Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натуральный каучук строение молекулы

    Но путь исследователя бесконечен, перед ним всякий раз встает новая задача. Когда СКИ-3 стали применять в шинах для большегрузных автомобилей, оказалось все же, что они изнашиваются быстрее — значит, не всеми уникальными свойствами натурального каучука обладает его синтетический аналог. А это, в свою очередь, означает, что не одно только регулярное строение молекул цмс-полиизопрена обусловливает эти непревзойденные свойства. [c.124]


    Теории пачечного строения высокомолекулярных соединений позволяют подразделить процесс кристаллизации в растворах высокомолекулярных соединений на несколько стадий. Первая стадия кристаллизации заключается в том, что вначале несколько молекул высокомолекулярных соединений притягиваются друг к другу слабыми межмолекулярными силами и образуют аморфный пакет или пучок молекул. Этот аморфный пакет не кристаллизуется для растворов таких веществ, как целлюлоза и ее эфиры в воде, натуральный каучук и полиизобутилены в жидких углеводородах. [c.59]

    Диметиленциклобутан по свойствам сходен с дивинилом и изопреном. Он легко полимеризуется по типу 1,4-присоединения. Полимер имеет цис-строение и является структурным аналогом натурального каучука. Составьте схему реакции цепной полимеризации 1,2-ди-метиленциклобутана, напишите формулу фрагмента молекулы полученного полимера. [c.124]

    В работе изучена диффузия паров изо- и н-бутана, изо- и н-пентана в полиизобутилене и показано, что коэффициенты О меньше для разветвленных углеводородов изостроения, чем для углеводородов нормального строения. Энергия активации диффузии нормальных углеводородов несколько меньше, чем изомерных углеводородов. Зависимость коэффициента диффузии от формы и размеров молекул диффундирующих в поливинилацетат были исследованы в работе а газообразных углеводородов в натуральном каучуке и этилцеллюлозе — в работе [c.61]

    Природа агрессивной среды, ее агрегатное состояние, химический состав, размеры и конфигурация молекул в значительной степени влияют на интенсивность сорбционно-диффузионных процессов в полимерах. Сорбция органических жидкостей и их паров в полимерах определяется размерами и конфигурацией ее молекул. Например, коэффициенты диффузии бутана и пентана нормального строения в полиизобутилене в 2 раза больше, чем диффузия этих же углеводородов изо-строения диффузия н-бутана л-пентана в вулканизатах натурального каучука в 1,5 и 2,5 раза больше, чем изобутана и изопентана соответственно [15]. [c.8]

    Вследствие особого цепного строения молекул полимеров разрыв их часто может происходить и под действием чисто механических воздействий. Это используется, например, в резиновой промьшшенности в процессе пластикации, при котором молекулярный вес натурального или синтетического каучука снижается в результате механических воздействий. При такой обработке полимеры приобретают свойства, которые облегчают последующую переработку. Измельчение и вальцевание приводят к тем же результатам. Силы, действующие на макромолекулы при сдвиге, также вызывают разрыв полимерных цепей эти процессы могут происходить в растворе под действием ультразвука, при встряхивании [69], взбивании 70], в результате действия скоростной мешалки (71] или в турбулентном потоке 172], например при продавливании раствора через капилляр или сопло под высоким давлением. [c.84]


    Одним из наиболее ранних, полезных и важных примеров применения озона в химии полимеров является использование этого окислителя Харрисом [367, 368] в 1904 г. для определения строения натурального каучука. Харрис обнаружил, что основными продуктами расщепления каучука озоном являются левулиновый альдегид и левулиновая кислота. На основании этих результатов Харрис предположил, что каучук представляет собой вещество, молекулы которого имеют восьмичленную циклическую структуру [c.123]

