Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Геометрия молекулярных кристаллов

    С позиции электростатической теории, образование связи между иодид-ионом и молекулой иода можно объяснить поляризацией последней ионом иодида, возникновением диполя и дальнейшим ион-дипольным взаимодействием [37]. Это взаимодействие приводит к увеличению межатомного расстояния в молекуле иода с 2,67А до 2,82-2,9А. С позиции метода молекулярных орбиталей химическая связь в полииодидах определяется величиной интеграла взаимодействия при перекрывании р-орбиталей, вытянутых в направлении связей [38]. Большая величина интеграла взаимодействия, перпендикулярное расположение различных р-орбиталей одного атома иода по отношению к /7-орбиталям другого атома приводит к тому, что все валентные углы в полииодидах близки к 90 или к 180°. Отклонение в геометрии анионных комплексов от линейной симметричной структуры связывают с влиянием катионов. В кристаллах трииодида аммония [c.26]


    Выбор квазимолекулы, моделирующей кристалл, оказывается достаточно сложной задачей, решение которой невозможно в отрыве от учета симметрии рассматриваемых систем. К сожалению, в большинстве конкретных расчетов этому вопросу не уделяется должного внимания, а выбор квазимолекулы осуществляется скорее из интуитивных соображений, чем на основе более или менее тщательного анализа. Примером такого подхода является широкое распространение модели молекулярного кластера в теории кристаллов с дефектами. Будучи более или менее оправданной для кристалла с физически выделенным центром, эта модель распространяется и на идеальный кристалл в надежде за счет выбора одного и того же приближенного метода теории молекул получить оценку для энергий зонных уровней и локальных уровней относительно друг друга. Но точечная симметрия, характерная для кристалла с центром, навязывается при этом и совершенному кристаллу, а геометрия моделирующего совершенный кристалл кластера определяется, по существу, исходя из таковой для кристалла с центром. При этом теряется, строго говоря, связь между состояниями кристалла и моделирующего его кластера, и результаты расчета оказываются весьма чувствительными к изменению как геометрии, так и размеров кластера. [c.87]

    ГЕОМЕТРИЯ МОЛЕКУЛЯРНЫХ КРИСТАЛЛОВ [c.89]

    Особенности морфологии кристаллов и геометрия молекулярных складок [c.433]

    С точки зрения более тонких деталей морфологии кристаллы полимеров не представляют исключения в отношении их сильного изменения с каждым новым приготовлением и дан<е у отдельных одновременно приготовленных кристаллов здесь можно указать лишь наиболее существенные характеристики морфологии. Особый интерес представляют формы, специфичные для кристаллизации сложенных цепей, так как они не имеют прямых аналогов при кристаллизации более простых мономерных соединений. Вполне очевидно, что эти формы могут быть очень сложными, так как при изменении условий кристаллизации будут происходить не только изменения внешних форм кристаллов, но также и изменения на субмикроскопическом уровне в способах и регулярности складывания цепей, т. е. того, что может быть отнесено к геометрии молекулярных складок. Кристаллы, которые растут медленно и имеют правильные контуры и относительно мало дислокаций, являются предположительно также кристаллами с более точно контролируемой геометрией молекулярных складок это означает, что в большинстве случаев молекулы складываются в плоскостях, параллельных растущим граням, и только с очень незначительными изменениями расстояний между изгибами. Большие скорости роста, как можно ожидать, дают молекулам меньше возможностей регулярного складывания в этом смысле. Следует [c.434]


