Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм бимолекулярных реакций. Энергия активации

    Предполагается, что процесс образования водорода -бимолекулярная реакция. При таком механизме образования водорода энергия активации не зависит от энергии связи С—Н и может рассматриваться как температурный коэффициент подвижности углеродных сеток, [c.140]

    Бимолекулярные реакции. Механизм бимолекулярных реакций. Связь между скоростью реакции, числом столкновений и энергией активации. Эффективные столкновения и роль пространственных факторов. Реакции с малой энергией активации. Свободные атомы и радикалы. Тримолекулярные реакции. Рекомбинация атомов. [c.217]


    Энергия активации для хлорирования метана, определенная экспериментально, составляет 31 600 кал [28] (вычисленная 28 500 кал), тогда как вычисленное значение для хлорирования этилена путем замещения составляет 45 ООО кал [34]. Обе реакции, по-видимому, протекают по одному механизму. Можно поэтому предсказать, что замещение водорода галоидом в метане, этане и других парафинах должно протекать быстрее, чем в этилене это действительно наблюдается. Энергия активации присоединения хлора к этилену была рассчитана Шерманом с сотрудниками она составляет 28 500 кал для цепной реакции и 25 200 кал для бимолекулярной реакции. Эти значения гораздо меньше той величины, которая найдена для заместительного хлорирования этилена экспериментально показано, что присоединение хлора к этилену протекает быстрее, чем замещение, по крайней мере, при низких температурах. [c.60]

    Чтобы определить стадии процесса, кинетику замещения водорода на галоген сравнивали с кинетикой взаимодействия галоидов с водородом. Энергия активации при образовании галоидоводородных кислот в результате взаимодействия галоидов с водородом была рассчитана с точки зрения бимолекулярного механизма и механизма образования через свободные радикалы. Сопоставление полученных результатов с экспериментальными показало, что в случае фтора, хлора и брома промежуточно образуются свободные радикалы, в то время как реакции иода с водородом протекают по бимолекулярному механизму. [c.264]

    Были рассчитаны энергии активации и для реакций присоединения хлора к этилену при расчетах также предполагали два возможных механизма — радикальный или бимолекулярный. Их значения оказались близки (28,5 и 25,2 ккал/моль соответственно), однако меньше (при одинаковых условиях), чем для реакций замещения. Ингибирующее действие кислорода и в этом случае говорит в пользу радикального механизма. [c.265]

    Из краткого рассмотрения основных фактов, обнаруженных экспериментально прн изучении мономолекулярных реакций, прежде всего следует, что мономолекулярный механизм оказывается значительно более распространенным, чем бимолекулярный, если ограничиться рассмотрением кинетических свойств валентнонасыщенных молекул. Очевидно, что мономолекуляр-ное превращение претерпевают, как правило, молекулы достаточно сложного строения. Следует отметить, что энергия активации и предэкспоненциальные множители при этом весьма велики по сравнению со значениями соответствующих величин для других классов химических процессов. Имеющиеся исключения, например распад МаО, пе меняют общей картины. [c.162]


    Свойства карбоний-ионов. Свободные карбоний-ионы являются высокоактивными частицами, вступающими в реакции с очень большой скоростью. Для некоторых реакций, могущих протекать как по радикально-цепному, так и по карбоний-ионному механизму, активность карбоний-ионов может быть сравнена с активностью радикалов. Так, при полимеризации стирола по радикальному механизму при 20°С константа скорости продолжения цепи равна 35 л-моль- -с , энергия активации продолжения цепи 32,7 кДж/моль (7,8 ккал/моль). Полимеризация стирола на свободных катионах проходит с константой скорости продолжения цепи 35-10 л моль- с- при 15°С и энергией активации 8,4 кДж/моль (2 ккал/моль). Константа скорости присоединения карбоний-иона к молекуле стирола на пять порядков больше, чем для радикала. Карбоний-ионы, как и радикалы, подвергаются мономолекулярному распаду и бимолекулярным реакциям замещения и присоединения. Существенным отличием в химических свойствах карбоний-ионов от свойств радикалов является способность первых с большой скоростью изомеризоваться. Изомеризация карбоний-ионов может проходить в результате переноса как гидрид-иона, так и карбоний-ионов. [c.164]

