Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Важнейшие реакции кислородных соединений

    Наиболее логично классифицировать каталитические процессы газоочистки по типу протекающих реакций окисление, гидрирование, гидролиз и т. д. Одпако четко провести такую классификацию не всегда возможно, так как при отдельных процессах протекают одновременно различные реакции и в ряде случаев весьма трудно установить, какая именно реакция преобладает. Поэтому обычно процессы различают или по виду удаляемых примесей, или по характеру химической реакции. Именно этот не всегда последовательный принцип и принят нри дальнейшем изложении материала. Важнейшие применяемые в промышленности процессы каталитической очистки газа охватывают а) превращение органических сернистых соединений, содержащихся в топливных, нефтезаводских и синтез-газах, в сероводород или кислородные соединения серы б) удаление окиси углерода из синтез-газа или инертных газов путем превращения в двуокись углерода или метан в) превращение ацетилена, содержащегося в олефиновых газовых потоках, в этилен методом избирательного гидрирования наконец, г) окисление и восстановление многочисленных нежелательных органических и неорганических соединений, содержащихся в отходящих газах промышленности. Процессы, предназначенные для каталитического окисления сернистых соединений (как сероводорода, так и органических), подробно рассмотрены в главе восьмо , так как эти процессы тесно связаны с сухой очисткой окисью железа и поэтому в большей мере относятся к сухим окислительным, процессам очистки от серы. [c.325]


    ВАЖНЕЙШИЕ РЕАКЦИИ КИСЛОРОДНЫХ СОЕДИНЕНИЙ [c.139]

    Окисление углеводородов представляет собой пример реакций с разветвлением цени, имеющих исключительно важное потенциальное значение в нефтепереработке и при радиационных процессах вообще. Эта чрезвычайно сложная реакция наглядно выявляет специфические преимущества радиационных методов даже в тех случаях, когда их роль сводится только к ускорению термических реакций, протекающих по радикальному механизму. Поскольку разветвленная цепь окисления даже при умеренных температурах может приводить к полному окислению до кислородных соединений углерода и воды, при углеводородах, требующих чрезмерно высокой температуры инициирования, термическое инициирование часто оказывается невозможным. Однако при низких температурах процесса цепной реакцией можно- [c.140]

    Назовите важнейшие природные соединения хлора. ф2. Укажите общий принцип получения хлора.. фЗ. П еречислите его физические и химические свойства. 4. Строение лтома хлора. ф5.. Назовите способы получения хлора, фб. Как изменяется устойчивость кислородных соединений хлора 07. iro происходит с хлором при растворении в воде 8. Укажите названия и формулы кислородных кислот хлора и их солей. Как изменяются окислительные свойства этих кислот и солей с увеличением степени окнсления хлора 9. Составьте уравнения реакций взаимодействия хлора с гидроксидом калия на холоду и при нагревании. 10. Сколько граммов бертолетовой соли можно получить при пропускании хлора через горячий раствор, содержащий 168 г гидроксида калия 11. Что такое жавелевая вода Составьте уравнения реакций, протекающих при ее получении. 12. Какая кислородсодержащая кислота хлора самая сильная ф13. Если к разбавленному раствору иодида калия прибавлять постепенно хлорную воду, то сначала раствор буреет, а затем вновь обесцвечивается. Объясните наблюдаемые явления и напишите уравнения реакций. 14. В какую сторону сместится равновесие реакции гидролиза хлора, если прибавить к хлорной воде а) щелочь б) кислоту в) хлорид натрия 13, Каким опытом можно показать присутствие в хлорной воде а) свободного хлора б) иона С1 16. В какой последовательности изменяются прочность и окислительные свойства кислородных кислот хлора 17. Сколько литров хлороводорода (н. у.) растворено в 2 л 20%-ной соляной кислоты (р=1100 кг/м )  [c.211]


