Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Передачи со структурой мономера

    Как уже установлено, образование сетки и гелеобразование возможны также при полимеризации простых виниловых мономеров, если происходит активация неактивного полимера. Например, при привитой полимеризации (или сополимеризации) вслед за передачей цепи через молекулы неактивного полимера следует рост ветвей, и если хотя бы частично обрыв происходит путем соединения радикалов, могут образовываться сетчатые структуры. Кроме того, передача через мономер может приводить к образованию молекул полимера, содержащих двойные связи, например [c.343]


    Поскольку в реакциях переноса цепи участвует и растущий макрорадикал, константа передачи цепи Сь (отношение константы скорости реакции переноса цепи к константе скорости реакции роста цепи) зависит не только от строения переносчика цепи, но и от структуры мономера (табл. 20). [c.158]

    ИСХОДИТ редко и образующийся полимер сохраняет преимущественно линейную структуру. При полимеризации винилацетата образование разветвленных макромолекул наблюдается уже при 40—-50°. По способности к передаче цепи через макромолекулы метилметакрилат и акрилоиитрил занимают промежуточное положение между стиролом и винилацетатом. Опыт показывает что реакция передачи цепи через макромолекулы более характерна для мономеров, образующих высокоактивные радикалы-По мере увеличения степени превращения мономера в полимер вероятность возникновения макромолекул разветвленной структуры возрастает. Не менее часты случаи передачи кинетической цепи через молекулы мономера  [c.126]

    Форма и структура макромолекул полимеров. Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры образуются при полимеризации мономеров или линейной поликонденсации. Разветвленные полимеры могут образоваться как при полимеризации, так и при поликонденсации. Разветвление полимеров прн полимеризации может быть вызвано передачей цепи на макромолекулу, росте боковых цепей за счет сополимеризации и другими причинами. Разветвленные полимеры образуются при поликонденсации многофункциональных соединений, а также в результате прививки к макромолекулам боковых цепей. Прививку проводят либо путем взаимодействия полимеров с олигомерами или мономерами, либо путем физического воздействия (например, 7-облучения) на смесь полимера и мономеров. Сетчатые полимеры образуются в результате сшивки цепей при вулканизации, образовании термореактивных смол и т. д. Форма макромолекул влияет на структуру и свойства полимеров. [c.357]

    Реакция передачи цепи протекает также при полимеризации в неполярных растворителях (углеводородах). Скорость этой реакции, как и других реакций радикального замещения, сильно зависит от структуры участвующи.х в ней веществ (мономера и агента передачи цепи). Скорость передачи цепи главным образом определяется подвижностью атомов или групп атомов, которые переносятся на растущий радикал, и сильно возрастает с повышением реакционной способности радикала [c.71]


    В соответствии с кинетикой реакций радикальной полимеризации этилена основными технологическими параметрами синтеза ПЭВД, определяющими структуру и массу макромолекулы, являются температура и давление полимеризации. Важную роль играют также конверсия мономера и время пребывания реакционной смеси в реакторе. С повышением температуры скорость роста цепи увеличивается меньше, чем скорость реакций передачи цепи и распада инициатора, что приводит соответственно к увеличению степени разветвленности (того и другого типа) и уменьшению молекулярной массы. Повышение давления преимущественно увеличивает скорость роста цепи и замедляет распад инициатора. Это вызывает увеличение молекулярной массы и уменьшение степени разветвленности. В то время, как на КЦР влияют только температура и давление, ДЦР сильно зависит от концентрации и времени пребывания полимера в реакторе, а именно, увеличивается с ростом этих параметров. Повышение ДЦР, в свою очередь, приводит к увеличению фракций полимера большой молекулярной массы, т.е. к росту ширины ММР и образованию высокомолекулярного хвоста ММР. [c.136]

    На молекулярные характеристики ПВА, получаемого методом суспензионной полимеризации, большое влияние оказывает природа инициатора [29]. В присутствии БП синтезирован растворимый ПВА с М.М от 125 000 до 250000 в зависимости от концентрации инициатора, в то время как полимер, полученный в, присутствии ДАК, лишь набухает в растворителях [30]. По-ви- димому, в последнем случае образуются сшитые структуры в результате многократно повторяющейся реакции передачи цепи с участием ацетатных групп мономера и полимера. Омыление сшитого ПВА приводит к- получению полностью растворимого ПВС вследствие алкоголиза содержащихся в трехмерных структурах ПВА групп  [c.22]