    Приведенные выше реакции с N0, а также реакция образования озона характеризуются одной особенностью — скорость этих реакций падает с ростом температуры. Другими словами, они имеют как бы отрицательную энергию активации. Это снова можно объяснить тем, что механизм реакции протекает через две бимолекулярные стадии. [c.280]

    Переходное состояние для бимолекулярного механизма имеет строение, изображенное на стр. 82. Четыре атома (углеродный атом — центр реакции и три связанных с ним) располагаются в одной плоскости, тогда как входяш ая и уходяш ая группы находятся на прямой, перпендикулярной этой плоскости. Существенно то, что в переходном состоянии центральный атом углерода связан с пятью группами, тогда как в исходной молекуле — только с четырьмя. Поэтому всякое увеличение объема этих групп скажется более резко на напряженности переходного состояния при увеличении объема заместителей потенциальный барьер увеличится, энергия активации возрастет и реакция замедлится. Таким образом, в случае механизма 3 2 пространственные нагрузки вблизи центра реакции скажутся как пространственные затруднения, что и наблюдается в действительности. [c.516]

    Необходимо также заметить, что окисление получающегося при распаде КО радикала К ->К 00 уже мепее вероятно, поскольку с уменьшением числа атомов углерода снижается стабильность радикалов К 00 — причина, по которой не осуществляется окисление по перекисному механизму метана при необходимых для развития реакции температурах (см. 8). Деградация углеводородного радикала представляет один из факторов торможения окислепия по перекисному механизму. Как будет показано ( 7), эффективная энергия активации низкотемпературного окисления (после зарождения цепи) определяется энергией активации реакции разветвления 3, которая меньше 40 ккал , т. е. ниже энергий активации окисления формальдегида эфг 43 ккал, по Ванне (см. 2). По этой причине, а также ввиду общего соотношения между скоростями бимолекулярных и мономолекулярных реакций (10 и 3), при данных температуре и составе смеси скорость высокотемпературного окисления будет меньше скорости низкотемпературного окисления. Мы приходим к выводу, что замена низкотемпературного механизма высокотемпературным приведет к уменьшению брутто-скорости окисления. Поскольку с повышением температуры вероятность такой замены растет, общая скорость окисления может, в некоторых пределах температур, оставаться неизменной или даже уменьшаться (пулевой и отрицательный температурные коэффициенты). Лишь при дальнейшем повышении температуры и скорости высокотемпературного окисления (в соответствии с высоким значением для него) начинается возрастание общей скорости окисления. [c.51]

    Температура продуктов горения в некоторой степени зависит от начальной температуры свежей смеси и конструкции горелки. Она может быть как низкой (1400 К) в очень разбавленном водородном пламени, так и высокой (3300 К) в случае неразбавленной стехиометрической смеси. Многие работы проделаны в температурном интервале 2000—2500 К, причем почти в центре этого интервала при температуре 2102 К энергии 40 кДж/моль соответствует больцмановский множитель, равный 0,1. Поскольку эта температура в семь раз больше комнатной, энергетические барьеры в пламенах при этой температуре в семь раз менее важны, чем при комнатной. Это обстоятельство указывает на важную роль энтропии реакции определяющими являются реакции, в которых образуется множество промежуточных частиц. Поэтому химический механизм реакций в пламенах обусловлен простейшими частицами атомами, двухатомными молекулами, некоторыми трехатомными, но обычно не более сложными. Поскольку в реакциях участвуют простейшие молекулы, обобщенная энтропия активации мала, т. е. частотные факторы нормальные и сечение равно газокинетическому. Из этого следует, что время полупревращения большинства бимолекулярных процессов порядка микросекунд, что на три порядка меньше временного масштаба газового потока, следовательно, процессы в пламени можно считать равновесными. Молекула испытывает около 10 ° столкновений в секунду, а значит, время полупревращения реагентов меньше миллисекунды, если произведение больцмановского множителя и парциального давления партнеров реакции больше 10 . Такая ситуация достигается только для реагирующих добавок или в случае большой энергии активации реакции. [c.211]