    Как правило, схема процессов абсорбции углеводородов сравнительно проста. При первичном процессе какие-либо основные или побочные химические реакции не протекают часто вполне применимы уравнения равновесия между паром и жидкость)о, выведенные из законов для идеальных растворов. Поскольку массообмен в этих случаях не усложняется протеканием химических реакций в жидкой фазе, проектные расчеты могут основываться на обычных концепциях коэффициента абсорбции и теоретической тарелки. Важнейшим осложняющим фактором при расчете абсорбционных установок для выделения углеводородных продуктов часто является присутствие весьма многочисленных компонентов. Это не только чрезвычайно сильно усложняет вычисления, но и вызывает необходимость располагать обширными данными по равновесиям для этих многочисленных компонентов. Равновесные данные для сравнительно простых смесей парафиновых углеводородов, встречающихся при процессах абсорбции природного газа, подробно рассматриваются в литературе. Методика расчета таких установок вполне установилась и с достаточной полнотой изложена в ряде руководств [39—41]. Кроме того, в коксовом газе наряду с азотистыми, сернистыми и кислородными соединениями содержатся многочисленные циклические углеводороды и поэтому методика расчета установок для выделения углеводородов из таких газовых систем разработана несколько меньше. Поскольку удаление нафталина является важной фазой очистки каменноугольного газа, используемого в качестве бытового топлива (вследствие частого образования твердых [c.371]

    В полном объеме эти вопросы не выяснены ни для одной из реакций в этой области. На основе имеющегося экспериментального материала могут быть сделаны пока лишь обобщения по отдельным затронутым проблемам, которые и обсуждаются ниже. Среди них одно из важнейших мест занимают вопросы, касающиеся состояния поверхности анода в широком диапазоне положительных потенциалов и влияния поверхностных кислородных соединений на направление и скорость электродных процессов. Наибольшее число работ этого направления, выполненных в последние годы, посвящено платине, являющейся основным электродным материалом в реакциях рассматриваемого класса. Среди этих работ, в первую очередь, следует отметить цикл исследований Веселовского и сотр. по синтезу окислителей при высоких анодных потенциалах [16]. Большинство изученных систем является неорганическими, из реакций с участием органических веществ в этом аспекте подробно исследованы лишь процессы электро-окисления карбоксилатов (см. [1, 11, 171). [c.275]

    Среди истинных металлоорганических соединений, т. е. соединений, содержащих прямую связь металла с углеродом, ртутноорганические соединения относятся к числу наиболее прочных, уступая в этом отношении только соединениям мышьяка и, может быть, пятивалентной сурьмы. Хотя устойчивость разных типов ртутноорганических соединений варьирует широко, все они отличаются инертностью по отношению к кислороду и окислителям, воде и по крайней мере слабым кислотам, не реагируют с огромным большинством типов органических кислородных соединений и обычно достаточно инертны также к действию галоидных алкилов. Все это резко отличает органические соединения ртути от натрий-, литий-, магний-, цинк-, алюминий-органических и им подобных соединений. В связи с этим и применение ртутноорганических со единений как средств синтеза ограничено и не идет в сравнение с использованием, например, гриньярова реактива. Наиболее важными типами реакций ртутноорганических соединений являются два  [c.7]

    Следующий важный класс кислородных производных алканов — оксосоединения. Как следует из их реакций и способов получения, оксосоединения можно рассматривать как алканы, в которых два водородных атома при одном углероде замещены на двухвалентный атом кислорода. Таким образом, функциональной группой оксосоединений является карбонильная группа >С—0. Доказательством наличия в оксо-соединениях карбонильной группы могут служить, например, следующие реакции. [c.120]

    Выяснение детального механизма электродных реакций необходимо для рационального управления течением электрохимических реакций. Важная задача электрохимии в настоящее время — установление причин, определяющих селективность электрохимического процесса, т. е. эффективность заданной электродной реакции в сложном электрохимическом процессе. Рассмотрение экспериментального материала, полученного различными методами для указанных типов реакций электрохимического окисления, приводит к заключению, что, наряду с величиной и характером распределения электрического поля, существенным фактором, определяющим механизм, скорость и селективность электрохимического процесса окисления, являются поверхностные анионные (кислородные) соединения, природа которых зависит от вещества и потенциала электрода, и состава раствора. Нахождение путей эффективного воздействия на характер и свойства поверхностных электродных соединений представляет важный путь рационального управления электрохимическим процессом для получения оптимального выхода заданных продуктов электролиза в сложном электрохимическом процессе. [c.250]


