Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация связь с переносом энергии

    Учет поляризации при, расчете энергии связи. На основе представлений о взаимной поляризации ионов учитывают неполный перенос заряда от одного атома к другому при образовании ионной молекулы. В связи с этим можно уточнить расчеты различных молекулярных параметров (электрический момент диполя, энергия образования). [c.76]


    Когда в жидких растворах идут химические процессы, сопровождающиеся образованием прочных химических связей, то они играют столь яркую роль, что многие другие сопутствующие им физические и химические явления нередко не привлекают внимания. В растворах со слабым химическим взаимодействием этого не происходит и задача изучения других физико-химических явлений упрощается. За последние десятилетия в теории растворов исследования систем со слабым химическим взаимодействием стали занимать центральное место. Они позволили не только лучше понять природу этих взаимодействий, но и выявить их важную роль в обычных химических реакциях, сопровождающихся образованием более устойчивых хищнических соединений. Исследование систем со слабым химическим взаимодействием позволило продвинуться вперед в понимании механизмов электрической поляризации, вязкого течения, поглощения звука, переноса энергии возбуждения, образования и исчезновения флуктуаций и многих других. Изучение этих явлений обогащает и углубляет представления о механизме обычных химических реакций. [c.9]

    На рис. 1 представлены зависимости от расстояния (О - - О) различных вкладов в АЕ димера воды (расчет по теории возмущений [И]). Как видно из рисунка, при больших расстояниях между мономерами основной вклад в энергию связи дает электростатическое слагаемое. Вблизи равновесия энергия связи, в согласии с табл. 3, определяется главным образом электростатическим и обменным вкладами. Вклады поляризации и переноса заряда (в данном расчете они не разделялись), а также дисперсионного, взаимодействия значительно меньше. [c.17]

    На ряде примеров показано, что современные неэмпирические квантовохимические расчеты слабых и сильных водородных связей дают вполне удовлетворительные резу.чьтаты для энергии, равновесных расстояний и конфигурации комплексов. При помощи диаграмм проиллюстрировано изменение в распределении электронной плотности молекул под влиянием водородной связи. Неэмпирические расчеты последних лет показали, что вклад электростатического взаимодействия молекул в энергию водородной связи имеет доминирующее значение, а поляризация и перенос заряда играют для устойчивости комплекса второстепенную роль. [c.287]

    Деполяризация флуоресценции. Альтернативой методу переноса энергии является метод деполяризации флуоресценции, предложенный авторами [4]. В основе последнего лежит различие скоростей вращательной диффузии свободного и связанного с рецептором аналога определяемого вещества. Когда аналог связан с высокомолекулярным рецептором, скорость его вращения замедляется, что приводит к уменьшению деполяризации испускаемого света. Таким образом, увеличение степени поляризации флуоресценции непосредственно связано с количеством связанного аналога. В наборах для иммуноанализа, основанного на этом принципе, можно использовать низкомолекулярные аналоги определяемых веществ, поскольку сохранение реагентов не составляет проблемы. В случае биосенсоров желательно, чтобы молекулы аналога были достаточно велики и удерживались диализной трубкой, так что молекулярная масса аналога должна быть порядка нескольких тысяч. Это, однако, приведет к снижению чувствительности метода, так как для больших молекул аналога различие скоростей вращательной диффузии в свободном и связанном состоянии уменьшается. [c.512]


    По данным работы [655], диэлектрическая изотерма сорбции воды на торфе также является ломаной линией. На основе калориметрических сорбционных опытов было высказано предположение, что первым двум участкам изотермы отвечает различная энергия связи молекул с центрами сорбции, а третьему, с наибольшей производной е7 а, — образование в процессе сорбции водородных связей между сорбированными молекулами. Существенно, что при критической величине сорбции ао обнаруживается резкое увеличение коэффициента диэлектрических потерь е", обусловленное, по-видимому, значительным возрастанием электропроводности материала вследствие образования цепочек из сорбированных молекул и функциональных групп сорбента — карбоксильных (СООН), гидроксильных (ОН) и других полярных групп. При этом предполагалась возможность эстафетного механизма переноса протона вдоль цепочек, что обусловливает значительное возрастание е и е". Наличие протонной проводимости и протонной поляризации позволяет объяснить не только большие величины с1г /<1а, но и частотную зависимость критической гидратации Со, обнаруженную для ряда сорбентов [646, 648]. Здесь необходимо отметить, что при измерении диэлектрических характеристик применяются слабые электрические поля, которые не могут повлиять на про- [c.245]