    Объяснить большие значения Р нетрудно. 1) Если реакция цепная, то Р может включать длину цепи (1—а) , где величина а учитывает тот факт, что не всякое столкновение между активным продуктом и нормальной молекулой реагента, которое приводит к инактивации, обязательно приведет к образованию активной молекулы реагента [17]. Если а близко к единице, то длина цепи (1—а) становится велика например, в случае окисления сульфит-иона кислородом в водном растворе этот параметр варьирует от 10 до 10 [2]. Цепной механизм сравнительно нетрудно обнаружить, и то обстоятельство, чвд в растворах обнаружено сравнительно мало реакций с большой длиной цепи, показывает, что этот вклад не может обеспечить в общем случае больших значений Р. 2) Если не ограничиваться в выражении для энергии активации двумя квадратичными членами (как это мы делали до сих пор), то доля активированных молекул увеличится, а константа скорости бимолекулярной реакции станет равна  [c.95]

    Если такой подход верен, то должна линейно зависеть от про-изведения концентрации нитрат-ионов на квадрат среднего коэффициента активности. Значения коэффициента активности при 25 С известны [39], они приведены для некоторых значений концентрации в табл. 8.14. Помещенные там же рассчитанные значения к получены по уравнению к = 2,61 10 + - -1,72-10 1 [N0 ] 7 . Отсюда следует, что при концентрациях, превышающих 0,021 М, число молекул, реагирующих через тримолекулярный комплекс, становится больше, чем число молекул реагирующих по бимолекулярному механизму. Это возможно только в том случае, если энергия активации тримолекулярного процесса намного меньше, чем энергия активации бимолекулярной реакции. Снижение энергии активации при переходе к тримолекулярному механизму может быть связано с тем, что анион, приближаясь к метильному концу молекулы и не реагируя с ней химически, способствует электростатическому притяжению иона серебра, который приближается со стороны атома галогена на расстояние, соответствующее критическому расстоянию для атома иода. [c.227]

    В газовой фазе озон разлагается по сложному механизму [7, 15, 44, 61], гетерогенная составляющая которого мономолекулярна, а гомогенная — бимолекулярна и характеризуется частичным ингибированием продуктом реакции. Для гомогенной бимолекулярной реакции получены следующие значения кажущейся энергии активации (в кал/моль) 26 700 [88], 26 100 [19], 26 ООО [67] и 27 700 [5] [c.276]

    Механизм бимолекулярных реакций. Энергия активации. Необходимым этапом химических превращений является столкновение молекул. Однако подсчет числа столкновений, выполненный при по-дющи кинетической теории, показал, что далеко не каждое столкновение ведет к релаксации. Так, например, в одном моле иодистого водорода, занимающем объем 1 л, при 1 атм и температуре 556 К происходит в секунду 5,5-10 столкновений. Количество иода, образующегося за тот же промежуток времени, показывает, что из этого числа лишь 3,0-10 столкновений были эффективными, т. е. привели к реакции Н1- -Н1 = Н2+12- [c.319]

    Таков механизм цепной неразветпвленной реакции при каждом элементарном взаимодействии один активный центр образует кроме молекулы продукта реакции один новый активный центр. Скорость неразветвленной цепной реакции равна произведению скорости зарождения цепей на длину цепи. Учитывая то, что длина цепей может достигать больших значений, скорость цепной реакции гораздо больше скорости остальных, например, бимолекулярных реакций. Энергии активации отдельных стадий цепных реакций обычно в десятки раз меньше, чем энергии активации межмолекулярных реакций, что способствует протеканию цепных реакций с большой скоростью. [c.202]

    В этом случае реакция "Идет по бимолекулярному механизму с большей энергией активации и со значительно меньшей скоростью окисление три-и-бутилфосфита количественно при УФ-облучении идет при 50—55° С за 5 час. [49], а триизобутилфосфита в идентичных условиях — за 2 часа [48]. [c.60]