    Поливинилацетат — аморфный, бесцветный термопластичный полимер без вкуса и запаха. На рис. 3.1 представлена его структура. ПВА, получаемый на промышленных установках, имеет омыляемые и неомыляемые ответвления, образующиеся в результате реакций передачи цепи на полимер и мономер (см. раздел 1.1). Концевыми группами макроцепи ПВА могут быть фрагменты молекул инициатора, а также растворителей и примесей, присутствующих в реакционной смеси. Содержание структур голова к голове в промышленных образцах составляет 1 2,5% (мол.). [c.63]

    Если макрорадикал, возникающий при механокрекинге, реагируя с молекулой мономера, стабилизируется вследствие отрыва какого-то атома или группы атомов от этой молекулы и последняя переходит в возбужденное состояние и инициирует полимеризацию присутствующего мономера, то при такой передаче цепи естественно ожидать образования смеси продуктов. Эта смесь состоит из линейно деструктированных цепей исходного полимера и всех видов структур, которые могут получиться при полимеризации мономера  [c.178]

    Естественное усовершенствование процессов статистической привитой полимеризации — проведение реакций отрыва атома водорода от относительно небольшого числа активных центров передачи цепи, которые вводятся в растворимый компонент в ходе полимеризации или после нее. Число таких центров прививки, необходимых для каждой молекулы растворимого компонента, должно зависеть от эффективности соответствующих групп в генерировании центров роста цепи в условиях дисперсионной полимеризации. В идеале молекула стабилизатора должна содержать один якорный компонент соответствующего размера, присоединенный к растворимому компоненту. Однако число возможных реакций в каждой системе и неизбежное распределение полимера по функциональности таковы, что на практике невозможен строгий контроль за структурой. После выбора функциональной группы, эффективной как агент передачи при полимеризации данного мономера, необходимо эмпирически подобрать состав растворимого компонента. [c.100]

    Несмотря на жесткую структуру частиц поливинилхлорида, по-видимому, происходит лишь небольшой захват или фиксация радикалов (которые приводили бы к ускорению полимеризации, как в случае акрилонитрила). Последнее объясняется, вероятно, легкостью передачи цепи, ограничивающей размер растущих радикалов, ввиду чего они легко выходят из матрицы полимера. Имеются некоторые указания на то, что небольшое увеличение скорости полимеризации наступает при низких температурах, когда абсорбция мономера должна увеличиваться, жесткость цепей возрастать, а интенсивность процесса передачи цепи уменьшаться. Однако некоторое ускорение процесса возникает лишь при полимеризации в массе, когда концентрация мономера в полимере (равная 30% при 50 °С) значительно превышает концентрацию, существующую при дисперсионной полимеризации. [c.213]

    Одним из методов сопоставления структуры и реакционной способности является сравнение констант скоростей для реакций одного мономера или радикала с рядом радикалов или мономеров. Относительные значения таких констант скорости для реакций одного радикала с различными мономерами можно получить при изучении сополимеризации (гл. 5) знание абсолютного значения соответствующей константы для гомополимеризации позволяет найти из этих данных абсолютные значения констант. С другой стороны, реакционную способность радикалов можно сравнить, измеряя скорость, с которой они вступают в реакцию передачи цепи через один и тот же субстрат. При сравнении общей реакционной способности радикалов необходимо использовать неполярный субстрат, например толуол, в противном случае результаты будут осложнены полярными эффектами. [c.117]


    НИЯ И для этого мономера сокращение объема при полимеризации особенно велико, на относительно ранних стадиях реакции в геле появляются механические напряжения, приводящие к образованию микротрещин. В этом процессе концы радикалов могут оказываться на стенках трещин, мигрируя или вырастая там, или даже могут образовываться в результате механического разрыва молекул полимера. Мономер проникает к этим радикалам через паровую фазу, в результате чего рост происходит так же, как и рост ю-полимеров, находящихся выше уровня жидкой фазы. Передача цепи и взаимное связывание молекул полимера могут приводить к возникновению сетчатой структуры, но образование со-полимера может быть связано с легкостью появления сетки лишь косвенно, постольку, поскольку последнее вызывает образование геля в реакционной смеси при малых глубинах превращения. [c.163]