    В решетке ионных кристаллов — чисто ионная связь, т. е. связь, для которой полный перенос электронов от катиона к аниону скорее исключение, чем правило. Лишь для кристаллов типа хлорида натрия можно говорить о полном переносе заряда. Интеграл перекрывания одноэлектронных орбиталей ионов натрия и хлора оценивается значением —0,06. Можно сказать, что это чисто ионная связь. По отношению к этому же соединению сопоставление энергии электростатического взаимодействия с энергией ковалентного взаимодействия (непосредственно связанной с тем,-что называют поляризацией электронной оболочки) показывает, что вклад электростатического взаимодействия значительно больше и составляет (по Коулсону) для хлорида натрия 8,92 эВ, в то время как соответствующее значение для ковалентного взаимодействия 0,13 энергия отталкивания в этом случае равна —1,03 эВ (энергия, называемая нулевой , т. е. нулевая колебательная энергия, равна всего —0,08 эВ и ее часто вообще не принимают в расчет). К ионным кристаллам относятся кроме соединений типичных галогенов со щелочными металлами также и некоторые оксиды, в частности оксиды кальция и магния, в которых по экспериментальным данным имеются отрицательные двухзарядные ионы кислорода. В большинстве случаев ковалентный вклад больше. Кристаллы алмаза, кремния, германия, карборунда, серого олова содержат прочные ковалентные связи, так что любую часть этих веществ вполне и без всяких оговорок можно рассматривать кан молекулу макроскопических размеров. [c.281]

    Неэмпирические квантовохимические расчеты последних лет убедительно показали, что основной вклад в энергию не очень сильных водородных связей, как и других видов межмолекулярного взаимодействия, дают электростатические силы (кулонов-ское взаимодействие недеформированных молекул). Именно они определяют относительную устойчивость и равновесную конфигурацию комплексов. Взаимная поляризация молекул и перенос заряда вносят сравнительно небольшой вклад в энергию и играют заметную роль только в таких эффектах, как возрастание диполь-ного момента комплекса, увеличение интенсивности полосы А— Н в ИК-спектре и др. Эти виды взаимодействия ответственны и за то, что энергия связи, частоты колебаний и некоторые другие характеристики зависят от длины цепочки водородных связей, т. е. ответственны за неаддитивность этих свойств. [c.3]

    Подобная ситуация наблюдается не только при расчетах слабых водородных связей, но также, например, при расчетах взаимодействия молекул с катионами металлов или молекулярных комплексов с переносом заряда. При расчетах с ограниченным базисом энергии взаимодействия Н2О с ионами щелочных металлов вклад переноса заряда в энергию связи достигает 50—60%, в то время как корректный расчет при достаточно полном базисе показывает, что в действительности этот вклад составляет только 1—3%, хотя строго отделить его от поляризации не удается. [c.17]

    Исследование процесса окисления никеля в различных растворах привело к прямо противоположному выводу [8, 9]. На рис. 6 приведены экспериментальные данные, полученные на активном и пассивном никеле в 0,17V растворе КОН. Из рис. 6 видно, что как на активном, так и на пассивном никеле в широком интервале времени наблюдаются зависимости, характерные для диффузионного контроля. Наклон прямых при этом на пассивном никеле оказывается почти на порядок меньше, чем на активном. Влияние перемешивания во всех случаях отсутствует, так же как и в случае окисления серебра, что говорит о диффузионном контроле в окисном слое. Эти результаты указывают на то, что пассивация никеля связана с ухудшением условий переноса в окисном слое, а не с изменением энергии активации процесса. Следовательно, в данном случае следует говорить не об истинной пассивации, а лишь об усугублении концентрационной поляризации в окисном слое как причине уменьшения тока. [c.87]