    Для бимолекулярных реакций (/г = 2) ks k g равно иримерио 75. Это составляет около двух порядков величины и, следовательно, как указывает Бенсон, реакции в растворе должны быть быстрее, чем в газовой фазе, если механизм процесса и энергия активации одинаковы в обеих фазах. Бенсон считает, однако, что обычно константы скорости и константы равновесия примерно одинаковы в газовой и жидкой фазах. [c.135]

    Как было показано в предыдущих исследованиях де Йонга и де Йонге [2], реакция образования монометилолмочевины обратима. Прямая реакция бимолекулярна и энергия активации ее в разбавленных растворах равна 13 ккал/моль. обратная реакция мономолекулярна и ее энергия активации равна 9 ккал/моль. Механизм кислотного катализа заключается, по предположению де Йонга и де Йонге, во взаимодействии мочевины с положительно заряженной молекулой формальдегида. Дальнейшая обратимая реакция образования диметилолмочевины подчиняется тем же закономерностям [2, 253]. [c.198]

    Установить механизм обрыва при полимеризации винилацетата экспериментально очень трудно, так как даже при относительно высоких концентрациях инициатора рост молекулярной цепи прекращается главным образом в результате реакции передачи и число молекул, образующихся при бимолекулярном обрыве, относительно мало. Поэтому неудивительно, что Бемфорд и Дженкинс [30], используя свой метод (см. стр, 231), не смогли найти для винилацетата никаких признаков обрыва за счет соединения. Мелвилл и Сьюэлл [21], однако, установили, что полимерные молекулы высшей фракции поливинилацетата, полученного при 18°С сенсибилизацией динитрилом азоизомасляной кислоты. меченым радиоактивным изотопом (конверсия 80%), содержали в среднем по 2,7 концевых групп с фрагментами инициатора. Это можно объяснить только тем, что при этой температуре обрыв, по крайней мере, частично происходит в результате соединения цепей отношение соединения к диспропорционированию в соответствии с ожидаемыми для этих реакций энергиями активации. аолжно изменяться с повышением температуры в сторону преобладания диспропорционирования. Количественная трактовка на основании имеющихся данны.ч не представляется возможной. [c.244]

    Суммарная энергия активации равна около 29,4 ккал/моль. Экспериментально полученная величина составляет около 34 ккал/моль, что достаточно хорошо согласуется с теорией и доказывает, что взаимодействие хлора с водородом протекает через свободные радикалы. В самом деле, величина Е , рассчитанная, исходя из предположения о бимолекулярном механизме, равна около 75 ккал/моль, что сильно расходится с экспериментальными данными. Подтверждением радикального механизма образования H I является и тот факт, что реакция ингибируется кислородом. Общая скорость реакции пропорциональна содержанию хлора и обратно пропорциональна содержанию кислорода и поверхности peaктора. [c.264]

    Выше (см. с. 81) отмечалось, что по параметру а топлива близки к парафиновым и нафтеновым углеводородам, у которых прочность С—Н-связей находится в диапазоне 395— 380 кДж/моль. Для таких углеводородов предпочтителен бимолекулярный механизм зарождения (см. с. 38), и, видимо, именно он преобладает в топливах в присутствии кислорода. Однако значения энергии активации зарождения цепей (80— 96 кДж/моль) в топливах позволяют предположить, что заметный вклад в инициирование вносит и тримолекулярная реакция. С этим согласуется и диапазон предэкспоненциальных факторов А [102—104 л /(моль -с)], если их вычислить из величин и,о, полагая [КН]=7 моль/л, а [02] = 10 2 моль/л. Из величин ,о оценим значения Лн н наиболее слабых С—Н-связей в топливах по двум формулам ( , о-Ь221) кДж/моль (при предположении о преобладании бимолекулярной реакции) и = 72 ( 0 4-570) кДж/моль (при предположении о тримо-лекулярной реакции) (см. с. 38). [c.89]