    Представления о строении полимерных тел прошли сложную эволюцию от мицеллярных теорий к современным концепциям структурной физики полимеров (см. Структура, Надмолекулярная структура. Кристаллическое состояние, Аморфное состояние. Коллоидные полимерные системы). Несостоятельность мицеллярных теорий строения линейных гомополимеров с однородными по строению цепями макромолекул (напр,, целлюлозы, натурального каучука) заключается в отсутствии физич. причин существования устойчивых фазовых частиц коллоидных размеров. Развитие представлений о макромолекулах, не отличающихся от малых молекул природой сил межмолекулярного взаимодействия, исключило возможность научного обоснования мицеллярных представлений о строении полимеров и их р-ров. Здесь следует еще раз подчеркнуть, что имеются в виду макромолекулы, лишенные дифильности в упомянутом выше смысле. Гибкие макромолекулы, содержащие разнородные по полярности участки, в определенных условиях могут давать микро-гетерогенные системы типа лиофильных золей. При этом лиофобные группы макромолекул объединяются в ядре коллоидной частицы (напр., белковой глобулы), а лиофильные образуют ее поверхностный слой. [c.129]

    Исходя из строения изопрена, следует предположить, что молекула натурального каучука имеет следующее строение  [c.48]

    По-видимому, отличие а-полихлоропрена от р,- и м-полимеров заключается в том, что а-полимер имеет линейное строение, а х- и со-полимеры — трехмерное. Естественно, что это не обнаруживается при озонировании, так как участки цепи, связывающие макромолекулы, при расщеплении озонидов также дают янтарную кислоту. Те же результаты должны получаться, если связь между молекулами осуществляется с участием кислорода. Трехмерное строение х-поли-мера подтверждается способностью а-полимера при хранении и нагревании переходить в ц-форму. Этот процесс можно замедлить добавлением фенил-р-нафтиламина (неозона). Изменение физико-механических свойств при переходе а-полимера в -полимер аналогично изменениям, происходящим в процессе вулканизации натурального каучука. Обычно а-полихлоропрен вулканизуют без серы. При хранении даже при комнатной температуре он отщепляет хлористый водород. [c.414]

    Натуральный каучук обладает малыми гистерезисными потерями. У синтетических каучуков гистерезис усиливают 1) нере-гулированное строение молекул каучука 2) наличие в молекулярной цепи тяжелых боковых полярных групп (хлоропреновый каучук, СКН) 3) наличие бензольного кольца (стирольный каучук) 4) увеличение молекулярной массы. [c.122]

    Химические свойства. Так как натуральный каучук является непредельным углеводородом, то химические свойства его аналогичны химическим свойствам непредельных углеводородов. Однако большой молекулярный вес каучука, специфическое строение его молекулы (большое число двойных связей в молекуле каучука — до 3000) обусловливают некоторые особенности в хими- [c.225]

    Особенности многих природных веществ, например целлюлозы, каучука и др., известны уже давно в начале нашего столетия удалось синтезировать вещества, обладающие свойствами высокомолекулярных соединений. Однако в вопросе о строении и структуре этих веществ в течение длительного времени было много неясного. Ясность в основы строения этих соединений была внесена в результате принципиальных работ Штаудингера им же в 1922 г. впервые было применено понятие макромолекула при исследовании процесса гидрирования натурального каучука в гидрокаучук. Он указал также на общее значение понятия молекулы и в применении к высокомолекулярным соединениям. [c.13]

    Таким образом, образование из озонида каучука левулиновых производных еще не является доказательством линейного или циклического строения молекулы натурального каучука. Однако в случае любого линейного полимера при распаде озонида должны получаться наряду с левулиновыми производными еще и другие вещества, образующиеся из концевых групп молекулярной цепи. Гарриес не обнаружил других продуктов распада в своих опытах и высказал гипотезу о циклическом строении каучука. [c.26]


    Такое строение молекул натурального каучука подтверждается спектральными исследованиями. Ультрафиолетовый спектр поглощения натурального каучука в области 200—250 нм подобен спектру сквалена — линейного изопреноида  [c.27]