    При ионном механизме распада энергия активации должна быть выше, чем при радикальноцепном механизме, так как образование ионов затруднено вследствие электростатического притяжения. На основании детального изучения природы С—С1-связи и зависимости ее энергии от межатомных расстояний был сделан вывод о том, что термическое дегидрохлорирование ПВХ протекает по ионно-молекулярному механизму . Процесс начинается с поляризации С— l-связи (за счет усиления теплового движения) и связанного с ней перераспределения электронных плотностей в соседней метиленовой группе. Далее возникает нестойкая связь между поляризованными атомами хлора и водорода, после чего в результате циклического электронного переноса в активном комплексе отрывается молекула хлористого водорода  [c.295]

    Как следует из табл. 3 и рис. 1, из различных межмолекулярных сил притяжения основную роль играют электростатические. Хотя влияние поляризации на распределение электронной плотности довольно велико, тем не менее на величине энергии водородной связи она отражается слабо. Такой же результат получается для всех рассчитанных комплексов [27, 28]. Как правило, электростатическая энергия в 5—7 раз превышает энергию поляризации и переноса заряда. Расчеты показывают [27], что полная энергия АЕ ж электростатический вклад АЕэла хорошо коррелирует между собой, причем коэффициент корреляции равен 0,96. Поэтому многие структурные и энергетические свойства водородных связей можно понять с точки зрения электростатики без привлечения поляризации и переноса заряда. Разумеется, для расчета таких свойств комплексов, как дипольный момент, интенсивность колебаний и др., необходим учет всех видов взаимодействия. -В отдельных случаях чисто электростатическая модель может оказаться недостаточной для решения и более простых задач. Это, по-ви-димому, относится к сильным водородным связям, в которых поляризация и перенос заряда играют, вероятно, важную роль и взаимодействие приближается к ковалентному. [c.23]

    Для выяснения природы Н-связи необходимо выяснить роль разных факторов. Но чем сложнее метод расчета, тем труднее это сделать. Гран [39] первый предпринял попытку оценить роль взаимной поляризации молекул. Для димера воды он получил энергию поляризации 1,4 ккал/моль, для (НР)2 — 1,9 ккал моль. Хотя расчет был упрощенным, он подтвердил важность этого эффекта. Коллман и Аллен [40] разделили энергии димеризации (НР)г и (НгО)2 на две части электростатическую и энергию делокализации . Первая получается при построении ВФ в виде антисимметризованного произведения ВФ мономеров. Она включает обычное электростатическое взаимодействие и обменное отталкивание. Вторая часть определяется как добавка к энергии связи при построении новых МО комплекса из АО обеих молекул. Она соответствует учету поляризации молекул и переносу заряда между ними. При неэмпирическом расчете (НР)г при / ff =2,6, 2,8 и 3,0 А первая часть равна 3,84 5,25 5,20 ккал моль, вторая часть — 2,59 1,49 0,95 ккал моль. Для (НгО) г при/ оо = 2,8 3,0 и 3,2 А первая часть 4,5 5,48 5,29 ккал моль, вторая — 3,05 1,73 1,08 ккал/моль. Видно, что с энергетической точки зрения первая часть важнее. Относительная роль этих факторов в других проявления Н-связи, например в увеличении интенсивности валентного колебания АН, может быть иной. Для (НР)г при Ry =2,8 А и для (НгО)2 при Roo=3,Qк была оценена разность энергий корреляции между электронами в комплексе и в мономерах. Эта величина соответствует дисперсионной энергии в дальнодействующих взаимодействиях. Для (НР)г она оказалась равной 1,53 ккал моль. Для (НгО) г— 1,54 ккал моль. Там же была предпринята попытка подобного разложения значений А , вычисленных по методу ППДП/2. Коллман и Аллен считают, что полуэмпирический метод не дает правильного соотношения между разными факторами. Было бы желательно разделить энергию делокализации на части, соответствующие поляризации мономера и переносу заряда. Для этого нужно закрепить МО одного мономера и строить новые МО другого мономера лишь из собственных АО. Такой прием позволил бы сравнить важность поляризации донора и акцептора. В работе [37] при неэмпирическом расчете раскрытого димера формамида величина SE была разбита на три части энергию кулоновского взаимодействия, обменную энергию, энергию поляризации и переноса заряда. Сумма первых двух (Б ) соответствует электростатической энергии Коллмана и Аллена. Из рис. 3 видно, что при больших кул является главным [c.16]

