свойственны реакции соединения макромолекул поперечными связями, взаимодействия функциональных групп друг с другом и низкомолекулярными веществами и деструкции. Наличие у макромолекул двойных связей и функциональных групп обусловливает повышение реакционной способности полимеров. По той же причине отдельные макромолекулы могут сшиваться поперечными связями. Примерами образования поперечных связей могут быть вулканизация и перевод линейных макромолекул термореактивных полимеров в сетчатые структуры. При вулканизации происходит взаимодействие каучука с вулканизующим,агентом, обычно с серой, с образованием резины (0,5 — 5% серы) или эбонита (20% и более серы), например  [c.462]

    Понятие морфологии применительно к полимерам означает, следовательно, значительно больше, чем это принято, например, у ботаников. Кроме различий в форме и структуре волокна и пленки морфология полимеров включает элементы тонкой (надмолекулярной) структуры, такие, как фибриллы и мицеллы, доступные и недоступные участки, аморфные и кристаллические фракции и другие надмолекулярные образования. Очевидно, что эти элементы могут существовать лишь в полимере, находящемся в конденсированной фазе, и, таким образом, исследования влияния морфологии на реакционную способность ограничиваются гетерогенными системами. Под гетерогенными системами понимают такие системы, в которых структура исходного полимера сохраняется, и, в частности, всегда сохраняются минимум две фазы — обстоятельство, усложняющее кинетические исследования. Важнейшие химические реакции полимера и мономера будут рассмотрены позже. [c.47]

    Механическое напряжение создает пространственную направленность химических процессов и изменяет структуру полимера (химическая текучесть), вследствие чего появляется анизотропия механических свойств. В тех точках полимера, где мало ингибитора вследствие недостаточно полного смешения, где из-за неоднородного распределения напряжений в материале или каких-либо случайных причин возникают более значительные деформации, раньше всего начинаются цепные химические реакции, инициированные свободными радикалами, и происходят наиболее сильные изменения структуры. В результате в этих точках появляются микродефекты, которые в дальнейшем катастрофически разрастаются до разрушения образца. Представление о местном (локальном) характере разрушения подтверждается тем, что полимерный материал в разрушенном изделии мало отличается по механическим свойствам от исходного. [c.503]

    Структура полученного полимера подтверждена химическим анализом функциональных групп и ИК-спектрами. Отмечена высокая реакционная способность полимера в реакции с изоцианатами. [c.431]

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Селективность процесса определяется как способом инициирования, так и первичной структурой полимера. Природа свободнорадикальных центров, образующихся как на низко-, так и на высокомолекулярных компонентах реакции, генерируемых физическими или химическими методами, идентична. [c.373]

    Внутримолекулярные превращения - химические реакции, обусловленные внутримолекулярными перегруппировками или взаимодействиями между собой атомов или функциональных групп одной макромолекулы, изменяющие первичную структуру полимерной цепи, но не приводящие к существенному изменению степени полимеризации исходного полимера. [c.397]

    Если при химических превращениях полимеров изменяется степень полимеризации (а иногда и структура основной цепи полимера), то такие реакции называются макромолекулярными. [c.407]

    Деструкция, являясь одним из видов старения полимеров, — довольно распространенная реакция в химии высокомолекулярных соединений. Она может играть как положительную роль (например, для установления строения полимеров, получения некоторых индивидуальных веществ из природных полимеров аминокислот из белков, глюкозы из крахмала и целлюлозы и т. д.), так и отрицательную. Являясь необратимой химической реакцией, деструкция приводит к нежелательным изменениям в структуре полимеров при их эксплуатации. Это необходимо учитывать при использовании полимерных материалов в строительстве, когда они подвергаются многим неизбежным отрицательным воздействиям. Факторы, приводящие к деструкции полимеров, можно разделить на физические (тепло, свет, ионизирующее излучение, механическая энергия и др.) и химические (гидролиз, алкоголиз, окисление и т. д.). [c.409]

    Макромолекулярная природа полимеров сун ественно изменяет протекание н них химических реакций по сравнению с низкомолекулярными аналогами. Например, при взаимодействии с серой или кислородом низкомолекулярных олефинов, моделирующих строение элементарных звеньев нолидиенов, образуются соответствующие низкомолекулярные сульфиды, альдегиды, кетоны и другие соединения. У полидиенов эти реакции, аналогичные по механизму, приводят к образованию сетчатых структур (серная вулканизация) или продуктов распада макромолекул на более мелкие образования (окислительная деструкция). При этом суш,ественНо изменяются молекулярная масса и молекулярно-массовое распределение исходных полимеров и их физико-механические свойства. [c.219]