    Образование на электроде в процессе анодной поляризации поверхностных окислов в значительной мере определяет как механизм процесса электрохимического выделения кислорода, так и закономерности течения реакций анодного окисления других ионов и молекул. Вместе с тем, данные о характере и свойствах кислородных соединений и связь этих свойств с потенциалом особенно важны при установлении механизма воздействия света на анодные окислительные процессы.  [c.386]

    В изучении этих химических процессов или, иными словами, в развитии химической технологии отдельных веществ и продуктов, например, синтетического аммиака, каучуков, пластических масс, черных, цветных и редких металлов, стекла, цемента и т. п., достигнуты огромные успехи. Эти успехи обусловили технический прогресс соответствующих отраслей промышленности. Однако научная классификация химических процессов продолжает оставаться одной из важных задач химической технологии как науки. По аналогии с классификацией физических и физикохимических процессов химической технологии делаются попытки классифицировать промышленные химические реакции по основным химическим процессам . Так, предлагалась следующая классификация химических процессов обменное разложение и солеобразование (минеральные удобрения и соли), окисление (серная кислота, азотная кислота, органические кислородные соединения и др.), гидрирование (аммиак, метанол и другие спирты, аминосоединения ароматического ряда, получаемые гидрированием нитросоединений, и т. п.), аминирование (мочевина, аминосоединения жирного и ароматического рядов), хлорирование (химические средства защиты растений), нитрование (взрывчатые вещества), сульфирование (синтетические моющие вещества), электрохимические процессы (электролиз водных растворов, электролиз в расплавленных средах, электрохимическое окисление и восстановление), процессы высокотемпературного и каталитического крекинга и пиролиза жидкостей и газов (нефтепереработка, получение олефинов из природных газов и др.), процессы полимеризации и поликонденсации (получение пластических масс, синтетических каучуков, химических волокон), процессы высокотемпературной переработки твердых тел (коксование углей, производство карбида кальция, стекла, цемента, сернистого натрия), алкилирование и арилирование и т. д. [c.138]

    В природе встречаются три изотопа кислорода (99,759%), (0,0374 (з) и 0 (0,2039%). Обогащение воды редкилш изото-па>ш, и в частности 1 0, достигается фракционированной перегонкой, причем в настоящее время доступны кислородные соединения, содержащие до 97 ат. % и до 4 ат. о Ю. Изотоп широко используют при изучении. механизмов реакций кислородных соединений. Хотя ядра атома имеют ядерный спин, все же вследствие низкого относительного содержания этого изотопа даже для обогащенных им образцов необходим очень чувствительный ЯМР-спек-трометр. Как для органических, так и для неорганических соединений резонансный сигнал наблюдается в более низких полях для кислорода с двойной связью (=0) по сравнению с кислородом с простыми связями (—О—). Сдвиги могут коррелироваться с низкоэнергетическими переходами в ультрафиолетовом или видимом спектре, так как взаимодействие основного с возбужденным состоянием под влиянием магнитного поля подобно или идентично взаимодействиям, вносящим важный вклад в химический сдвиг [2]. Важное применение ЯМР на ядрах связано 3] с установлением различия между молекулами воды, связанными в кокшлекс, например [Со(ЫНд)5Н20] +, и водой растворителя аналогично были изучены реакции обмена воды в комплексных ионах. [c.203]