    Эластичность каучуков определяется линейной структурой цепей их молекул. Натуральный каучук, а также синтетические органические эластомеры построены из линейных (нитеобразных) молекул, скелет которых представляет собой цепь связанных углеродных атомов. Кремнийорганические эластомеры имеют аналогичное линейное строение, но скелет цепей их молекул состоит из чередующихся атомов кремния и кислорода и обрамлен органическими радикалами. В нормальном состоянии молекулы кремнийорганического эластомера спирально закручены. Такая структура цепей молекул кремнийорганических эластомеров определяет специфичность некоторых их свойств. Органические радикалы, входящие в состав молекул полиорганосилоксанов, также оказывают большое влияние на свойства эластомеров. [c.39]

    Таким путем удалось получить синтетический каучук, полностью отвечающий химическому составу и строению молекул натурального каучука. Этим путем удалось всего пять лет назад значительно упростить метод изготовления такого замечательного синтетического полимера, каким является полиэтилен. [c.18]

    Оказалось, что именно такое строение молекул имеют природные полимеры, например натуральный каучук. Вот [c.18]

    Все волокнообразующие белки, например фиброин шелка и коллаген, построены преимущественно из бифункциональных аминокислот это практически линейные, хорошо кристаллизующиеся полипептидные цепи (см. ниже). Они обладают высокой разрывной прочностью при сравнительно низком удлинении. Нерастворимость шелка обусловлена кристаллизацией фиброина после выделения раствора из желез шелковичного червя. Растворение белка, так же как и растворение целлюлозы, затрудняется вследствие образования большого числа водородных связей между пептидными группами (растворители для целлюлозы, см, стр. 142—143, пригодны также для шелка из этих растворов белок люжет быть высажен добавлением раствора соли). Коллаген, по-видимому, имеет слабо выраженную сетчатую структуру, которая разрушается при гидролизе (образование желатины). Молекулярный вес коллагена превышает 1-10 (установлено путем измерения вязкости в 0,1%-ном растворе моно-хлоруксусной кислоты в воде). Очень высокий молекулярный вес этих полимеров вполне вероятен, очевидно, этим объясняется неудача попыток Грассмэна обнаружить концевые группы.. Эластин представляет собой высокоэластичное вещество с изотропной структурой, которая при вытягивании превращается в анизотропную. Поэтому эластин при вытягивании ведет себя как натуральный каучук. Его молекула также состоит преимущественно из бифункциональных аминокислот, которые вследствие своего строения затрудняют кристаллизацию (валин, пролин, фенилаланин) наличие некоторого числа химических связей между макромолекулами обусловливает абсолютную нерастворимость эластина. Эластин чрезвычайно устойчив к гидролизу (устойчивее, чем коллаген). Роль, выполняемая эластином в животных организмах, находится в соответствии с его аминокислотным составом больпюе количество [c.101]

    Молекула высокомолекулярного соединения, или макромолекула, построена из сотен и тысяч атомов, связанных между собой силами главных валентностей. Такими макромолекулами являются, например, макромолекула целлюлозы (СеНюОз) , натурального каучука (СзНа) , поливинилхлорида (СаНзС ) , полиэтиленоксида (С2Н40) и т. д. Однако такое определение этого понятия применимо не ко всем высокомолекулярным соединениям, и при рассмотрении высокомолекулярных веществ наиболее сложного строения неизбежно придется вернуться к условности понятия молекула . [c.20]

    После того как было изучено регулярное строение натурального каучука, исследователи неоднократно предпринимали попытки синтезировать полимеры, которые бы обладали сходными с ним структурой и свойствами. Многочисленные опыты полимеризации диенов дали интересные результаты, позволившие сделать теоретические выводы о влиянии температуры, инициаторов и роли поли-меризационной среды на способ соединения молекул мономера в цепи. Так, например, была высказана мысль о том, что более высокая температура способствует присоединению мономера по принципу А-Цис, а более низкая — по принципу , А-гранс это объяснялось различием в свободных энергиях активации этих типов реакций. И хотя долгое время не удавалось доказать справедливость этой гипотезы для полимеризации диенов, именно благодаря ее использованию был достигнут дальнейший прогресс в области получения полимеров с регулярной молекулярной структурой. Только недавно, с применением высокочувствительных физических методов, в особенности ядерного магнитного резонанса, было установлено, что при полимеризации виниловых мономеров с заместителями, имеющими большой объем, в условиях низких температур образуются соединения с повышенным содержанием фракций син-диотактической структуры. [c.8]