    Одна из наиболее интересных особенностей кристаллов, относящаяся непосредственно к геометрии молекулярных складок,— это появление морщин и изломов [60, 104, 117]. Они наблюдаются очень часто и принимают многие формы основные их типы представлены на рис. 12 и 13. Первая из микрофотографий показывает, что направления морщин приблизительно параллельны плоскостям (310). Наиболее четко они проявляются или во время высушивания, или сразу после высушивания на подложке но при приготовлении кристаллов они обнаруживаются, по-видимому, только в некоторых случаях и постепенно исчезают при выдерживании кристаллов в течение нескольких часов. Появляются также и морщины, расположенные параллельно плоскостям (530) и (210), но не так часто кроме того, они не так хорошо выражены, как параллельные плоскостям (310). Изломы такого типа, как показанные на рис. 13, бывают направлены преимущественно вдоль диагоналей Ь кристаллов (а иногда также и вдоль диагоналей а), представляя более резко выраженные образования, которые не исчезают при стоянии кристаллов. Морщины резко изменяют направление каждый раз, когда они пересекают диагональ, подтверждая таким образом тот факт, что кристаллы разделены на отдельные секторы. Подразумевается, что складывание молекул может понизить симметрию кристаллической структуры молекулы в каждом секторе сложены, по-видимому, главным образом в плоскостях, параллельных открытой грани призмы, и поэтому каждый сектор представляет независимое структурное образование. Такое образование, которое отличается собственной плоскостью складывания молекул, называется доменом складок, и каждый данный кристалл будет содержать по крайней мере столько доменов, сколько имеется растущих граней. [c.437]

    Итак, мы рассмотрели примеры простейших молекулярных кристаллов. Аналогичная упаковка иногда характерна и для более сложных кристаллов. Это наблюдается в тех случаях, когда геометрия молекул не нарушает плотнейшей упаковки структуры. Так, хотя молекула бензола геометрически более сложная, чем рассмотренные до сих пор, он кристаллизуется в кубической гранецентрированной структуре (рис. 6-58) и имеет орторомбическую симметрию. Индивидуальная же молекула бензола имеет гексагональную симметрию. [c.265]

    До сих пор мы занимались в основном атомными кристаллами нх геометрией, структурой, способами укладки атомов или ионов. В этой главе мы сосредоточим внимание на взаимоотношении молекула — молекулярный кристалл, причем пе столько на геометрической, сколько на кристаллохимической стороне вопроса. Нас будут [c.70]

    Вполне очевидно, что сравнение структур свободных молекул и молекул в кристалле основано на применении различных экспериментальных методов, хотя теоретические расчеты приобретают все большую значимость. По этой причине важно прокомментировать неизбежные различия в физическом смысле той структурной информации, которая получается из разных методов. О влиянии внутримолекулярных колебаний на геометрию свободных молекул уже упоминалось. Эффекты молекулярных колебаний и либрационного движения в кристалле не менее важны. Чтобы свести к минимуму эти воздействия, желательно [c.473]

    При исследовании нематических растворов немезогенов с небольшими молекулами (метан и его производные, ацетилен, производные этилена, метанол и другие) было обнаружено, что данные спектров ЯМР требуют допущения существования в одном растворе молекул немезогена с различными параметрами порядка, имеющими иногда даже противоположные знаки [148-151]. В отдельных случаях наблюдалась смена знака параметра порядка при изменении температуры [139] или при изменении растворителя [126], Эти результаты были объяснены существованием в жидком кристалле полостей сходной геометрии, но с различным молекулярным полем. [c.250]

    Если причины, определяющие образование локальной структуры жидкого кристалла, ее геометрия и конфигурация локального молекулярного поля в настоящее время далеко не изучены, то для немезогенов свойства, ведущие к анизотропному взаимодействию с окружением, более ясны. В отсутствие специфического взаимодействия (водородная и донорно-ак-цепторная связь, кулоновские силы) анизотропия взаимодействия будет определяться положением векторов дипольного момента и главной оси тензора поляризуемости, зависящими также от направления оси главного момента инерции молекулы немезогена [137]. [c.252]

    Специфика геометрии молекул ароматических соединений заключается в тенденции к копланарному расположению атомов и выравниванию длин связей в ароматическом цикле. Современные методы установления молекулярной структуры (рентгенография и нейтронография кристаллов, газовая электронография и микроволновая спектроскопия свободных молекул) делают доступными геометрические параметры почти всех ароматических систем. [c.28]