    Все описанные соотношения справедливы не только для кислородсодержащих соединений. Так, для углеводородов применимы те же соотношения, но число атомов кислорода принимается равным нулю. Для соединений, содержащих серу, азот, фосфор, в уравнении (VI,1) постоянство суммы теплот образования и теплот сгорания сохраняется, но в правую часть уравнения входит новый член, представляющий теплоту сгорания перечисленных элементов (точнее говоря — соответствующих простых веществ). Конечное состояние продуктов сгорания в этом случае принимается иногда условно. Здесь важно лишь, чтобы это состояние было одинаковым конечным состоянием, принятым при определении теплоты сгорания данного соединения. Одинаковыми должны быть и исходные состояния данного элемента в реакции, к которой относится теплота сгорания простого вещества, и в реакции образования рассматриваемого соединения нз простых веществ. Практически это замечание относится главным образом к сере, так как для нее параметры реакций образования и, в частности, теплоту образования -в настоящее время часто относят к исходному состоянию ее в виде газа с двухатомными молекулами, 5г(г). Хотя стандартное состояние такого газа в обычных условиях физически нереализуемо, термодинамически оно определено достаточно хорошо, а использование параметров его в качестве вспомогательных расчетнь1х величин дает возможность при выражении влияния температуры на параметры реакций образования избежать искажающего влия ния изменений агрегатного состояния серы при повышенных температурах. К тому же при сопоставлении серусодержащих соединений с аналогичными кислородными соединениями параметры реакций образования с участием 5г(г), естественно, показывают более закономерные соотношения, чем параметры реакций образования с участием серы ромбической. [c.210]

    Мы уже встречались с карбанионами как с промежуточными продуктами в реакциях нуклеофильного замещения галоидов по ионному механизму первого кинетического порядка (lS Jvl), а также нуклеофильного присоединения по п-связи олефинов. На протяжении курса рассматривались и другие реакции карбанионов. Примерами могут служить действие галоидных алкилов на ионно построенные натрпйалкилы или натрийарилы, алкилирование ацетиленида натрия, алкилирование натриймалонового эфира, реакции конденсации по а-метиленовому звену кетонов в присутствии оснований и многие другие важные реакции, приводящие к образованию новых углерод-углеродных связей. Натриевые, калиевые и т. п. производные алканов, алкенов, алкинов, аренов являются ионными парами и содержат истинный карбанион в качестве активной в синтезе компоненты. Литиевые, магниевые и другие металлоорганические соединения, о реакциях которых см. стр. 382 сл., часто имеют уже ковалентно связанный с углеродом металл, и, хотя их реакции во многом похожи на реакции натрий и калийорганических соединений, говорить в этих случаях о реакциях истинных карбанионов нельзя. Натриймалоновый эфир и подобные ему соединения построены ионно, однако анионный заряд настолько рассредоточен на кислородные атомы карбалкоксильных групп [c.519]

    Наши знания о реакциях полисахаридов при кислородных способах делигнификации получены благодаря многочисленным экспериментам с низкомолекулярными соединениями [73, 74, 75, 77]. Наиболее важной реакцией, индуцируемой кислородными радикалами, является образование карбонильньй группы у j звена моносахарида, что приводит к расщеплению гликозидной связи пу тем -алкоксиэлиминирования (схема 11.5) [58, 101]. Аналогичным образом инициировать расщепление цепи может окисление в положениях Сд и Се- При одновременном окислении в положениях Сз и Сз образуется структура 2,3-дикетона, которая в щелочной среде может превращаться в звено карбоксифуранозида без расщепления цепи или легко распадаться [72, 78, 79, 84]. [c.243]

    Разложение кислородных и сернистых соединений, [находящихся в нефтяных продуктах, является очень важной операцией при деструктивной гидрогенизации, в результате которой наблюдается частичное или почти полное удаление кислородных соединений и обессери-вание гидрогенизируемых продуктов. Как общее правило, кислородные и сернистые соединения нефтяных продуктов очень легко реагируют с водородом, образуя углеводороды и воду или сероводород. Эти реакции протекают значительно легче, чем гидрогенизация ароматических углеводородов. [c.214]