    Следует иметь в виду, что различные реакции, протекающие в гомогенных условиях по бимолекулярному механизму (например, образование HI) на поверхности металлов, имеют первый порядок. В то время как в гомогенной системе предпосылкой осуществления реакции является столкновение двух молекул, на поверхности возможен непосредствеи-ный распад молекулы ( выиг-мов протекания реакции, отличаю- рыш энергии за счет образо-щихся разной энергией активации при вания адсорбционной СВЯЗИ С высокой и низкой температуре. поверхностью). Поэтому энергия активации гетерогенной реакции оказывается значительно более низкой, чем для той же реакции, протекающей в гомогенной системе. Часто на некоторых типах поверхности реакция идет через параллельные стадии гомогенного и гетерогенного механизма при высокой температуре преобладает гомогенная реакция, при более низкой — гетерогенная. Скорость гомогенной реакции увеличивается с температурой быстрее, чем скорость гетерогенной, вследствие более высокой энергии активации гомогенной реакции поэтому при повышении температуры преобладает гомогенная реакция (рис. Б.14). [c.190]

    В этой реакции сначала разрывается химическая связь в молекуле 2 — на это требуется энергия активации 150 кДж/моль, затем образуется переходное состояние еще более высокой энергии (на 18 кДж/моль). В этом переходном состоянии связь между атомами водорода ослаблена и зарождаются новые связи — между атомами водорода и йода. Поскольку реакционные центры от двух молекул входят в переходное состояние, то реакция является бимолекулярной. Другой механизм данной реакции, также объясняющий ее бимолекулярность, включает циклическое переходное состояние (см. схему 6.1). [c.191]

    Определенная специфика проявляется при протекании мономолекулярных реакций, в которых акт превращения молекул не обязательно связан со столкновением, а распад каждой молекулы, например, в реакциях диссоциации, может происходить независимо от других молекул. Мономолекул яр ное превращение претерпевают, как правило, молекулы достаточно сложного строения, причем мономолекулярный механизм значительно более распространен, чем бимолекулярный. Энергия активации и предэкспоненциальные множители мономолекулярных реакций весьма велики по сравнению со значениями соответствующих величин для других классов химических процессов. [c.224]

    Р-ции, протекаюпше в жидкой фазе, чрезвычайно разнообразны как по строению реагентов, так и по механизмам превращения (с.м. Реакции в жидкостях). При диссоциации молекулы на свобод, радикалы и атомы наблюдается клетки эффект. Медленная (в сравнении с газом) диффузия частиц в жидкости щзиводит к тому, что безактивационные бимолекулярные р-ции протекают как диффузионно-контролируемые реакгрш. Р-ции, имеющие значит, энергию активации, протекают, как правило, в кинетич. режиме. Реагенты в р>-ре часто образуют между собой мол. комплексы и разнообразные ассоциаты. Это отражается на кинетике р-ции и часто существенно меняет кинетич. закономерности процесса. Полярный р-ритель облегчает ионизацию молекулы, в р-ре появляются контактные и разделенные ионные пары. Возникает вероятность параллельного протекания р>-ции по разным механизмам. Нередко, однако, р-ния прютекает по мол. механизму как самосогласованный процесс перестройки мол. орбиталей реагирующих частиц (см. Вудворда Хофмана правила). Окислит.-восстановит. р>-ции могут происходить в жидкости по механизму квантового туннелирования (см. Туннельный эффект). [c.382]

    Примером реакции, проходящей по одному и тому же механизму в газовой фазе и в растворе, может служить бимолекулярное циклоприсоединение по Дильсу — Альдеру (димериза-ция) циклопентадиена, приводящее к энс о-дициклопентадиену, в котором из нейтральных исходных веществ образуется нейтральное соединение. Как показывают данные, приведенные в табл. 5.1, аррениусова энергия активации и константа скорости этой реакции при переходе от газовой фазы к раствору изменяются незначительно. Действительно, константа скорости этой реакции изменяется лишь примерно в 3 раза, что сопровождается соответствующим небольшим изменением энергии активации. [c.193]