    Интересное исследование безызлучательной миграции энергии электронного возбуждения в палочках сетчатки лягушек и кроликов было выполнено Хагинсом и Дженнингсом [101]. Одним из наиболее поразительных свойств рецепторов сетчатки позвоночных является их высокая чувствительность по отношению к свету. Фотон зеленого света, поглощенный какой-либо одной из миллионов молекул родопсина в адаптированной к темноте палочке сетчатки человеческого глаза, дает четкий сигнал нервной системе по крайней мере в одном случае из трех. Таким образом, представляется, что почти каждая молекула родопсина прямо связана с чувственным выходом рецептора, в котором она находится. Авторы исследовали возможность применения механизмов переноса экситона и резонансного переноса энергии для объяснения очень малой степени фотодихроизма родопсина в палочках сетчатки. Однако на основании своих измерений поляризации флуоресценции химиката, соответствующего родопсину,— витамина А — и исследования флуоресценции, вызванной ультрафиолетовым облучением отбеленных палочек сетчатки, они пришли к заключению, что эффект, вероятно, полностью обусловлен вращением молекул. Поэтому перенос энергии между молекулами родопсина в сетчатке представляется маловероятным. [c.131]

    Взаимодействия между молекулами растворенного вещества и растворителя принято делить на два класса В случае относительно коротких межчастичных расстояний первостепенное значение имеют т.н. "микроскопические" или "спевдфагчес-кие" взашодействия (.химические связи, водородная связь, перенос заряда, обменная энергия, поляризация . Второй тип взаимодействия включает более дальнодействующие т.н. "ма- [c.363]

    Водородная связь образуется путем электростатического и донорно-акцепторно-го взаимодействия. Энергия водородной связи включает три составляющие электростатическую энергию притяжения, преобладающую на больших расстояниях, энергию поляризации (ориентационное и индукционное взаимодействие) и переноса заряда, проявляющуюся при уменьшении расстояния и способствующую притяжению молекул, и энергию отталкивания. Силы притяжения и отталкивания в водородном мостике сбалансированы. В зависимости от энергии связи водородные связи подразделяют на сильные (120-250 кДжмоль ) и слабые (8-28 кДжмоль ). Появление водородной связи понижает суммарную энергию системы. [c.96]

    Рассмотренный механизм переноса электронного заряда требует, чтобы связь А—Н отличалась заметной поляризуемостью, атом А— высокой электроотрицательностью, а атом В — донорными свойствами.. Последним способствует наличие у атома В неподеленной электронной пары. Точные квантовомеханические расчеты показывают, что при сближении молекул раньше начинается их взаимная поляризация, а затем уже перенос заряда. Следовательно, ориентационное и индукционное взаимодействие способствует переносу заряда. При образований водородной связи помимо переноса заряда свой вклад в общее понижение энергии вносят электростатическое, индукционное и дисперсионное взаимодействия обеих молекул. Таким образом, специфическое взаимодействие молекул через водородную связь осуществляется наряду с универсальным ван-дер-ваальсовым взаимодействием. Если иногда энергия водородной связи сравнима или меньше энергии последнего, то и при этом водородная связь благодаря свойству направленности играет важную роль в строении образующихся комплексов. Как видно, взаимодействие молекул посредством водородной связи является промежуточным между ван-дер-ваальсовым взаимодействием и химической связью, точнее, включая черты того и другого типа взаимодействий. [c.269]