    Как и при всех других гетерогенных реакциях, важное влияние на кинетику клатратообразования оказывают процессы массообмена в одной или обеих фазах. В ряде случаев суммарная скорость процесса лимитируется массопередачей на поверхности раздела фаз. Органические соли, например аммонийные соли жирных кислот, могут накапливаться на поверхности такую же способность часто обнаруживают и большие молекулы сернистых или кислородных соединений. Образование солей возможно и при работе с многокомпонентными углеводородными фракциями, содержащими следы нафтеновых кислот. Посторонние твердые вещества, например частицы пыли или продуктов коррозии, могут концентрироваться на поверхностях раздела фаз, тем самым ухудшая условия массопередачи. [c.107]

    Для наиболее важных в практическом отношении реакций замещения в бензольном кольце—галоидирования, нитрования, сульфирования, конденсации с кислородными соединениями (альдегидами, кетонами, спиртами) существуют два основных типа ориентации вступающего заместителя по отношению к уже имеющемуся орто-пара- и леяга-ориентация. В связи с этим обычно различают заместители (или ориентанты) I рода, направляющие новый заместитель преимущественно в орто- и пара-положения и заместители П рода, направляющие новый заместитель преимущественно в мета-положент. Ориентанты I рода, как правило, активируют, а ориентанты П рода пассивируют бензольное кольцо по отношению к реакциям замещения. [c.323]

    Контрольные вопросы. 1. Охарактеризовать подгруппу азота с точки зрения электронного строения. 2. Как получается азот в лабораторных условиях и в промышленности З- Какие важнейшие водородные и кислородные соединения азота вам известны Дать их краткую характеристику. 4. Каким характерным свойством отличается азотная кислота от других кислот 5. Какие азотные удобрения применяются в сельском хозяйстве 6. Определить процентное содержание азота в следующих важнейших азотных удобрениях а) чилийской селитре б) аммиачной селитре в) норвежской селитре г) сульфате аммония д) цианамиде. 7. Как различить растворы нитрата и нитрита 8. Какими способами получается аммиак в лабораторных условиях и в промышленности 9. Какой реакцией можно обнаружить ион аммония 10. Какими способами получают азотную кислоту в промышленности 11. Какие известны виды диссоциации и в чем заключается разница между термической диссоциацией и реакцией разложения 12. Почему при получении азотной кислоты из селитры не применяют соляную кислоту 13. Что является окислителем и что восстановителем при получении азота из нитрита аммония NH4N0s 14. Почему азотная кислота проявляет только окислительные свойства, а азотистая — окислительные и восстановительные 15. Написать уравнения реакций а) аммиака с серной кислотой б) аммиака с фосфорной кислотой в) гидроокиси аммония с фосфорной кислотой. 16. Написать уравнения реакций взаимодействия NOa а) с водой б) с КОН. 17. Почему при реакции взаимодействия цинка с разбавленной азотной кислотой аммиак не выделяется в виде газа Что с ним происходит 18. Сколько литров [c.200]

    В промышленную практику внедрена реакция окисления парафиновых углеводородов в карбоновые кислоты, столь необходимые для ряда важнейших отраслей народного хозяйства Советского Союза. Анализ состава конечных продуктов, а также детальное изучение зависимости скорости и направления реакции окисления парафиновых углеводородов от условий, и которых эта реакция нротекает (природаокислителя, температура, катализаторы и др.), позволили подойти к решению основной задачи— возможности управления реакцией окисления. Регулируя температуру и подбирая подходящие катализаторы, можно остановить реакцию на любой стадии окисления, не доводя ее до конца, т. е. до образования карбоновых кислот. Таким образом, из углеводородов можно получать нейтральные кислородные соединения — альдегиды, спирты, кетоны, фенолы. [c.4]

    С того времени программа практикума органической химии на химическом факультете Московского университета претерпела ряд существенных изл1енений при этом, естественно, изменилась и программа курса Синтетические методы органической химии , читаемого студентам при прохождении ими практикума. В связи с этим главы Восстановление (проф. Р. Я. Левина) и Окисление (проф. Ю. С. Шабаров) выпуска IV построены по новой программе. В ннх o нoвнQe внимание уделяется тем реакциям восстановления и окисления, в процессе которых действию восстановителя или окислителя подвергается углеродный скелет молекул веществ, относящихся к важнейшим классам органических соединений (углеводороды и их кислородные производные — спирты, альдегиды, кетоны, кислоты). Такой выбор позволяет на простейших примерах дать представление о синтетических возможностях каждого метода. [c.3]