    Строение натурального каучука. При пиролизе каучук деполимеризуется с образованием изопрена. Имеющиеся в молекуле каучука олефиновые связи могут быть каталитически прогидрированы, причем одно звено СдНд потребляет два атома водорода. Каучук присоединяет также по непредельным связям бром и бромистый водород. [c.301]

    Натуральный каучук обладает малыми гистерезисными потерями. У синтетических каучуков гистерезис усиливают нерегу-лированное строение молекул каучука наличие в молекулярной цепи тяжелых боковых полярных групп (хлоропреновый каучук, СКН) наличие бензольного кольца (стирольный каучук) увеличение молекулярной массы. Для всех видов каучука гистерезис усиливают наполнение активными наполнителями и увеличение степени вулканизации. [c.131]

    Полимеры, молекулярные цени которых построены беспорядочно, не способны образовывать правильную плотную структуру. Напротив, полимерные цепи, построенные регулярно, могут плотно укладываться и создавать кристаллические образования вдоль цени. Кристаллиты могут образовываться даже в присутствии боковых групп, если они расположены регулярно. Многие природные полимеры, например натуральный каучук или шерсть, являются кристаллическими. К кристаллизующимся полимерам относятся также искусственно созданные полимеры найлон и саран. В последнее время путем стереоспецифической полимеризации удается получать линейные полимеры высокорегулярного строения вместо разветвленных цепей со случайно расположенными боковыми группами. Довольно просто свернуть в спираль шланг для полива так, чтобы его витки были уложены ровными рядами. Однако, если попытаться также ровно уложить перекрученный шланг, то сделать это будет совсем не просто. То же самое относится к полимерам. Если отдельные группы расположены беспорядочно по длине молекулярной цепи или если цепи перепутаны, то уложить их тесно друг к другу невозможно. Если же молекулы строго линейны и боковые группы располагаются регулярно через определенные интервалы, то существует возможность настолько тесно уложить молекулярные цепи, что действие межмолекулярных сил приведет к образованию кристаллитов. В таких полимерах, как линейный полиэтилен или изо-тактический полипропилен, кристаллиты образуются самопроизвольно при охлаждении из расплава. [c.58]

    Как можно видеть из описанного выше примера для натурального каучука, обычно каучукоподобные вещества обладают большой молекулярной массой и по этой причине называются высокомолекулярными соединениями. Более того, такие вещества не просто характеризуются высокими значениями молекулярной массы, а представляют собой молекулы, соединенные в длинные цепочки. Этот факт был обнаружен в 1920 г. Штаудингером при исследовании гидро-генизированного каучука. Таким образом, более точньци названием является цепные высокомолекулярные соединения . В таких цепных молекулах большой молекулярной массы, как будет более подробно описано в последующих параграфах, во всех С—С—связях, образующих фрагменты главной цепи, имеются поворотные изомеры. В данной главе для простоты считается, что поворотные изомеры, которые могут реализоваться при вращении относительно каждой связи, являются взаимонезависимыми. В рамках этого предположения число состояний, которые может принять молекула цепного строения большой молекулярной массы, будет представлять собой произведение числа поворотных изомеров, которые могут быть реализованы в каждой связи. С другой стороны, разные молекулы могут находиться в макроскопически идентичных состояниях, однако в каждом из них существует значительное число возможных микросостояний. Выбор числа таких микросостояний в качестве параметра W в уравнении (1.11) представляет собой основную предпосылку молекулярной теории энтропийной упругости каучукоподобных веществ. [c.15]