    Рассмотренные выще потенциалы относятся к молекулам, взаимодействия между которыми имеют характер вандерваальсовых. Однако во многих системах, наряду с такими взаимодействиями, имеются и взаимодействия типа слабой химической связи, которые отличаются от вандерваальсовых большей энергией, локализацией в пространстве, насыщаемостью. Указанными особенностями обладает донорно-акцепторная связь, образование которой сопровождается перераспределением электронной плотности не только внутри молекул (поляризация), но и между ними (перенос заряда). Одна из взаимодействующих молекул выступает как донор электронов, другая — как акцептор. Донором может быть молекула, содержащая на внешнем энергетическом уровне неподеленную электронную пару, т. е. пару не участвующую в образовании связи с другой частицей. Это, например, спирты, органические сульфиды, иодиды, и азотистые основания, в которых неподеленные пары локализованы на атомных орбиталях кислорода, серы, иода и азота. [c.123]

    Согласно модели резонанса двух состояний, изложенной в предыдущем разделе, вклад в энергию связи от переноса заряда зависит от потенциала ионизации В и сродства к электрону АН. Р1меются противоречивые мнения о величине энергии переноса заряда в комплексах, однако она, по-видимому, растет пропорционально кулоновской энергии по мере увеличения силы комплекса. Коллман и Аллен [8] проанализировали результаты расчетов димера воды методом молекулярных орбиталей и нашли, что сумма энергий кулоновского притяжения и обменного отталкивания составляет —19 кДж-моль сумма энергии переноса заряда и поляризационной энергии (энергии, обусловленной поляризацией одной компоненты в поле другой компоненты) составляет —13 кДж моль , а дисперсионная энергия равна —6 кДж/моль , [c.370]

    Энергия обменного отталкивания АЕоВм обязана тому, что в силу Паули принципа электроны с одинаковыми спинами избегают друг друга это приводит к уменьшению электронной плотности в пространстве между ядрами двух сближающихся атомов Н н В в молекулах RAH и BR, вследствие чего эти ядра меньше экранируются электронами, чем в своб. атомах, и (будучи заряженными одноименно) при сближении начинают сильно отталкиваться один от другого. Энергия поляризации ДЁпол обязана в осн. деформации электронной оболочки каждой из молекул RAH и BR в электростатич. поле другой. На больших расстояниях это приводит к появлению в каждой из них наведенного дипольного момента, к-рый взаимодействует с постоянным дипольным моментом др. молекулы. На близких расстояниях поляризац. взаимод. не сводится к взаимод. диполей и имеет более сложную природу. В частности, помимо деформации электронной оболочки каждой из молекул как таковой происходит также частичный перенос электронной плотности с одной молекулы (BR ) на другую (RAH). Однако относит, вклад этого эффекта в величину энергии Л пол обычно мал. Он начинает играть роль только в очень сильных B. ., напр, в ионе (FHF), в к-ром связи F—И и И—F эквивалентны. [c.403]

    В я-электронных систему (большинство орг. своб. радикалов) спиновая плотность в точке ядра равна нулю (узловая точка р-орбитали) и реализуют ся два механизма вознииюве-ния СТВ (спинового переноса) конфигурационное взаимод. и эффжт сверхсопряжения. Механизм конфигурационного взаимод. иллюстрируется рассмотрением СН-фрагмента (рис. 5). Когда на / -орбитали появляется неспаренный электрон, его мага, поле взаимод. с парой электронов а-связи С — Н так, что происходит их частичное распаривание (спиновая поляризация), в результате чего на протоне появляется отрицат. спиновая плотность, поскольк энергии взаимод. спинов аа и оф различны. Состояние, указанное на рис. 5, а, [c.449]