    Следует отметить, что по мере роста блоков, образованных из мономеров, присутствующих в реакционной среде, последние начинают участвовать в механохимическом процессе, что постепенно усложняет структуру полученных таки.м образом продуктов. Блок В при росте стабилизируется путем обрыва цепи (по какому-то механизму). Если механохимический макрорадикал, реагируя с молекулой мономера, стабилизируется путем отрыва от него атома или группы атомов, сообщая мономеру электронную ненасыщенность, то инициируется полимеризация. В этом случае могут протекать следующие реакции передачи цепи  [c.284]

    Несмотря на различное происхождение активного центра, присутствующего в основной цепи полимера, снособность этого центра участвовать в реакциях прививки зависит от его реакционной способности. Очень важно, насколько стабилизирован радикал высоко стабилизированный радикал обладает незначительной способностью присоединять молекулы мономера из реакционной смеси, или, наоборот, радикал обладает высокой реакционной способностью и, следовательно, легко присоединяет молекулы мономера. Поэтому структура исходного полимера имеет очень большое значение для успешного осуществления привитой сополимеризации по механизму, включающему реакцию передачи цепи. [c.264]

    Для того чтобы синтезировать привитой сополимер по механизму, включающему передачу цепи, необходимо наличие в нолимеризующейся системе трех компонентов, а именно способного полимеризоваться мономера, полимерных цепей, на которые прививается этот мономер в качестве боковых цепей, и источника образования свободных радикалов или катализатора, который способен отрывать атом от полимерной цепи для инициирования цепной реакции. Эффективность метода получения привитых сополимеров в результате реакции передачи цепи непосредственно зависит от структур мономера, полимера и от природы инициатора. [c.264]

    При катализе серной кислотой в дихлорэтане передача через мономер и обрыв становятся менее существенными по мере понижения температуры, что приводит к высоким выходам полимера с очень большим молекулярным весом при отсутствии эффективного обрыва цепи, как это было найдено также и для катализа четыреххлористым титаном в хлористом метилене при низких температурах. Ни для одного из элементарных актов энергия активации не является очень низкой, даже для реакции роста цепи, а энтропия активации (—AS=5 ) для реакции роста цепи (27 э. ед.) почти равна полному изменению энтропии при реакции (28 э. ед.) [90]. Это показывает, что почти все пространственные изменения, необходимые для присоединения мономера, осуществляются уже в процессе активации [83]. Передача через мономер связана с меньшими изменениями структуры (— = 10 э. ед.), но с более высокой энергией активации. Спонтанные передача и обрыв (— = 23 и 24 э. ед. соответственно) имеют примерно одинаковые арре-ниусовские параметры, и у них будут почти идентичные переходные состояния [83]. Для катализа серной кислотой значения аррениусовских параметров получены в предположении о том, что для катализатора пригодно найденное для хлорной кислоты значение Ер = 8,5 ккал моль. При этом предположении, однако, передача через мономер для обоих катализаторов имеет весьма различные аррениусовские параметры, а кажется весьма вероятным, что если две системы имеют одинаковые Ер, они должны иметь и не сильно отличающиеся значения Ещ. Это, а также тот факт, что Ер при катализе хлорной кислотой изменяется с диэлектрической проницаемостью, позволяет думать, что предположение об одинаковом значении Ер при катализе обеими кислотами может быть неправильным. Действительно, если анион оказывает какое-либо влияние на переходное состояние, то значения Ер будут различны. [c.240]

    Итак, ионная полимеризация также является видом цепных процессов синтеза полимеров. Она может быть катионной и анионной, причем последняя более распространена. Стабильность карбаниона нозрасгает с увеличением электроотрицательиости заместителя при двойной связи мономера. Для ионной полимеризации характерно наличие ионных пар каталитического комплекса, стабильность которых определяет ход реакции полимеризации. Существенно влияет на эти реакции среда, в которой они проводятся. Структура получаемого полимера, как правило, более регулярная, чем при свобод-норадикальпой полимеризации, причем в ряде случаев со строго упорядоченным расположением заместителей в пространстве. В связи с наличием одинаковых по знаку зарядов на концах растущих цепей часто происходит не обрыв реакционной цепи, а либо передача цепи на мономер, либо образование макроионов ( живые полимеры). Эти виды полимеризации открывают большие возможности для регулирования структуры, а следовательно, и свойств полимеров. [c.47]