    В разд. 24.1.3 мы видели, как каталитические механизмы, по которым, как полагают, действуют некоторые ферменты, могут в ряде случаев наблюдаться в простых системах. Так, общий основной катализ имидазолом, например, гидролиза Л ,0-диаце-тилсеринамида (36) [53] представляет собой модель реакции химотрипсина со сложноэфирным субстратом. В ионной реакции этого типа переходное состояние каталитической реакции стабилизуется за счет делокализации заряда на нескольких центрах. В этом случае фиксация положительного заряда на нуклеофильной гидроксильной группе нейтрализуется делокализацией на азо-тах имидазола. В результате происходит понижение энергии активации реакции за счет затрат повышенной энтропии активации (см. разд. 24.1.22). Данные табл. 24.1.4 иллюстрируют это положение мономолекулярная реакция отщепления 2,4-динитрофен-оксида от соответствующего фосфатного моноэфира-дианиона имеет высокую энтальпию активации, однако реакция протекает достаточно легко из-за ее весьма благоприятной энтропии активации. Нуклеофильный катализ этой реакции пиридином характеризуется несколько меньшей энтальпией активации, так как азот пиридина может принимать на себя положительный заряд в переходном состоянии, в результате чего удается избежать образования высокоэнергетического интермедиата — метафосфата [РОЛ- Тем не менее участие молекулы пиридина отражается в виде намного менее выгодной энтропии активации. Близкие активационные параметры наблюдаются и в случае нуклеофильного катализа ацетатом гидролиза триэфира (73) также бимолекулярной реакции. Нейтральный гидролиз (73) проходит, как полагают, по механизму тримолекулярного общего основного катализа (см. табл. 24.1.4). Эта реакция протекает относительно медленно исключительно за счет энтропийного вклада, еще менее выгодного в этом случае. Энтальпия активации, впрочем, для тримолекулярного процесса несколько ниже, поскольку делокализация заряда на трех молекулах еще больше уменьшает его фиксацию в каком-либо одном центре. [c.522]

    Предложенная схема механизма гомогенного термического распада окиси этилена включает образование активированных мо.чекул ацетальдегида. Однако Касселц подверг критике эту схему , так как считает маловероятным образование возбужденных молекул ацетальдегида и их последующий распад на СО и СН или их дезактивацию при столкновении с другими молекулами. При разложении окиси этилена в интервале 435—505 °С среди продуктов распада ни на одной из стадий процесса не был обна-ружен ацетальдегид. Были найдены только метан, окись углерода, небольшое количество водорода и этана. При определении констант скорости распада окисн этилена при давлениях от 15 до 800 мм рт. ст. было установлено", что прн 475 °С и давлениях выше 250 М.М. рт. ст. реакция распада строго следует мономолекулярному закону в согласии с данными . В интервале давлений 250—40 мм рт. ст. реакция становится бимолекулярной. Энергия активации процесса для давлений выше 300 мм рт. ст. составляла 54 ккал1моль, а для давления 20 мм рт. ст. — около 50 ккал/моль. Эти значения для энергии активации также близки к дaнныл . [c.58]

    Зарождение цепей согласно реакциям (2.0) и (2.0 ) может происходить по три-молекулярному и бимолекулярному механизму. В зависимости от строения углеводорода и условий проведения окисления преобладает одна из двух реакций [4]. Для соединений с прочностью С—Н-связи<377-10 Дж/моль зарождение цепей осуществляется по тримолекулярной реакции (2.0). Это связано с тем, что частота тройных соударений при окислении углеводорода в жидкой фазе может приближаться к частоте двойных и энергетические преимущества этой реакции приобретают существенное значение. При Qr-h< < 380,7-10 Дж/моль величина Ео оказывается меньше, чем Ео. Следует учитывать, что в некоторых случаях, когда нз-за стерических факторов отношение предэкспоиентов Af/Ао оказывается больше 10 , величина Qij-h, прн которой o >Wo, может быть меньше 380,7-10 Дж/моль [5]. Реакция зарождения цепей с участием кислорода (2.0 ) характеризуется выражением энергии активации Ео [< o ] Qr h—Qh-Oj Дж/моль-10 и значением предэкспонента Ло — 10 —10 л/(моль-с). [c.12]

    Из сказанного следует, что мономолекулярная химическая реакция протекает в две стадии первая стадия — предварительная активация молекул, осуществляющаяся в результате бимолекулярных соударений, вторая стадия — стадия собственно мономолекулярной реакции активированной молекулы. Кроме мономолекулярного превращения активная молекула может претерпеть дезактивируюш,ие соударения с другими молекулами, приводящие к потере той или иной части ее энергии, т. е. к превращенню активной молекулы в неактивное состояние. Таким образом, имея в виду газ, состоящий из молекул одного сорта (активных и неактивных), т. е. газ, не содержащий примесей, механизм мономолекулярной реакции мы должны представить как совокупность следующих процессов  [c.240]