    Если скорость электродного процесса ограничена скоростью реакции, которая включает переход частиц из формы, в которой они находятся на одной стороне двойного электрического слоя, в форму, которую они приобретают на другой стороне слоя, что требует определенной энергии активации, то говорят об активационном перенапряжении. Оно представляет собой сумму перенапряжения переноса заряда, реакционного перенапряжения и перенапряжения кристаллизации. Другими словами, это общее перенапряжение за вычетом диффузионного. Реакционное перенапряжение возникает на стадии химической реакции и не зависит от скорости переноса зарядов через границу раздела электрод/раствор. Такое перенапряжение, например, имеет место при протекании реакции РЬ(ОН)з" РЬ " + ЗОН", которая предшествует восстановлению иона РЬ ". Перенапряжение кристаллизации связано с медленным внедрением ионов в кристаллическую решетку или с медленным выходом из нее. Часто для обозначения активационного перенапряжения используют термин кинетическая поляризация (АЕкии). [c.135]

    I 19, с. 178] при определении константы скорости переноса электрона в случае молекулярных автокомплексов на основе 1,4-наф-тохинона. Важным в выявлении механизма электровосстановления является также вопрос об энергии и энтропии активации реакции переноса заряда, который связан со строением молекул и состоянием их в приэлектродном слое или на поверхности электрода. Речь идет, в первую очередь, о наличии в молекулах восстанавливающихся веществ функциональных групп с элект-ронофильными свойствами либо системы сопряженных связей, благодаря чему облегчается процесс динамической поляризации молекул и, следовательно, появляется возможность передачи электрона от электрода на такие молекулы. [c.30]

    Качественной причиной безактивационного характера реакций является понижение активационного барьера за счет энергии поляризации нейтраля ионом на величину -aejlr (а — поляризуемость нейтраля). Эта энергия не столь уж велика, но и энергия активации переноса электрона или одного атома — тоже небольшая величина. Энергии поляризации недостаточно для нивелировки энергии активации реакций, где происходят одновременный разрыв и образование нескольких связей. [c.40]

    Мы вынуждены поэтому вновь вернуться к другой полуэмпири-ческой трактовке. Рассмотрим сначада ионную структуру Л-5+. Если В — атом водорода в молекуле галоидоводорода, то 5+ — протон и ион — энергия взаимодействия протона и аниона Л , волновую функцию которого можно записать с помощью правил, изложенных в разделе 2.8. Вычисления такого типа могут быть выполнены с достаточной точностью. Они сравнительно просты, если только не пытаться учесть поляризацию электронного облака атома А. Если В — более тяжелый атом типа щелочного металла (например, Na), а А — галоид (например, С1), то речь идет о вычислении энергии системы Na+ l . В кристалле Na l атомы натрия почти полностью теряют свои валентные электроны, а атомы хлора принимают их (см. гл. 11). Из работ Борна (см., например, [347, 21, 116]) известно, что при предположении такого почти полного переноса заряда удается хорошо описать свойства ионных кристаллов. При этом следует учитывать действующий между ионами потенциал притяжения e jR, обусловленный кулоновским взаимодействием ионов, и потенциал отталкивания 6/i для каждой пары ионов постоянная Ь выбирается из условия минимума полной энергии кристалла и связана с постоянной решетки. Таким способом были найдены значения 6 для различных пар ионов. Тет чпь можно вычислить [c.146]

    Левич, Догонадзе и Чизмаджев рассмотрели в классическом и квантовомеханическом приближениях электрохимические и химические реакции переноса электрона. Ниже дано краткое изложение только теории химических реакций. В рассматриваемых реакциях предполагается, что углы и равновесные длины связей во внутренней координационной сфере не изменяются, а среда за пределами первой (внутренней) координационной сферы реагента рассматривается как непрерывный диэлектрик. Дается квантовомеханический расчет константы скорости в рамках теории возмущений при предположении, что перекрывание электронных орбиталей реагентов мало. Движение вектора поляризации рассматривается при помощи некоторого гамильто ниана. Было использовано уравнение Шредингера в одноэлектронном приближении, причем уравнение было записано в такой форме, чтобы электронная волновая функция была чувствительна к конфигурации ядер в области пересечения поверхностей потециальной энергии реагентов и продуктов. Используется преобразование Фурье для части гамильтониана, описывающего движение ядер. При выводе выражения для константы скорости реакции применяется квантовомеханическое рассмотрение атомной поляризации. [c.305]