    Значительное влияние структуры поверхности и характера обработки катализатора указывает на то, что поверхность играет чрезвычайно важную роль и непосредственно участвует в полимеризации. При осажденных катализаторах изменение физической и химической структуры осадка непосредственно определяет молекулярный вес получаемого полимера и степень его стереорегулярности, При предварительно приготовленных окпснометаллических катализаторах характер и метод приготовления носителя с высокой удельной поверхностью оказывают сильное влияние па протекание реакции полимеризации. Низкие давления, необходимые для получения стереорегулярных полимеров, непосредственно связаны с тем, что олефины хемосорбпрованы на поверхности применяемых твердых катализаторов [96]. Следовательно, мономер концентрируется на этой поверхности даже при сравнительно низком внешнем давлении газа. Поверхность может увеличить скорость реакции роста полимера в результате повышения скорости присоединения мономерных остатков по сравнению с одновременно протекающей реакцией передачи цепи. Движущей силой реакции распространения цепп в этом случае является экзотермическая адсорбция олефпна. [c.298]

    В Р. п. широко используют полифункцион. инициаторы, мономеры, агенты передачи цепи, повторное участие к-рых в ходе полимеризации изменяет структуру полимера или кинетич. характеристики. Так, полиинициаторы способны придавать Р. п. кинетич. закономерности поликонденсации, из полифункцион. мономеров образуются сшитые полимеры, а введение полифункцион. агентов передачи цепи приводит к получению звездообразных полимеров. [c.158]

    Внутримолекулярная передача цепи является особенностью полимеризации этилена, обусловливающей как структуру полиэтилена - наличие короткоцепных ответвлений и ненасыщенных групп, так и молекулярную массу и ММР этого полимера. На основании данных многочисленных исследований [37, с. 421 50 52] можно утверждать, что основной реакцией, приводящей к образованию короткоцепных (практически только бутильных и этильных) развегвлений, является реакция внутримолекулярной передачи цепи, чередующаяся с присоединением мономера — СНг—СНг—СНг—СНг—СНг—СНз—СНг —" [c.67]

    Концепция определяющей роли кислотно-основных взаимодействий в катионной полимеризации базируется на том, что рассматриваемый процесс представляет разновидность широкого класса катионных реакций в неводных средах со всеми присущими им основными признаками. В рамках этой концепции и в качестве дополнения к ней следует рассмотреть и другие особенности катионной полимеризации изобутилена, отличающие ее от реакций низкомолекулярных соединений и других реакщ й образования полимеров. В обобщенной формулировке достижения в регулировании катионной полимеризации изобутилена и конструировании полимерных молекул получили название макромолекулярной (или молекулярной) инженерии [25, 247]. Становление этого многозначительного термина произошло вначале при рассмотрении радикальной и анионной полимеризации, а в период 1975-80 гг. и в катионной полимеризации. Макромоле-кулярная инженерия означает регулируемое конструирование головных и хвостовых групп, повторяющихся звеньев, микроструктуры, ММ и ММР, природы разветвлений, частоты сетки, блок-, графт- и звездообразных структур. Большинство из этих положений применимо и для ПИБ. Элементами макромолекулярной инженерии являются конролируемые элементарные акты (инициирование, обрыв, передача) и квазиживой механизм роста цепей. Так как этой теме посвящены известные обзоры [25, 247], можно ограничиться лишь кратким рассмотрением проблемы. Реализация элементов макромолекулярной инженерии связана с двумя исходными моментами направленным подбором комплексных каталитических систем, определяющих характер реакций инициирования, передачи и обрыва цепи, и близостью свойств исходного мономера и образующихся полимерных соединений из класса олефинов  [c.110]

    Из таблицы видно, что на константу передачи цепи существенное влияние оказывает как строение макрорадикала, так и строение алкил (арил)фосфина. Полистирольные радикалы более реакционноспособны в реакции с фосфинами, чем полиметилметакрилатные, и этим объягаяется возможность выделения теломеров при реакции фосфинов с акрилатами. Фосфины более реакционноспособны по отношению к полиметилметакрилатному радикалу, чем к-бутилмер-каптан. В алифатическом ряду заместитель мало влияет на реакционную способность. При переходе от алкилфосфинов к фенилфосфину константа передачи цепи на фосфин возрастает почти в 10 раз, что связано с возможностью образования более стабильных (за счет участия в распределении электронной плотности ароматического ядра) фенилфосфинильных радикалов. Этим объясняется легкость присоединения фенилфосфина к различным непредельным соединениям, которую наблюдали Б. А. Арбузов с сотрудниками [14]. Реакция фенилфосфина с эфирами акриловой и метакриловой кислот, нитрилом акриловой кислоты идет без инициатора при 120—130° С. При указанных температурах чистый метилметакрилат подвергается термической полимеризации с ощутимой скоростью [13]. Кроме того, источником радикалов могут быть пероксиды, образующиеся при взаимодействии растворенного в мономере кислорода сего молекулами, или перокси-радикалы со структурой СН2(Х)СН—О—О.  [c.27]