    B. Статья о первой важной работе Фишера и Тропша по каталитическому гидрированию окиси углерода, а именно о синтезе синтола (1922—1923 гг.). В качестве катализатора для конверсии водяного газа под давлением выше 100 атм и при температурах около 400° применялись обработанные щелочью железные опилки. Продукт реакции представлял собой смесь различных кислородных соединений (спиртов, альдегидов, кислот и др.). [c.184]

    Исследования процессов испарения окислов, прогрессивно развивающиеся за последнее десятилетие, позволили накопить большой фактический материал о составе пара и термодитшми-ческих характеристиках реакций испарения. Наиболее ценная информация была получена с применением масс-спектрометрической методики анализа состава паров окислов, позволяющей измерять парциальные давления компонентов пара в большом диапазоне концентраций. Естественно, что вначале внимание исследователей было привлечено к изучению процессов испарения индивидуальных окислов, устойчивых при обычных условиях. Впоследствии были изучены и такие системы, в которых обнаруживались газообразные окислы, в конденсированной фазе не наблюдавшиеся (например, окись лантана ЕаО, окислы платины, палладия). Одним из принципиально важных результатов было доказательство широкого распространения полимеризации в парах окислов. Эксперименты проводились в широком интервале температур, от 100—150° К, как это требовалось при исследовании образования субокислов серы, углерода, кислородных соединений фтора, и до 3000—3100° К, когда испаряли наиболее труднолетучие окислы иттрия, циркония, гафния, тория. Опубликованы достаточно исчерпывающие обзоры литературы по этим проблемам [1, 2, 4]. В настоящее время начинают исследоваться системы, содержащие в газовой фазе вещества, молекулы которых состоят из 3 видов атомов. Соединения такого рода относятся к различным классам и обладают сильно различающейся летучестью. В качестве примеров можно привести карбонилы тяжелых металлов, сложные галоидные соединения, оксигалогениды, оксисульфиды, газообразные гидроокиси. Обнаружено также, что соединения типа солей кислородных кислот (или соединения типа двойных окислов аАОж-ЬВОу) во многих случаях также оказываются устойчивыми в паровой фазе даже при очень высоких температурах. Систематическое изучение этих объектов существенно для разработки технологии получения окисных пленок, для синтеза монокристаллов из газовой фазы, для понимания химических процессов в оксидных катодах. Результаты термодинамического исследования процессов испарения сложных окислов имеют важное значение для понимания поведения при высоких температурах комбинированной конструкционной окисной керамики и стекол, шлаков и включений в металлах. Число этих примеров при желании можно увеличить. [c.16]

    В процессе парофазной гидрогенизации нейтральные кислородные соединения жидкофазного гидрогенизата, не выделяющиеся предварительно из гидрогенизата при существующей практике гидрогенизационной переработки топлива, подвергаются восстановлению в углеводороды, часто, если не большею частью, сопровождающемуся деструкцией молекулы. Представляется интересным в теоретическом отношении и важным практически получить данные об относительной скорости реакций восстановления нейтральных кислородных соединений в условиях деструктивной гидрогенизации, в сравнении со скоростями других реакций, составляющих этот процесс. [c.148]