    Кристаллизующиеся полимеры метод полимеризащ1и. Обычно немногие полимеры являются высококристаллическими. Полистирол и полиметилметакрилат, полученные нри свободно-ра-дикальной полимеризации, совершенно аморфные материалы, которые не проявляют какой-либо тенденции к кристаллизации. Наряду с этим политетрафторэтилен легко кристаллизуется и, как правило, находится в кристаллическом состоянии. Натуральный каучук, однако, обычно существует в аморфном состоянии, по кристаллизуется нри растяжении или при низкой темнературе. Часто для достижения кристалличности полимеров требуются весьма жесткие условия даже если существует полная структурная упорядоченность, могут быть необходимы особая обработка и экстремальные давление и температура. Упорядоченная макроскопическая структура (кристаллический материал) в общем является результатом высокой степени однородности молекулярной структуры. Из-за больших размеров молекул полимеров имеется большая возможность образования, в полимерных цепях структурных дефектов и нарушений. Часто встречаются два структурных дефекта, нарушающие однородность строения цени 1) беспорядочное разветвление и 2) беспорядочность асимметрии атомов углерода в цени. Эти дефекты являются результатом способа полимеризации гомогенная свободнорадикальная полимеризация при достаточно высоких температурах благоприятствует возникновению обоих дефектов. [c.273]

    Возможность исследования поведения фактически изолированных друг от друга макромолекул в очень разбавленных растворах стимулировала в течение многих лет попытки изучения деталей их цепного строения путем определения радиуса инерции в различных растворителях и при различных температурах и сравнения поведения различных макромолекул в одном и том же растворителе. Статистическая термодинамика полимерных растворов в своей ранней форме выявила принципиальную зависимость некоторых определяемых величин от степени сольватации свернутой случайным образом полимерной молекулы, например величины второго вприального коэффициента в выражении для осмотического давления, константы седиментации, константы диффузии и удельной вязкости как функции концентрации [1]. Показано также, что экспонента а в известном соотношении между молекулярным весом и характеристической вязкостью и параметр Хаггинса к, по-видимому, каким-то образом зависят от деталей структуры цепи. Однако установленные зависимости носили полуэмпирический и качественный характер и их нельзя было оцепить однозначно. Точно так же более ранние попытки трактовать существующие противоречия в поведении полистирола в растворе не основывались на надежных методах, достаточных для убедительного доказательства наличия разветвлений или макромолекулярной изомерии другого типа [2]. Трудно было даже установить в растворах наличие цис-транс-изомерии молекул, которая, как известно, преобладает в случае натурального каучука и гуттаперчи. Исследование этих двух природных полимеров в твердом состоянии привело ранее к установлению того факта, что каучук представляет собой почти целиком г мс-1,4-полиизопрен, тогда как гуттаперча и другие смолообразные полимеры того же происхождения состоят все из трансЛ, 4-цепей. Это различие в молекулярной структуре вызывает разную способность молекул к упаковке в конденсированном состоянии и приводит к заметно различному характеру твердой фазы, в том числе к различиям в структуре решетки, плотности, температуре плавления, теплоте плавления и т. п. Вследствие этого, когда раствор полимера находится в контакте с твердой фазой, такие показатели, как степень и скорость растворимости, степень и скорость набухания, различны для цис- и транс-жзомеров. Однако при сравнении поведения изолированных макромолекул двух изомеров в очень разбавленных растворах не удается обнаружить каких-либо заметных различий в таких величинах, как значение второго вириальпого коэффициента для приведенного осмотического давления или для удельной вязкости как функции концентрации. [c.87]

    Полиизопрен. Этот вид каучука представляет со1бой полимер на основе изопрена с преобладающей конфигурацией молекул , А-цис. По своему строению и, следовательно, свойствам он аналогичен натуральному каучуку. Идея получения синтетического каучука, полностью идентичного натуральному, давно привлекала внимание ученых. Однако это стало возможно только в последнее десятилетие, когда были разработаны стереоопецифические катализаторы и найдены методы получения дешевого изопрена на базе нефтехимического сырья. Полиизопрен уже сейчас имеет более низкую цену, чем натуральный каучук. [c.471]