    Эти методы основаны на изучении дифракционной картины, которую получают в результате рассеивания исследуемым веществом рентгеновских лучей, электронов или нейтронов. Рентгеновские лучи рассеиваются на электронах, потоки электронов (электронные лучи) на электронах и ядрах атомов, а потоки нейтронов — на ядрах. При рассеивании на электронах определяемый электронный центр атома, как правило, практически совпадает с местоположением ядра. Таким образом, дифракционные методы — рентгенография (называемая также рентгеноструктурным анализом), электронография и нейтронография являются незаменимым средством для определения геометрии органических соединений относительного расположения атомов в пространстве и геометрических параметров (межатомных расстояний и валентных углов). Впрочем, эти методы дают и другие представляющие интерес данные например, рентгенография распределение электронной плотности, характер упаковки молекул в кристаллах и даже молекулярные веса. Названные методы взаимно дополняют друг друга. Рентгенография применима в первую очередь для структурного анализа соединений, получаемых в кристаллическом состоянии, т. е. применима к определению соединений сложного строения. Электронография служит для структурного анализа органических веществ в газообразном состоянии, т. е. соединений относительно малого молекулярного веса и простого строения. Оба эти метода не дают удовлетворительных результатов при установлении координат атомов водорода, но для этой цели может с успехом служить нейтронография. [c.245]


    Особенности структуры полисахаридов в кристаллах, гибкость их в коллоидных растворах и другие свойства, связанные с геометрией цепей, могут быть объяснены на уровне атом-атом потенциалов. Как показывает рассмотрение молекулярных моделей, основную роль в определении геометрии цепи и свойств полисахаридов играют взаимодействия двух соседних пиранозных колец, соединенных одно с. другим глико-зидными связями. [c.348]

    В атмосфере паров других веществ пористые кристаллы ведут себя как молекулярные сита они селективно поглощают молекулы малых размеров, способные проникать во внутрикристаллические пустоты цеолитов, и не поглощают молекулы, эффективные размеры которых превышают размеры самых узких участков в системе регулярных каналов, пронизывающих каркасы цеолитов. Узкими участками в системе внутрикристаллических каналов и полостей разных цеолитов являются шести-, восьми- и двенадцатичленные кислородные кольца, диаметры которых зависят от числа атомов кислорода в этих кольцах и от их геометрии. [c.9]

    Резюмируя сказанное, можно сделать основные выводы. Кристаллизация полимеров из разбавленных растворов и из расплава протекает по механизму образования пластинчатых кристаллов, состоящих преимущественно из регулярно сложенных макромолекул. Несмотря на то что кинетика изотермической кристаллизации полимеров из расплава на ранних стадиях подчиняется модифицированному уравнению М. Аврами, численные значения показателя степени п не позволяют сделать однозначный вывод о геометрии растущих кристаллических структур. Зависимость периода складывания макромолекул, а также скорости изотермической кристаллизации от температуры количественно описывается кинетической теорией кристаллизации, однако связь фундаментальных параметров зародышеобразования Ое и частоты сегментального переноса Оо с молекулярными характеристиками полимера в настоящее время остается невыясненной. [c.46]

    ОТ угла 0 получают информацию о геометрии радикала и кристалла. Анизотропную сверхтонкую структуру нельзя наблюдать только у 5-электронов, так как они характеризуются шаровой симметрией распределения заряда. Наблюдаемые спектры поликристаллических образцов возникают вследствие наложения спектров всех беспорядочно ориентированных кристаллов и характеризуются значительным уширением линий. Диполь-дипольное взаимодействие свободных радикалов в растворе обусловливается молекулярным движением. Если вязкость раствора препятствует статистическому движению молекул, то линии сверхтонкой структуры уширяются, так как диполь-дипольное взаимодействие осуществляется частично. Изотропное или ферми-контактное взаимодействие можно объяснить только на основании квантовой механики. Предполагается, что вероятность пребывания электрона вблизи ядра 1р(0) отлична от нуля, что и является причиной возникновения сверхтонкой структуры. Это может иметь место только для электронов, расположенных на 5- или о-орбиталях. Тогда константа сверхтонкого взаимодействия а для этого изотропного взаимодействия равна (в единицах энергии) [c.268]