    Наиболее характерной особенностью винилацетата является его малая активность в сравнении с другими виниловыми мономерами 1, 2] и соответственно высокая реакционная способность поливи-нилацетатных радикалов, [3, с. 206]. Это определяет участие большинства соединений, присутствующпх в системе, в передаче цепи при поли. 18ризации винилацетата при этом константы окорости передачи цепи на 1—2 порядка больше, чем, например, у стирола или метилметакрилата. Константа скорости передачи цепи на винилацетат тоже высока и составляет 2,0— 2,5 кмоль/(м -с) [4] примерно такие же значения этой константы имеет и поливинилаце-тат [5]. Ка к будет показано ниже, это существенно сказывается на молекулярной структуре полимеров, их разветвленности, способности к привитой сополимеризации, а также к образованию значительных количеств гель-фракций. [c.194]

    Новые морфологические варианты и новые, более сложные морфологические задачи возникают при синтезе макромолекул и при их химических реакциях. Часто катализатор должен обеспечивать определенную взаимную ориентацию или определенное чередование мономеров в макромолекулах, например определенную ориентацию Н и групп В при полимеризации олефинов КСН = СН, (рис. 3), определенное соотношение и чередование аминокислот в полипептидах или в искусственных сополн-мерах, образование молекулярных спиралей правого и левого типа и других сложных вторичных пространственных структур. Число различных структурных морфологических вариантов очень велико. Морфологический катализ преобладает в биохимии живой клетки. Его самый сложный и совершенный пример ферментативное управление синтезом индивидуальных белков, сосредоточенное в клеточных рибосомах, и управление процессами деления клеток и передачей наследственных свойств, сосредоточенное в хромосомном аппарате клеточного ядра. [c.21]

    Барнет и Райт [124] изучали фотосенсибилизированную гомогенную полимеризацию винилхлорида в тетрагидрофу-ране при температурах 25—55°. При более низкой температуре скорость полимеризации пропорциональна [М] и корню квадратному из концентрации сенсибилизатора, при температурах выше 25° скорость пропорциональна концентрации сенсибилизатора в степени —0,6, а показатель у интенсивности изменяется от 0,6 до 0,8. Такое поведение винилхлорида объясняли образованием винильных радикалов в результате передачи цепи через мономер. Если эти радикалы димери-зуются с образованием бутадиена, то последний при взаимодействии с радикалом может дать продукты, обладающие стабильной аллильной структурой реакция этого типа, являясь по существу реакцией обрыва первого порядка, может [c.115]

    Доля таких структур, в общем, зависит от электронодонорной или электроноакцепторной способности радикала. Дополнительное подтверждение этой концепции имеется в работе Фурмана и Месробиана [105], посвященной определению констант передачи цепи через СВг4 радикалами, полученными из различных мономеров. Авторы применяли к своим данным О — е-схему Алфрея и Прайса (см. гл. 5) и достигли некоторых успехов в предсказании относительных реакционных способностей исследованного ими ряда полимерных радикалов в реакции с СВг4. Бемфорд и Уайт [100] получили дополнительное подтверждение большого значения ионных резонансных форм в переходном состоянии для реакции передачи цепи. Они установили, что при полимеризации многих мономеров третичные амины активно участвуют в реакции передачи, в результате чего осколки основания входят в полимерные цепи. Принимая за единицу константы передачи цепи через толуол при полимеризации этих же мономеров, Бемфорд и Уайт смогли вычислить относительные реакционные способности триэтиламина и четырехбромистого углерода и на основании полученных данных сделали вывод, что реакция передачи цепи через амин идет следующим образом  [c.273]

    На рис. 97 и 104—107 показан для сравнения ряд полимеров, сгруппированных по сходству структуры мономерного звена. Выходы мономеров для этих полимеров приведены в табл. 25. За исключением полимеров алифатических углеводородов, малый выход мономера связан с наличием максимумов на кривых скорости. Общая тенденция в выходах мономеров и характер кривых скорости подтверждают представление о том, что результаты термической деструкции определяются конкуренцией между деполимеризацией и межмолекулярной передачей [87]. Наличие передачи, межмолекулярной или внутримолекулярной, приводит к образованию немономерного вещества и, следовательно, уменьшает выход мономера. Представляется [c.187]