    Более прямое доказательство важной роли метильной группы при атоме серы заключается в повышении силы донорной связи сера—бор и в устойчивости при комнатной температуре диметилтиоборана (СНз)25 ВНз. Последнее обстоятельство очень сильно подчеркивается тем, что метилтиоборан малоустойчив даже при —78°. Зависимость этого эффекта от обычных орбит серы, расположенных выше З рЗ октета, обнаруживается при сравнении с бор-кислородными соединениями, связанными донорной связью. Например, (СНз)20-ВНз значительно менее устойчив [р = 18 мм рт. ст. при —78°) [4], чем диметилтиоборан (СНз)28-ВНз, тогда как исключительная медленность протолиза НзЗ—ВгНе указывает на то, что сероводород также слабо удерживает группу ВНз, как это имеет место у воды для промежуточного соединения Н2О ВНз в реакции гидролиза диборана [5]. Метильная группа увеличивает силу донорной связи серы значительно больше, чем силу донорной связи кислорода точно так же метилирование увеличивает силу донорной связи фосфина значительно больше, чем аммиака. [c.448]

    Как следует из данных табл. 2, образцы сорбентов обладают достаточной пористостью. Ма слоемкость сорбентов небольшая, что важно для их практического применения в масложировой промышленности. Реакция водной вытяжки, как правило, слабокислая, только для некоторых образцов природных сорбентов она слабощелочная, что связано с условиями образования сорбентов. Сорбционные свойства сорбентов изучались по поглощению паров бензола, для некоторых исследовалось поглощение паров гептана (пробы 55, 223), а также паров воды (пробы 55, 223, 321, 325). Для многих проб сорбентов была исследована адсорбция сернистых, азотистых, кислородных соединений и раствора предельного углеводорода—цетана. [c.106]

    Важной характеристикой химической активности ЩМ является их реакция с водой. Наиболее сдержан металлический литий, его реакция с водой протекает спокойно, без взрыва и образования пламени (водород-кислородного) Li+H2U = LiOH + 0,5H2. Можно поставить эксперимент таким образом, чтобы водород, выделяющийся при взаимодействии лития с водой, накапливался под стеклянной воронкой, прикрывающей фарфоровую чашку, где идет реакция. После проверки водорода на чистоту, его можно поджечь у носика воронки. Пламя окрашивается в карминово-красный цвет за счет следов соединений лития, содержащихся в парах воды. [c.11]

    Окисление анализируемых веществ можно проводить в закрытых стеклянных или кварцевых сосудах как при нормальном, так и при высоком (кислородные бомбы) давлении. При таком способе сухого озоления окисление проходит быстрее и полнее. Важно также, что продукты реакции поглощаются находящимся в сосуде подходящим адсорбентом или раствором прежде, чем открывают реакционный сосуд. Это дает возможность избежать потерь летучих компонентов, более точно провести определение. В отдельных случаях при окислении пробы вместо или одновременно с кислородом используют другие окисляющие соединения. Так, щ)и определении азота сжигают органическое вещество в щ)исугствии СиО в токе СО2 (метод Дюма). [c.75]

    Образование 3-дезоксигликозулоз и их дальнейшие превращения. Одно из важнейших превращений моносахаридов, протекающих под действием кислот или оснований, состоит в дегидратации с расщеплением кислород-углеродной связи при Сд. Эта реакция , характерная для всех р-оксикарбонильных соединений, начинается, как уже отмечалось выше, с енолизации. Наличие заместителя при кислородном атоме в положении 3 сильно ускоряет процесс. Первичным продуктом реакции является неустойчивая 3-дезоксигликозулоза. Первый представитель этого класса соединений — З-дезокси-В-эритро-гексозулоза — был выделен впервые только в 1960 г. действием разбавленного раствора едкого натра на З-О-бензил-О-глюкозу [c.102]


Смотреть страницы где упоминается термин Важнейшие реакции кислородных соединений: [c.110]    [c.192]    [c.126]    [c.334]    [c.205]    [c.494]    [c.149]    [c.473]    [c.7]    [c.43]    [c.88]   
Смотреть главы в:

Новейшие достижения нефтехимии и нефтепереработки Том 2 -> Важнейшие реакции кислородных соединений

Новейшие достижения нефтехимии и нефтепереработки -> Важнейшие реакции кислородных соединений

Новейшие достижения нефтехимии и нефтепереработки Том 3 -> Важнейшие реакции кислородных соединений




ПОИСК





Смотрите так же термины и статьи:

Кислородная реакция



© 2025 chem21.info Реклама на сайте