    Поясним смысл отдельных составляющих АЕ. Электростатический вклад представляет собой энергию электростатического взаимодействия двух молекул с недеформированными электронными оболочками. Разумеется, эта энергия при близких межмолекулярных расстояниях сильно отличается от энергии диполь-дипольного или другого вида мультипольного взаимодействия. Обменное слагаемое появляется в результате учета тождественности электронов взаимодействующих молекул, когда их электронные облака перекрываются заметным образом. Поляризационный вклад в АЕ и вклад от перепоса заряда представляют собой понинчение энергии системы в результате перераспределения электронной плотности внутри подсистемы (поляризация) и между подсистемами (перенос заряда) при образовании Н-связи. Дисперсионное слагаемое представляет собой выигрыш в энергии системы в результате корреляции в движении электронов различных молекул. [c.16]

    В настоящее время термин водородная связь охватывает огромный класс меж- и внутримолекулярных взаимодействий. Внутри этого класса в широких пределах меняется не только величина полной энергии взаимодействия, но и значения вкладов, на которые условно может быть разбита эта величина (электростатическое притяжение, обменное отталкивание, поляризация, перенос зарядаи др., см. [5—8]). Меняются также структура комплексов, их термодинамические, спектральные и другие характе- [c.214]

    Следует отметить, что в два раза больший перенос заряда в комплексе (С2Н1О. .. НООСН) со структурой П по сравнению с комплексом, имеющим структуру I, не приводит к такому же увеличению энергии связи я-комплекса. Это можно объяснить тем, что образование ВС структуры П связано с участием только валентно активных орбиталей углеродных атомов, изменение заселенностей которых вызьюает дестабилизирующую поляризацию всей молекуль ОЭ в большей степени, чем в структуре I. [c.36]

    С учетом того, что значения поляризации, на основании которых они вычислены, получены при исследовании растворов, в которых комплексы частично диссоциированы. Иногда описанные дипольные моменты комплексов использовали для оценки вклада несвязанной и донорно-акцепторной форм в структуре аддуктов в основном состоянии. Коэффициенты а я Ь в волновом уравнении [уравнение (3), глава I], относящиеся к основному состоянию, вычисляют с помощью наблюдаемого дипольного момента комплекса (,un), векторной суммы дипольных моментов компонентов комплекса (цо), дипольного момента, который получился бы при полном переносе электрона при образовании комплекса (f,ii) и интеграла перекрывания между наивысшей заполненной энергетической орбиталью донора и наинизшей незанятой энергетической орбиталью акцептора [6]. Значения а и Ь, рассчитанные таким образом, вообще имеют лишь полуколи-чественное значение вследствие неопределенности в численной величине и значении интеграла перекрывания. В табл. 15 вместе со значениями I00b /(a + b ), представляющими собой процент ионного характера комплекса в основном состоянии, перечислены типичные величины p,iv, имеющиеся в литературе, и рассчитанные значения а я Ь. Как и следовало ожидать, комплекс иода с пиридином значительно более нолярен, чем комплекс с бензолом, но гораздо менее полярен, чем аддукт иода с сильным и-донором — триэтиламином. Аддукты хлоранила и симм-гря-нитробензола с ароматическими углеводородами вообще обладают очень малым ионным характером в основном состоянии, заметно отличаясь от пикратов как ароматических, так и алифатических аминов. В главе II были рассмотрены спектроскопические доказательства солеобразного характера многих никратов аминов. Даже в комплексах, в которых основное состояние представлено главным образом структурой без связи , доля вклада донорно-акцепторной структуры в энергию связи между компонентами комплекса обычно велика [4]. [c.129]


Смотреть страницы где упоминается термин Поляризация связь с переносом энергии: [c.139]    [c.139]    [c.265]    [c.271]    [c.51]    [c.51]    [c.72]    [c.72]    [c.393]    [c.13]    [c.230]    [c.885]    [c.272]   
Фото-люминесценция растворов (1972) -- [ c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Поляризация связей

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи



© 2024 chem21.info Реклама на сайте