    Кроме перечисленных выше методов, дающих непосредств. информацию о геометрич. параметрах молекул (кристаллов), широко примен. т. и. косвенные методы — электронный парамагнитный резонанс, инфракрасная спектроскопия, комбинационного рассеяния спектроскопия, масс-спектрометрия и т. д. Эти методы позволяют определять тип симметрии молекулы, первичную структуру (т. е. порядок соединения атомов) и век-рые геом. параметры на основе эмпирич. корреляц. соотношений, предварительно установленных и проверенных для большого числа соед. известного строения. Для определения структуры в-в наряду с экспериментальными примен. разл. расчетно-теоретич. методы, в частности квантовохямические. Для грубых оценок геометрии молекулярных систем часто рассчитывают длины связей исходя из ионных и ковалентных атомных радиусов их усредненные значения, найденные путём анализа большого числа эксперим. данных, а также типичные величины валентных углов табулированы. [c.549]

    Адсорбент проявляе Т степь сильную специфичность по отношению к молекулярной адсорбции молекул групп В и D (по классификации [1,2, 4]) в том случае, когда на поверхность ионного кристалла выдвинуты катионы, особенно если это катионы с большим зарядом и малым радиусом, а отрицательный заряд рассредоточен в больших комплексных анионах. Сульфаты и цеолиты входят в число таких сильно специфических адсорбентов (адсорбентов П-го типа по классификации [1, 2]). В этом случае в теплоту адсорбции, наряду с песпецифическими взаимодействиями, большой вклад вносят специфические взаимодействия преимущественно с катионами адсорбента диполей, квадруполей и л-связей молекулы адсорбата. Этот вклад удобно выразить в виде разности теплоты адсорбции специфически адсорбирующейся молекулы группы В или D с теплотой адсорбции такой неспецифически адсорбирующейся молекулы сравнения группы А, которая при близкой геометрии имеет одинаковую теплоту адсорбции на неспецифическом адсорбенте [1, 2, 4]. Так, для квадрупольной молекулы азота молекулой сравнения может служить молекула аргона (теплоты адсорбции этих молекул на графитированной саже практически одинаковы), а для молекулы диэтилового эфира молекулой сравнения может служить молекула л-пентана, поскольку теплоты адсорбции этих молекул на графитированной саже также близки. Так как не всегда можно выбрать молекулу сравнения группы А, у которой теплота адсорбции на графитированной саже одинакова с теплотой адсорбции данной молекулы группы В или D, то удобно использовать интерполяционные методы, рассматривая зависимость теплоты адсорбции молекул сравнения от их поляризуемости [3, 37] или от числа содержащихся в них атомов углерода [3, 38]. Для -алканов эти зависимости линейны, что облегчает интерполяцию. [c.45]

    Как и любым молекулярным кристаллам, кристаллам макромолекул свойствен некоторый набор элементов симметрии, определяющих их пространственные группы, и это обстоятельство накладывает ограничение на число размещаемых в ячейке молекул Р6]. Однако важной особенностью кристаллов полимеров является тенденция цепей к параллельной укладке, диктуемая как плотной упаковкой, так и энергетическцми критериями. Для стереорегулярных полимеров одна трансляция (ее принимают обычно за ось с) задана геометрией молекулы, поскольку, как мы уже отмечали, кристаллическое поле мало влияет на конформацию цепи. Отсюда ясна неспособность к кристаллизации атактических полимеров, не обладающих четкой периодичностью вдоль цепи. [c.63]

    С другой стороны, следует заметить, что и само изучение движений радикал в матрице молекулярного кристалла представляет большой интерес для радиационной химии. В настоящее время мы еще сравнительно мало знаем о тепловых движениях в молекулярных кристаллах, их геометрии, частотах, амплитудах, между тем как все эти факторы могут оказаться существенными для понимания радиационных превращений в таких матрицах. Вполне возможно, также, что их влияние на вид спектра ЭПР в ряде случаев оказывается больше чем этого можно было ожидать. Например, удивительная аномалия в значениях констант анизотропной СТС от С в радикале (СООН)2СН [105] (отклонение главных компонент тензора от аксиальной симметрии Туу = —70 Мгц, 7 гг=—50 Мгц Гжж= + 120 Мгц, направление осей указано на рис. 156), может оказаться юнязанмой с усредняющим влиянием ориеитащионных [c.345]