    Разветвленные макромолекулы могут образовываться при радикальной или каталитической полимеризации вследствие передачи активного центра на полимерную цепь, при совместной ноли-конденсации би- и полифункциональных мономеров, а также при окислительном, термическом, фотохимическом или радиационном старении, при вулканизации и т. д. На одной макромолекуле могут возникать несколько узлов разветвлений. Из разветвленных макромолекул в определенных условиях может образоваться нерастворимый полимер — гель, который представляет макроскопическое образование единую пространственную сетку. На рис.7.1 показаны различные типы разветвлепных структур. [c.272]

    Политетрафторэтилен из всех виниловых полимеров наиболее устойчив в отношении термодеструкции, однако, как было отмечено Флорином и Уоллом с сотр. [115], его термостойкость лишь примерно на 100° превышает термостойкость полиэтилена. Этот факт до некоторой степени неожидан, так как известно, что энергии диссоциации связей С — С и С — F в молекуле политетрафторэтилена значительно больше, чем энергии диссоциации связей С — С и С — Н в молекуле полиэтилена. Поэтому на основании данных о структуре, а также результатов кинетических исследований термодеструкции политетрафторэтилена указанные авторы предложили несколько методов повышения термостойкости этого полимера. Пытаясь исключить присутствие на концах цепей лабильных центров, у которых может происходить инициирование, они осуществляли синтез препаратов политетрафторэтилена при использовании в качестве инициаторов наряду с обычно применяющимися для этой цели агентами таких веществ, как нерфтордиметилртуть, нерфторметилиодид и газообразный фтор. Эти авторы предположили также, что реакция, обратная росту цени и приводящая к образованию мономера, может быть блокирована введением в молекулы полимера агентов передачи цепи или просто путем смешивания таких веществ с политетрафторэтиленом. Для этой цели они использовали серу, селен, а также ряд соединений, содержащих углеводородные и фторуглеводородные группы, в основном ароматического характера, которые вводили обычно в виде соответствующих дибромидов в полимеризующуюся реакционную смесь. Однако ни одним из этих способов не было получено полимера, отличающегося по скорости термодеструкции от обычного политетрафторэтилена. В связи с этим [c.57]

    При анализе возможных аномальных структур, благодаря наличию которых может инициироваться отщепление хлористого водорода, Баум и Бартмен [150] предположили, что такими структурами могут быть двойные связи, образующиеся при передаче цепи на мономер, однако они отмечают, что в каждой молекуле поливинилхлорида, кроме окисленных структур и фрагментов инициатора, может находиться до 20 разветвлений. Известно, что хлорирование ноливинилх.1юрида приводит к уменьшению скорости отщепления хлористого водорода при последующей деструкции, по-видимому, в результате превращения двойных связей в одинарные, т. е. устранения ненасыщенных структур. Озонирование, проводимое после хлорирования, приводит к образованию меньшего количества карбонильных продуктов, а это является доказательством того, что при хлорировании исчезают двойные связи. Озонирование поливинилхлорида и количественное определение образующейся муравьиной кислоты показало, что 60% молекул исследуемого образца полимера содержало непредельные концевые группы, а молекулярный вес остатка после озонирования заметно не уменьшался. На основании этих данных может быть сделан вывод об отсутствии значительного числа двойных связей в середине цепей. [c.88]

    Кларке [45] проверил данные Вилера [37] и пришел к выводу, что большинство боковых цепей в молекуле поливинилацетата может омы-ляться. Мелвилл и Сеуэлл [46] провели интересное исследование фракций поливинилацетата путем гидролиза и повторного ацетилирования. Опи обнаружили уменьшение молекулярного веса, указывающее на то, что молекулярный вес цепи между двумя ответвлениями составляет около 300 ООО (по сравнению с 400 ООО, рассчитанными на основании данных Вилера при степени превращения мономера 60%). Некоторые из этих фракций имели, по-видимому, линейную структуру, как это следовало из наличия линейной зависимости между характеристической вязкостью и молекулярным весом (на графике отложены логарифмы этих величин) и из постоянного значения константы Хаггинса к . Поэтому указанные исследователи предпо.иожили возможность протекания внутримолекулярной реакции передачи цепи по уравнению [c.254]