    Однако лишь в конце 50-х годов удалось точно воспроизвести строение молекулы натурального каучука в лабораторных условиях, а затем наладить его производство в промышленных масштабах. И до сих пор это единственная природная гигантская молекула, которую человеку удалось получить искусственно и наладить крупномасштабное производство. Секрет успеха — стереоспецифи-ческий контроль. Природа при всех происходящих в ней превращениях молекул проявляет абсолютную точность в пространственной ориентации атомов образующейся молекулы. Это в первую очередь обусловлено стереоспецифичностью действия ферментов, катализирующих превращения молекул, происходящие в природе. В системах, создаваемых искусственно, столь строгий стереохимический контроль трудно осуществить. [c.87]

    При изучении химического строения природных высокомолекулярных соединений было обнаружено, что элементарный состав большинства природных высокомолекулярных соединений соответствует определенным низкомолекулярным веществам. Так, в продуктах пиролиза натурального каучука обнаружен изопрен СНг = С (СНд) — СН = СП,, а в продуктах полного гидролиза целлюлозы — глюкоза СН2ОН (СН0Н)4СН0. Эти данные позволили предположить, что молекула натурального каучука построена из большого числа молекул изопрена, а молекула целлюлозы — из боль- [c.169]

    Так как при этом растрескивания не происходит, нижележащие слои оказываются защищенными от проникновения озона. Образцы натурального каучука разрушаются при жестком лабораторном испытании (0,2% озона) в течение одной минуты, в то время как относительно озоностойкий бутилкаучук разрушается в течение 30 мин. Тройные сополимеры, в которых 50общей ненасыщен-Еости обусловлено циклопентадиенильными звеньями, практически не изменяются после выдержки под действием озона в течение трех суток. Месробьян и Тобольский нашли, что чистый вулканизат бутилказ ука имеет относительно более низкую скорость поглощения кислорода, чем Буна-С или натуральный каучук, но более высокую, чем полиэтилен. Наличие ненасыщенности и боковых групп делает молекулу нестойкой к окислительной деструкции. Соотношение между окислением и вулканизацией изучалось Бакли Имеется обширная информация о механизме окислительной деструкции бутил-каучука и других эластомеров. Более подробное обсуждение строения бутилкаучука и его химической стойкости выходит за рамки этой главы и может быть найдено в соответствующей литературе [c.265]

    Например, тиокол или пердурен, получаемые из этилендигалогенидов и полисульфидов щелочных металлов, — это вещества, во многих отношениях вполне отвечающие техническим требованиям на каучук. Однако подобное резкое отступление от основной структуры натурального каучука является исключением. Большинство синтетических каучуков по строению приближается к натуральному продукту, поскольку они содержат в своей молекуле производные бутадиена. [c.136]

    Для придания высокодеформируемой структуры веществу, которое само по себе способно только к небольшим эластическим деформациям, используются два основных принципа открытой сетки и спиральной молекулы. Ранние теории эластичности каучука основаны либо на одном, либо на другом (а иногда на обоих) принципе. Одно время очень популярной была двухфазная модель, предполагающая, что структура открытой сетки состоит из жесткоупругих компонентов, погруженных в подобную жидкости среду, которая в принципе не вносит вклад в эластические сократительные силы, но заполняет ячейки сетки. Предположение, что каучук содержит два разных компонента, находило подтверждение в различных фактах. Один из них заключался в том, что натуральный каучук не полностью растворим в таких растворителях, как бензин. Одна часть — так называемая золь-фракция — легко переходит в раствор, в то время как другая — гель-фракция — остается нерастворимой или же растворяется очень и очень медленно. Считалось, что эти две части различаются химически, хотя их точное строение не было ясно. В соответствии с этими представлениями казалось реальным предположение, что нерастворимый (и более жесткий) из компонентов структуры является эластичным он способен выдерживать приложенную нагрузку, в то время как растворимый, более жидкий компонент играет роль нейтральной среды, разделяющей элементы более жесткой структуры, но не препятствующий их перемещению. [c.52]