    Любые химические превращения полимерных соединений имеют много общего с реакциями низкомолекулярных соединений, содержащих те же функциональные группы. Однако вследствие макромолекулярной структуры полимерных веществ химические превращения их отличаются определенным своеобразием. Первая особенность заключается в легкости термической и окислительной деструкции макромолекул полимеров. Эти явления сопровождаются уменьшением молекулярного веса полимера и образованием 1ЮВЫХ функциональных групп в отдельных звеньях цепей. Окис-1ительная деструкция становится более интенсивной, если полимер находится в растворе (особенно при нагревании такого раствора), поскольку доступ кислорода к отдельным макромолеку-. 1ам в этом случае облегчается. Поэтому химические превращения полимеров следует проводить только при возможно более низкой температуре и возможно быстрее, чтобы уменьшить термическую п окислительную деструкцию цепей макромолекул. Окислительная деструкция,, протекающая в большей или меньшей степени мри любых химических превращениях полимеров, изменяет структуру некоторых звеньев макромолекул. Выделить из состава полимера отдельные продукты окислительной деструкции невозможно, так как они соединены ковалентными связями с соседними звеньями макромолекул. [c.170]

    Фуллерены С60 являются аллотропной формой чистого углерода со сферической молекулярной структурой в отличие от полимерных сеток алмаза и графита. В настоящее время известны многочисленные свойства фуллерена С60, многие из которых являются уникальными. Среди практически перспективных путей промышленного применения фуллеренов можно отметить синтез различных водорастворимых соединений С60, обладающих ценными фармакологическими свойствами синтез фуллеренпривитых полимеров, являющихся высококачественными смазочными и антифрикционными материалами. Процессы синтеза данных соединений осуществляют в растворах с использованием различных органических растворителей. Для выбора оптимальных условий синтеза, проводимого в растворах, приводящего к максимальным выходам целевого продукта химической реакции, а также для проведения процессов с максимальной скоростью и минимальными материальными и энергетическими затратами, необходимо знать особенности поведения фуллерена С60 в растворах различных растворителей и взаимодействие его с растворителем. Данные по структуре и фазообразованию фуллерена С60 в растворах отсутствуют. Кроме того, свойство растворимости фуллеренов в органических растворителях широко используют в процессах выделения их из фуллеренсодержащей сажи на стадии синтеза и разделения различных видов фуллеренов. Актуальность исследований свойств растворенного фуллерена С60 имеет также фундаментальный аспект, связанный с необычной структурой данной молекулы, являющейся объемным аналогом ароматических соединений с высокой плотностью я-электронов, находящихся в сферическом пространстве фуллерена. [c.6]

    Изучение химических реакций полимеров имеет в виду две важные, но различные цели модификацию свойств известных и доступных природных или промышленных полимеров и стабилизацию свойств полимера, которые могут изменяться в нежелательную сторону в результате воздействия теплоты, света, воздуха и разных химических веществ, в контакте с которыми находится изделие из полимера. Так, например, защита от тепловых и окислительных воздействий позволяет резко удлинить сроки эксплуатации изделий из полимеров. Совершенно очевидно, что задачи модификации и стабилизации полимеров могут тесрю переплетаться, так как в результате модификации могут быть получены более стабильные полимеры. Таким образом, модификацией можно назвать изменение свойств полимеров для получения нового качества или устранения нежелательного качества полимера. Модификация может быть физической и химической. Для улучшения свойств полимеров при физической модификации используется направленное изменение их физической структуры (см. ч. 2), а при химической модификации — химические реакции по функциональным группам или активным центрам, в макромолекулах. Однако во всех случаях модификация приводит к изменению не только химических, но и физических и механических свойств полимеров. Именно тесная связь этих свойств, как мы уже знаем, определяет ценные качества полимеров в природе, технике и быту. [c.215]

    Таким образом, химические реакции полимеров имеют много общего с подобными реакциями их низкомолекулярных аналогов. Однако специфика полимеров вносит и существенные отличия. Для полимеров характерно неполное превращение реагирующих фупкциопальпых групп. Физическое, фазовое состояние полимеров может заметно влиять на это отличие—доступ реагента может быть облегчен или затруднен к местам расположения функциональных групп в макромолекулах. Поэтому характерным признаком продуктов химических превращений полимеров является их композиционная неоднородность. Классификация химических реакций полимеров учитывает изменения как химической, так и физической структуры макромолекул. Примеры полимераналогичных, внутримолекулярных и межмакромолекулярных реакций хорошо подтверждают этот тезис. Химические реакции определяют пути стабилизации и модификации свойств полимеров. [c.230]