    Статистической теории мономолекулярных термических и нетермических (типа химической активации) мономолекулярных реакций в последние годы было посвящено несколько книг [21, 22] и обзоров [23—25]. Что касается бимолекулярных реакций, то отметим недавний обзор [26], в котором обсуждены вопросы расчета полных сечений и функций распределения, а также дана ин-териретация полученных к тому времени экспериментальных результатов главным образом по ион-молекулярным реакциям. Появившиеся после опубликования этого обзора теоретические работы по статистическим моделям посвящены разработке методов расчета фазовых объемов, определяющих вероятности распада комплекса по различным каналам [27—32], и функций распределения фрагментов по энергиям [33—36]1 Угловому распределению фрагментов, а также их поляризационным характеристикам стало уделяться внимание лишь в самое последнее время в связи с возникшей возможностью их детектирования. Стало ясно [37, 38], что исследование угловых распределений и измерение связанных с ними корреляционных функций различных угловых моментов несут большую информацию о механизме распада комплекса. [c.57]

    Основой для системат эации данных химической кинетики явилась теория соударений, согласно которой константа скорости простой бимолекулярной реакции рассматривается как произведение обычной частоты соударений и доли молекул, заданной распределением Больцмана, ехр EJkT), где Е. — энергия активации. Этим простым теоретическим соображениям удовлетворяли тесть бимолекулярных реакций в газовой фазе, известных к 1926 г., и около сотни реакций в разбавленных растворах, изученных к 1932 г. Скорости реакции, меньшие чем это предсказывает теория, можно было объяснить процессами инактивации, а скорости, превышающие теоретически допустимые, приписать или участию в процессах цепных механизмов, при которых активированные молекулы передают свою энергию другим молекулам, или такому распределению энергии активации, которое способствует реакции и не является следствием какой-либо простой теории. Едва ли стоит удивляться тому, что стало необходимым значительно расширить рамки теории саударений, прежде чем она смогла бц претендовать на какую бы то ни было обш ность, в особенности применительно к реакциям в растворах. [c.13]

    Показано, что бимолекулярная константа скорости, полученная обычным путем, увеличивается по мере протекания реакции, когда галогенид находится в избытке (рис. 16.3), откуда следует, что процесс протекает по тримолекулярному механизму. Если же в избытке содержится амин, то константа скорости по мере протекания реакции уменьшается. Эти не нашедшие объяснения результаты затрудняют определение энергии активации реакции с достаточной точностью. По данным работ [9, 20] можно предложить следуюш ее приближенное уравнение для энергии активации — (18 250 3250) — (9,35 4,75) ДГ. Отсюда следует, что значение производной Е йТ находится в интервале —9 до —28 калДмоль-К). Знак минус согласуется с концепцией образования солеобразного а1 тивированного комплекса и данными по влиянию давления на реакции этого типа (см. табл. 12.3). Однако нри протекании тех же реакций в хлористом метилене, по-видимому, значение производной dEJdT (в тех же единицах) находится в интервале (Ч-4 0,4) [2]. [c.453]


Смотреть страницы где упоминается термин Механизм бимолекулярных реакций. Энергия активации: [c.144]    [c.300]    [c.29]    [c.453]    [c.104]    [c.126]    [c.326]    [c.212]    [c.91]    [c.91]    [c.82]    [c.215]    [c.71]    [c.277]    [c.448]   
Смотреть главы в:

Физическая химия Издание 2 1979 -> Механизм бимолекулярных реакций. Энергия активации




ПОИСК





Смотрите так же термины и статьи:

Активация реакцйи

Бимолекулярные реакции механизм

Бимолекулярные энергия активации

Реакции бимолекулярные

Реакции энергия реакций

Реакция энергия активации

Энергия активации

Энергия бимолекулярных реакций



© 2025 chem21.info Реклама на сайте