    Информация об особенностях кристаллической структуры оказывается весьма полезной прежде всего тем, что помогает узнать, будет ли полимер данного химического строения кристаллическим, стеклообразным или каучукоподобным. Некоторые аспекты этого вопроса обсуждались в предшествующих главах, где указывалось, что основное условие кристаллизации — регулярность строения цепных молекул. Из рассмотрения кристаллической структуры полиэтилена ясно, что любое нарушение регулярности отдельных цепей нарушит их плотную упаковку в виде последовательности одинаковых элементарных ячеек. Предельный случай такой нерегулярности имеет место у сополимеров, образующихся по механизму более или менее случайного присоединения двух различных мономерных звеньев пример — бутадиенсти-рольный каучук. Существуют и другие типы нарушения регулярности цепей так, если повторяющееся звено цепи само по себе несимметрично, т. е. имеет голову и хвост , то для кристаллизации важно, чтобы головы всех звеньев имели бы одинаковый характер расположения в цепи. Это можно проиллюстрировать на примере натурального каучука, у которого последовательно расположенные звенья изопрена соединены по типу голова к хвосту  [c.137]

    Значение п — степени полимеризации у натуральных каучуков — колеблется от 2000 до 5000, а молекулярный вес достигает 300 000—350 000. Натуральный каучук имеет стереорегулярное строение звенья изопрена в молекуле каучука всегда соединены однотипно 33 счет первого и четвертого атомов углерода (1—4-уг-лер)дная связь)  [c.272]

    Натуральный каучук представляет собой линейный (нераз-ветвленный) полимер регулярного строения, молекулы которого состоят из большого числа изопреновых групп. Резины на основе НК имеют высокий предел прочности при растяжении (200— 300 кгс1см ). Они характеризуются высокими эластичностью, усталостной прочностью, износостойкостью и хорошей температуро-стойкостью. Вследствие низкого внутреннего трения у резин из НК теплообразование при многократных деформациях ниже, чем у резин из других каучуков. К недостаткам НК следует в первую очередь отнести плохое сопротивление старению, что является следствием его высокой непредельности. [c.41]

    Естественно, что первоначальному изучению подверглись природные соединения и что изучение это шло аналитическим методом, основная цель которого заключалась в выяснении химического строения этих соединений, т. е. в выяснении тех атомных групп, какие входят в состав данного соединения, их расположения в пространстве и характера связей между атомами и атомными группами.) Так, при анализе натурального каучука было обнаружено вещество изопрен СаНд, и на основании этого факта выдвинута гипотеза, согласно которой молекула натурального каучука построена из очень большого числа остатков молекул изопрена. Другими словами, было высказано предположение, что огромные молекулы натурального каучука построены по принципу многократной повторяемости в них одного и того же более или менее простого звена С5Н8, т. е. что макромолекулы его являются молекулами-полимерами. Однако такое чисто теоретическое предположение стало общепризнанной реальностью только тогда, когда экспериментально удалось получить каучук синтетическими методами путем воссоединения небольших молекул изопрена в длинные цепи макромолекул полимеров каучука. Таким же путем шло выяснение химического строения сложнейших природных органических веществ—белков сначала аналитически ыло обнаружено, что основными простейшими звеньями всех белковых молекул являются аминокислоты, а затем синтетически из а-аминокислот, соединяя последние во все более длинные [c.157]