    Среди химических реакций полимеров реакции между разными макромолекулами занимают особое место. Полимераналогичные и внутримолекулярные реакции хотя и могут в сильной степени изменять химическую природу полимеров (введение но-11ЫХ функциональных групп, деструкция макромолекул, образование цикличес их структур), но при этом остается неизменной индивидуальность макромолекулы. Это значит, что полимер сохраняет способность растворяться (хотя природа растворителя может измениться), способность к пластическим деформациям и течению при повышенных температурах или механических напряжениях. Если же между собой реагируют разные макромолекулы по функциональным группам или через посредство би- и более функциональных низкомолекулярных веществ,— то возникают химические связи в структурах между разными макромолекулами. В результате создается новая система связанных друг с другом химически макромолекул, которые теряют способность растворяться и необратимо проскальзывать друг относительно уфуга, т. е. теряют способность к необратимым пластическим деформациям. Как правило, в образовавшихся при этом сетчатых структурах резко улучшаются механические свойства. [c.293]

    Механизм межфазного взаимодействия в системах полимер — наполнитель весьма сложен и полностью не выяснен, хотя в последнее время эту проблему интенсивно исстедуют [3, 4. 59] на примере линейных кристаллических и в меньшей мере аморфных полимеров. В случае эпоксидных полимеров исследование взаимодействия полимер-наполнитель осложняется тем, что, во-первых, подобные материалы образуются в результате отверждения низкомолекулярных олигомеров в присутствии наполнителя, т. е. наполнитель может влиять не только на надмолекулярную, но и на молекулярную структуру полимера, а также на процесс отверждения олигомерного связуюш.его, вступая в химические реакции, с реакционноспособными группами эпоксидных олигомеров отвердителей. Во-вторых, поскольку процесс образования эпоксидного полимера из олигомера и отвердителя происходит в присутствии наполнителя, трудно разделить влияние технологических факторов и поверхностные эффекты. Кроме того, образующиеся прн отверждении сильно-сшитые системы неплавки и нерастворимы, что также сильно затрудняет их исследование. [c.84]

    До сих пор в качестве фактора, определяющего скорость образования мономера из полимера или способность полимера образовывать мономер при соответствующей обработке, рассматривали только химическую структуру мономерных звеньев, из которых состоит полимер. Однако выход Аюномера может также зависеть от физического состояния деполимеризую-щегося полимера, в частности, различные результаты получаются при проведении реакции в растворе, в твердом и полужидком состояниях. Кроме того, выход мономера может зависеть от различных факторов, связанных с особенностями строения макромолекул. Выше указывалось, что структурные элементы, присутствующие в полимере в небольших количествах, такие, как узлы разветвлений или концевые группы, часто являются местами, наиболее чувствительными в отношении деструкции. Поэтому выход мономера или даже характер реакции деструкции данного полимера часто могут зависеть от метода его получения, природы примененного катализатора и его концентрации, температуры полимеризации, молекулярного веса полимера [c.16]

    Спектры высокого разрешения можно получить, наблюдая ЯМР в растворах и расплавах полимеров. По хилмическим сдвигам и спин-спиновому расщеплению можно судить о структуре макромолекулы полимера. Особенно большие успехи получены за последние годы при изучении стереорегулярности полимеров. Для ряда полимеров и сополимеров удалось полностью определить порядок присоединения звеньев в цепи. Изменение спектра ЯМР высокого разрешения раствора полимера с температурой дает информацию о характере молекулярных движений в растворе. Химические реакции функциональных групп полимера, реакции ионного обмена, образование водородных связей и другие процессы в растворе также могут изучаться с применением метода ЯМР высокого разрешения. [c.14]

    Описаны особенности окислительной деструкции кристаллических полимеров и эластомеров в нагруженном состоянии. Подробно рассмотрены надмолекулярные и конформационные эффекты в кинетике окисления ориентированных полиолефинов, а также вопросы их структурной стабилизации, долговечности и механизма разрушения в условиях интенсивного окисления. Показано, как изменяются структура и свойства полимеров под нагрузкой. Основное внимание уделено описанию закономерностей, наблюдаемых при одновременном воздействии на полимер механических напряжений и агрессивных сред. Дана классификация химических реакций полимеров по их чувствительности к растягиваюш,им и сжимающим нагрузкам. [c.254]