    Однако геометрия молекул не сводится к геометрии ядерных скелетов. Атомы, образующие молекулу, обладают электронными оболочками с тем или иным распределением электронной плотности. Наряду с силами притяжения между электронными оболочками атомов действуют силы отталкивания, вследствие чего атомные ядра располагаются на определенных расстояниях друг от друга. Каждому атому может быть тем самым приписан определенный радиус — так называемый атомный радиус для атомов, связанных силами валентности, и ван-дер-Ваальсов радиус для атомов различных молекул и для атомов одной и той же молекулы, непосредственно друг с другом не соединенных. Наряду с геометрией ядерного скелета существует геометрия телесной молекулы, сводящаяся к геометрии распределения электронной плотности. Соответствующие сведения дает структурный анализ свободных молекул и главным образом молекулярных кристаллов [ ]. [c.132]

    В принципе возможные тииы молекулярной или кристаллической структуры, состоящей нз заданного числа атомов, следовало бы выводить, исходя из известных требований образования химических связен, что позволило бы сопоставить реально наблюдаемые структуры со всеми мыслимыми (с точки зрения геометрии и топологии) вплоть до некоторого заранее установленного предела сложности, ибо очень важно знать, почему те пли иные принципиально возможные структуры никогда не встречаются в молекула.х пли кристаллах. Систематические исследования возможных структурных типов ис многочисленны в этой и следующей главах мы рассмотрим наиболее существенные элементы структурной геометрии — простейшие системы связанных точек и плотнейшие упаковки равных сфер. Зиаиие возможных типов трехмерных сеток уже проливает некоторый свет на вопросы такого, нанример, характера почему алмаз представляет собой систему колец из 6 атомов углерода и почему некоторые кристаллические формы В2О3 и Р2О5 состоят из колец, включаюш,их 10 атомов В (или Р) и [c.81]

    С целью определения типа водородной связи методом молекулярной механики исследовали геометрию конформеров свободной молекулы агидола 2 и варигшты с образованием внутри- и межмолекулярных Н-связей. В конформере молекулы агидола 2 с минимальным значением энергии напряжения гидроксильные группы занимают положение, удобное для образования внутримолекулярной водородной связи, причем расстояние между атомами кислорода, равное 0,315 нм, практически соответствует равновесному расстоянию Ко (О...О) в кристаллах со слабой водородной связью. Азимутальный угол [c.328]

    Изучение химии поверхности и адсорбции представляет удобный путь исследования молекулярных взаимодействий. Регулируя геометрию и химию поверхности и изучая адсорбцию молекул разной геометрической и электронной структуры, можно исследовать взаимодействия молекул с поверхностью во всем их многообразии — от слабых вандерваальсовых до различных химических. Воспроизводимость геометрии и химии поверхности обеспечивает воспроизводимость адсорбционных свойств единицы поверхности (для тонконористых кристаллов — единицы массы). При данной температуре и концентрации объемной фазы адсорбционные свойства таких адсорбентов зависят только от строения их поверхности и скелета. Задачей молекулярной теории адсорбции является установление количественных характеристик системы адсорбент — адсорбат на основании свойств молекулы адсорбата и свойств адсорбента. Эта задача решается методами молекулярной статистики и теории межмолекулярных взаимодействий. Молекулярно-статистическая теория позволяет характеризовать термодинамические свойства адсорбционной системы, выражая потенциальную энергию молекулы адсорбата в поле адсорбента в зависимости от всех ее координат. Однако при этом встречаются затруднения, связанные с отсутствием общего выражения для потенциальной функции в случае сложного межмолекулярного взаимодействия на коротких расстояниях. Поэтому чем сложнее это взаимодействие, тем важнее получить о нем до полнительную информацию с помощью комплекса различных экспери ментальных методов, в частности, спектроскопических. [c.132]