    Смит также установил соотношение между константами передачи цепи через один и тот же меркаптан для сополимеризующейся смеси и для каждого индивидуального мономера и получил хорошее соответствие результатов для смесей стирола и метилметакрилата. Так как предполагаются только две стадии передачи (радикал, заканчивающий звено стирол + меркаптан , и радикал, закапчивающий звено метилметакрилат + меркаптан ), то результат совершенно ясно показывает, что скорость передачи зависит только от концевой структуры цепи. [c.227]

    Удаление протона из растущего катиона, как было отмечено ранее, более точно можно назвать процессом передачи, хотя некоторые авторы классифицируют его как обрыв. В полимеризации олефинов эта стадия объясняет наблюдаемую обычно ненасыщенность концов. Однако в случае ароматических мономеров таких двойных связей часто нет. Данные по а-метилстиролу указывают на внутримолекулярную атаку фенильной груииы, которая приводит к структуре индана с потерей протона из кольца [246, 247]  [c.254]

    При катионной олиго.меризации олефинов па катализаторах Фриделя — Крафтса и сильных к-тах образуются О. со степенью полимеризации от нескольких единиц до нескольких десятков единиц. Ограничение роста цени макромолекулы в этом случае связано с относптельно высокой скоростью передачи цепи на мономер по сравнению со скоростью роста. Вследствие нестабильности и высокой реакционной способности первичного карбкатиона значительное развитие получают вторичные реакции (изомеризация и перенос ка тпона), в результате чего образуются О. нпзкой мол. массы и чрезвычайно разветвленной структуры. Широко известным примером реакции такого типа является получение синтетич. моторных топлив и смазочных масел олигомеризацией этилена и а-олефинов с применением в качестве катализаторов AI I3, BF3, а также серной и фосфорной к-т. [c.231]

    П. с. могут быть получены при полимеризации мономеров в присутствии макромолекул, содержащих двойные связи С = С. Прививку м(шомера на ненасыщенный полимер осуществляют реакцией передачт цепи с участием либо растущих мат рорадикалов, либо первичных радикалов инициатора участие последних в значительной степени определяется активностью используемого инициатора. Часто возможно сосуществование обоих механизмов передачи цепи. Наибольшее распространение этот метод получил для модификации свойств натурального каучука путем прививки к ним мономеров винилового ряда. При использовании ненасыщенных полимеров прививка часто осложнена наличием подвижного атома водорода в а-ноложении к двойной связи. Уязвимость последнего к радикальной атаке обусловливает образование сшитых структур. [c.98]

    Для радикальной полимери,зацип А. м. характерны те же олементарные акты, что и для виниловых мономеров, одпако передача цепи на мономер приводит не только к гибели растущего радикала, но и к прекращению цепной реакции, т. к. образовавшийся мономерный радикал стабилизируется за счет резонансных структур и не способен инициировать полимеризацию  [c.46]

    Т. обр., можпо говорить о непогибающих в кинетич. смысле активных центрах, к-рые отличаются от т. наз. живущих полимеров, получаемых при апиошгой полимеризации виниловых соединений в апротонных растворителях. Отличие касается нелинейной зависимости мол. массы от степени конверсии мономера и других параметров процесса, связанных с размером полимерных ценей, что обусловлено передачей цепи па примеси. При анионной полимеризации А. передатчиками цепи являются низкомолекулярные вещества полярной структуры (вода, спирты, органич. к-ты и др.), а при катионной полимеризации, кроме того, простые и сложные эфиры, ацетали, лактопы и др. При катионном инициировании следует учитывать передачу цепи с разрывом на готовые полимерные молекулы вследствие легкого разрыва ацетальных связей в макромолекулах под действием электрофильных агентов. В этом случае не меняется число частиц в системе, т. е. среднечисловая мол. масса, однако нроисходит перераспределение длин макромолекул, что обусловливает наиболее вероятное молекулярно-массовое распределение MJM =2]. [c.49]


Смотреть страницы где упоминается термин Передачи со структурой мономера: [c.499]    [c.499]    [c.48]    [c.462]    [c.190]    [c.201]    [c.111]    [c.48]    [c.462]    [c.279]    [c.107]   
Свободные радикалы в растворе (1960) -- [ c.127 ]




ПОИСК







© 2025 chem21.info Реклама на сайте