    Нерастворимость сетчатых полимеров затрудняет изучение ях состава и взаимного расположения атомов и групп. Обычно ним применяют косвенные методы исследований, в большинстве случаев заключающиеся в анализе структуры низкомсле-кулярных растворимых продуктов синтеза изучаемого полимера и в сопоставлении характерных для него химических реакций с реакциями соответствующих низкомолекулярных соеди нений. На основании полученных данных устанавливают примерное строение пространственных полимеров, взаимное расположение звеньев цепи и функциональных групп. Наряду с этим определяют некоторые физико-химические свойства про странственных полимеров температуру разложения, ди лектри ческие свойства, степень набухания в различных растворителях, химическую стойкость, прочностные показатели. Этими данными обычно ограничиваются при исследовании полимеров сетчатого строения. [c.36]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]

    Не всегда очевидно соответствие определенных пиков компонент спектра определенным видам свободных радикалов иногда идентификация связана с интуитивными приемами и предполагает знание комбинированных спектров и спектров химических реакций [64, 67]. Основные трудности, которые необходимо преодолеть, обусловлены большой шириной резонансных линий в образцах твердых тел и высокой скоростью многих реакций радикалов. Ясно, что большая ширина линии часто мешает эффективлому разрешению сверхтонкой ядерной структуры. Так называемый спектр из 5 + 4 компонент , соответствующий механическому разрушению метакриловых полимеров [4], служит иллюстрацией подобного вида спектра, который был идентифицирован лишь после сравнения со спектром из 16 компонент водного раствора полимеризационного радикала метакриловой кислоты. Таким путем было установлено, что предыдущий спектр из 5 + 4 компонент является неразрешенной формой последнего и должен быть приписан тому же самому радикалу [40]. [c.161]

    Третья особенность заключается в многообразии структуры макромолекул. В большинстве полимеров каждое звено цепи содержит функциональные группы, расположение которых может быть весьма хаотичным. Наряду с сочетанием голова к хвосту имеются сочетания голова к голове) или хвост к хвосту . Вследствие этого некоторые функциональные группы находятся при двух соседних углеродных атомах, в других звеньях функциональные группы находятся по отношению друг к другу в положе-тнш 1—4. По [ифункциональность макромолекул и возможность близкого взаимного расположения функциональных групп вызы-нает многочисленные побочные реакции, протекающие одновременно с основным процессом химического превращения. К числу таких побочных процессов относится возможное внутримолеку-. 1ярное взаимодействие функциональных групп, часто приводящее к образованию циклических структур или ненасыщенных связей, а также межмолекулярные реакции, вызывающие появление поперечных мостиков между цепями макромолекул. [c.171]

    Вид металла, способ его введения и вариации технологических режимов карбонизации волокон определяют структуру, элементный и фазовый состав формирующихся Ме-УВ, позволяют в широких пределах регулировать их свойства Металлосодержащие включения в составе Ме-УВ в виде оксидов, карбидов, высокодисперсных (3-20 нм) восстановленных металлов придают им высокие адсорбционно-каталитические свойства в ряде химических реакций, улучшают смачивание волокон различными видами связующих, влияют на характер взаимодействия реагирую1Ш1Х компонентов на границе раздела фаз волокнистый наполнитель-полимер. Структурно-активные фуппы Ме-УВ могут служить центрами кристаллизации полимеров, ориентировать макромолекулы в гюверхностном слое, изменяя структуру и свойства межфазного слоя и в целом всего армированного волокнами композита. [c.182]

    П. При вулканизации под действием любых факторов меняется химическая структура системы — появляются поперечные связи между цепями и полимер постепенно превращается сначала (при малых степенях вулканизации) в макросетчатый, а потом в микро-сетчатый. При этом происходит нарастающая иммобилизация сегментов, приводящая в области перехода от макро- к микро-сетчатой структуре, к полной потере сегментальной подвижности (возобновлена она теперь может быть лишь в результате обратной химической реакции разрушения поперечных связей). Но это, согласно основному определению, снова означает переход в стеклообразное состояние. Наиболее известный пример — превращение каучука в эскапон или эбонит. [c.82]


Библиография для Структура полимеров и химические реакции полимеров: [c.263]   
Смотреть страницы где упоминается термин Структура полимеров и химические реакции полимеров: [c.5]    [c.294]    [c.184]    [c.32]    [c.32]    [c.383]    [c.73]    [c.23]    [c.295]    [c.129]    [c.308]    [c.112]    [c.7]   
Высокомолекулярные соединения Издание 2 (1971) -- [ c.455 , c.458 , c.459 , c.460 , c.462 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры химическая

Реакции полимеров

Реакции структура



© 2025 chem21.info Реклама на сайте