    Указал (1814) состав многих соединений щелочных и щелочноземельных металлов, метана, этилового спирта, этилена. Первым обратил внимание на аналогию в свойствах азота, фосфора, мышьяка и сурьмы — химических элементов, составивших впоследствии главную подгруппу пятой группы периодической системы. Результаты работ Авогадро по молекулярной теории были признаны лишь в 1860 на I Международном конгрессе химиков в Карлсруэ. В 1820—1840 занимался электрохимией, изучал тепловое расширение тел, теплоемкости и атомные объемы при этом получил выводы, которые координируются с результатами исследований Д. И. Менделеева по удельным объемам тел и современными представлениями о строении вещества. Издал труд Физика весовых тел, или же трактат об общей конструкции тел (т. 1—4, 1837—1841), в котором, в частности, намечены пути к представлениям о нестехиомет-ричности твердых тел и о зависимости свойств кристаллов от их геометрии. [22, 23, 32, 113, 126, [c.10]

    Повышение эффективности хроматографического разделения в значительной мере связано с оптимизированным по различным параметрам колонны приближением к термодинамической селективности. Поэтому весьма важна оптимизация выбора неподвижной фазы (адсорбента, растворителя) и элюента на основе качественной и по возможности количественной связи определяющих селективность констант термодинамического равновесия с характеристиками меукмолекулярного взаимодействия газовых и жидких растворов с адсорбентами. В простейших случаях неспецифического взаимодействия для этого используются молекулярно-статистические выражения удерживаемых объемов (констант адсорбционного равновесия) газов и паров через атом-атомные потенциальные функции взаимодействия атомов молекулы с атомами твердого тела в соответствующих валентных состояниях этих атомов. В статье приводятся результаты молекулярно-статистических расчетов удерживаемых объемов для ряда углеводородов на графитированной термической саже и в цеолитах. Дается оценка энергии специфического молекулярного взаимодействия при адсорбции, в частности энергии водородной связи, и рассматривается качественная связь селективности разделения с соотношением вкладов специфических и неснецифических взаимодействий в общую энергию адсорбции и с температурой. С этой точки зрения рассматриваются возможности использования в хроматографии атомных, молекулярных и ионных кристаллов, гидроксилированных и дегидроксилированных поверхностей окислов, модифицирующих монослоев и полимеров. Рассматриваются также некоторые возможности адсорбционной жидкостной молекулярной хроматографии с использованием соответствующего подбора геометрии и химии поверхности адсорбента, молекулярного поля (состава) элюента и температуры колонны. Приводятся примеры перехода от адсорбционных к ситовым гель-фильтрационным разделениям полимеров па микропористых кремнеземах. [c.33]

    Решение задачи оптимизации использования молекулярных взаимодействий компонентов смеси путем выбора соответствующей неподвижной фазы (адсорбента или жидкости, молекулярного сита) может быть найдено лишь на основе теории межмолекулярных взаимодействий в газах и жидкостях и между газами и жидкостями и твердым адсорбентом. Эта теория основывается на результатах изучения геометрии и химической природы молекул газа, молекул жидкости и поверхности твердого тела. Она представляет собою молекулярную теорию, поскольку ее задачей в области хроматографии является объяснение связи с молекулярными параметрами и вычисление термодинамических констант адсорбционного или распределительного равновесия (например, констант Генри для нулевых проб), определяющих селективность. Отсюда ясно значение молекулярно-статистических расчетов для развития молекулярных теорий адсорбции или растворения п их приложений к хроматографии, поскольку именно статистическая термодинамика указывает правильную количественную связь констант термодинамического равновесия с нотенциальпыми функциями межмолекуляриого взаимодействия. Однако по мере усложнения адсорбционной системы использование статистической термодинамики для количественных расчетов удерн иваемых объемов встречает затруднения, особенно в случае специфических взаимодействий и неоднородных поверхностей. Вместе с тем увеличение энергии и характеристичности взаимодействия влечет за собой возможность получения новой важной информации о специфическом молекулярном взаимодействии при использовании комплекса спектроскопических методов. Это помогает наполнить даваемые хроматографическими и термодинамическими исследованиями полуэмпи-рические и феноменологические связи между различными параметрами эвристическим содер/канием в смысле возможного приближения к молекулярным основам взаимодействия и селективности. Сюда относится,, в частности, использование регулирования специфхмеских взаимодействий, в частности электростатических взаимодействий динольных и квад-рупольных молекул с поверхностями ионных кристаллов и с поверхностными функциональными группами, использование и регулирование водородной связи и вообще взаимодействий донорно-акценторного типа и процессов комплексообразования. [c.34]