    Однако вскоре представления о циклическом строении каучука были вытеснены общепринятой в настоящее время теорией цепного строения (С. С. Пикльс, 1910 г.), которая нашла наиболее полное развитие в работах Г. Штаудингера (1924—1932 гг.). Исследуя свойства натурального каучука и продуктов его гидрирования, Г. Штаудингер показал, что как в растворах, так и в массе молекулы каучука представляют собой длинные полимерные цепи с большой молекулярной массой (>1-10 ). Выяснение связи между молекулярным строением и физико-механическими свойствами каучука и резины послужило в дальнейшем основой для направленного синтеза эластомеров. [c.10]

    Определение молекулярной массы каучука и других структурных характеристик свидетельствует о том, что молекулы каучука очень велики. Вследствие этого содержанпе в продуктах разложения озонидов веществ, образующихся из концевых групп, мало по сравнению с содержанием левулиновых производных, образующихся из всех изопентеновых групп. Аналитическими методами часто трудно обнаружить и установить с необходимой достоверностью строение концевых групп. По этой причине структурная формула линейного полимера обычно описывает его основную часть, состоящую из повторяющихся изопентеновых группировок. Для натурального каучука, по данным озонирования, она имеет следующий вид  [c.27]

    Инфракрасные спектры натурального каучука и сквалена представлены на рис. 1.8. Спектры этих соединений в общем аналогичны, что говорит о сходстве их состава и линейном строении пх молекул. По интенсивности поглощения на характеристических частотах можно считать, что по крайней мере 97% изопентеновых групп в каучуке связаны в положении 1,4. Слабая полоса при 890 см указывает на наличие небольшого количества изопентеновых групп, связанных в пололсении 3,4. Некоторые авторы приписывают эту полосу циклическим группам в структуре каучука. [c.27]

    Стирол полимеризовали в присутствии натурального каучука (крепа) [11, 12] при использовании перекиси бензоила в качестве инициатора привитой сополимер выделяли фракционным осаждением метиловым спиртом из раствора в смеси растворителей бензол — метил-этилкетон. Предполагая, что молекулы каучука во время реакции не деструктировались, число и длину боковых цепгй определяли, озонируя основную цепь и исследуя свойства привитых цепей. Было обнаружено, что строение привитого сополимера зависит от концентраций инициатора и мономера и от продолжительности реакции (при данной температуре). Результаты исследования в качественном виде приведены в табл. 16. В этих опытах были выбраны следующие условия смесь 0,29 моль л каучука, 8,8 моль л стирола № 0,02 моль1л перекиси [c.63]

    Виды полимеров хлоропрена и их строение. Благодаря наличию в молекуле хлоропрена атома хлора полимеризация этого соединения протекает значительно быстрее, чем полимеризация бутадиена. При комнатной темперагуре вся масса жидкого хлоропрена в течение 10 дней превращается в нерастворимый, эластичный продукт, обладающий сопротивлением разрыву до 140 кг/см-. Этот продукт носит название уу-полихлоропрена. Свойства -полихлоропрена несколько вариируют в зависимости от условий полимеризации. Так, если полимеризацию вести при температуре выше 45", то образуется продукт с прочностью ие более 60 кг/см-. При растяжении -полихлоропрен дает фазер-рентгенограмму. Физико-механические свойства и-полихлоро-прена позволяют сравнивать его с ненаполненным вулканизатом натурального каучука. [c.384]

    Строение основной структурной единицы молекулы изопрено-вого каучука было установлено расщеплением этой сложной постройки при действии озона и изучении продуктов такого расщепления, чем много занимался немецкий ученый К. Г а р р и е с. При действии озона (Од) натуральный каучук образует озонид состава С5оН,50в. Гарриес вначале (1904 г.) предположил, что каучук представляет собой полимер ненасыщенного циклического (кольцевого строения) углеводорода, содержащего цикл из восьми атомов углерода. [c.13]


Смотреть страницы где упоминается термин Натуральный каучук строение молекулы: [c.328]    [c.142]    [c.17]   
Синтетические каучуки (1949) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула строение

Натуральный каучук

Натуральный каучук строение



© 2025 chem21.info Реклама на сайте