    ХИМИЧЕСКАЯ ФИЗИКА — наука, пограничная между химией и новыми разделами физики, возникшими в первые тридцать лет 20 в. (квантовая мехс1-иика, электронная теория атомов и молекул). Задачей X. ф. является применение теоретических и экспериментальных методов этой новой физики к химич. проблемам, а именно к вопросам строения и превращения веществ. Основными ра еделами X. ф., установившимися еще в 20—30-х гг., являются 1) Строение электронной оболочки атома (в связи с периодич. законом Д. И. Менделеева). 2) Квантово-мьханич. природа валентности, химич. С1гл и сил межмолекуляр-ного сцепления. 3) Строение молекул, их геометрия, электрические, магнитные и оптич. свойства. 4) Строение и свойства кристаллов, жидкостей, растворов, адсорбционных слоев, сольватация ионов. 5) Динамика молекул, молекулярные сиектры, молекуля )-ные константы, возбуждение атомов и молекул, обмен энергий ири соударении частиц (атомов, ионов, молекул). 6) Современная химич. кинетика — природа элементарных химич. актов, происходящих под действием тепла, квантов света, электронного удара свойства свободных радикалов, возбужденных молекул и других лабильных частиц природа химич. активации и квантово-механич. теория реакционной способности разлпчных соединений в связи с пх строением фотохимия, реакции в разрядах, теория горения и взрывов. [c.318]

    Во втором случае появились, кроме вышеупомянутых плоскостей (100) и (111), дефектные плоскости (113) и (110) (рис. 26), а вместе с ними два различных по геометрии типа центров В5 (рис. 27). Применив математический метод нахождения максимального числа центров В5, а также Вз и В4 ъ зависимости от диаметра кристалла, авторы 1217] получили кривые распределения этих центров и показали, что в очень мелких частицах ( <10 А) и в частицах с >40—50 А центры В5 отсутствуют, а максимальное их количество приходится на кристаллы с размером 18—25 А (рис. 28). В работе подробно обсуждается природа адсорбции молекулярного азота на N1, Pt и Р(1, впервые обнаруженной Эйшенсом и Джек-нау [218]. Высказано предположение, что хотя высокое значение теплоты адсорбции (12 ккал1моль) может привести к выводу о хемосорбции, но ввиду неспецифичности адсорбции на исследованных металлах, она, по-видимому, имеет физическую природу. Главным результатом работы является следующий вывод. Прежде чем говорить о влиянии носителя на ка- [c.67]

    Химический состав поверхности обычных адсорбентов неоднороден и его трудно изменить в желаемом направлении. Кроме того, и геометрическая структура (геометрия поверхности, пористость) обычных адсорбентов также весьма неоднородна, в них имеются поры разных, в том числе и молекулярных, размеров в таких порах адсорбция обычно усиливается, а обмен молекулами с подвижной фазой сильно замедляется. Таким образом, для того чтобы эффективно применять адсорбенты в хроматографии, необходимо преждг всего, чтобы они обладали однородной геометрической структурой. Это достигается устранением неоднородности пор, переходом от тонкопористых аморфных гелей к пористым кристаллам, расширение. пор и переходом к макропористым и непористым аморфным и кристаллическим неорганическим и органическим адсорбентам. В то же время необходимое требование, особенно к адсорбентам для газовой препаративной и жидкостной хроматографии — обеспечение достаточной емкости колонны, т. е. адсорбенты должны иметь достаточно высокую удельную поверхность. Все эти требования отчасти противоречивы, поэтому важно найти оптимальный вариант. В настоящее время в этом нанравлении уже многое сделано. [c.9]


Смотреть страницы где упоминается термин Геометрия молекулярных кристаллов: [c.493]    [c.79]    [c.359]    [c.79]    [c.334]    [c.8]    [c.120]    [c.69]    [c.231]    [c.125]    [c.12]    [c.247]    [c.120]   
Смотреть главы в:

От молекулы к кристаллу -> Геометрия молекулярных кристаллов




ПОИСК





Смотрите так же термины и статьи:

Геометрия кристалла

Кристалл молекулярные



© 2025 chem21.info Реклама на сайте