Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характеристика кристаллического состояния полимеров

    Неравновесный характер полимерных кристаллов и наличие в них многочисленных дефектов различного характера создает большие возможности для совершенствования образовавшейся при кристаллизации структуры в процессе отжига. В книге предпринята попытка дать общую характеристику протекающих при отжиге процессов и с этих позиций проанализировать поведение при отжиге различных кристаллических полимеров. В результате этого анализа становится очевидно, что несмотря на значительный объем экспериментальных и теоретических работ, эта область физики кристаллического состояния полимеров остается, пожалуй, наименее изученной. [c.7]


    Однако, так как структурные критерии недостаточны для характеристики фазового состояния полимера, для окончательного решения этого вопроса и, в частности, вопроса о наличии фазового перехода при прогреве крайне неупорядоченного аморфного препарата размолотой целлюлозы необходимо было использовать и основные термодинамические критерии. Как известно, фазовый переход аморфной фазы в кристаллическую происходит скачкообразно и сопровождается изменением ряда показателей материала, в частности изменением удельного объема (плотности) и внутренней энергии системы. [c.50]

    Надмолекулярная структура. Способ укладки макромолекул в конденсированном состоянии определяется их регулярностью. Регулярные макромолекулы кристаллизуются, нерегулярные образуют аморфные системы. Количественными параметрами надмолекулярной структуры кристаллического полимера являются параметры его кристаллической решетки, а также степень кристалличности. Структура аморфного полимера характеризуется ближним порядком в расположении структурных единиц (сегментов) и однозначно охарактеризована быть не может. Косвенными характеристиками аморфной структуры полимера и интенсивности взаимодействия макромолекул являются его плотность и энергия когезии. [c.92]

    Однако, как уже отмечалось (см. 5.3.1), у кристаллических полимеров в отличие от низкомолекулярных кристаллов плавление происходит не при определенной температурной точке, а в некотором интервале температур. Под Тпя понимают среднюю температуру этого интервала. Кроме того, у полимеров температура плавления и температура обратного фазового перехода из аморфного (высокоэластического релаксационного состояния) в кристаллическое состояние - температура кристаллизации (Гкр)-не одинаковы, причем Г л > (средней температуры интервала кристаллизации). С увеличением Гкр интервал температуры плавления сужается. Все это связано с явлениями релаксации. Таким образом, у однофазного кристаллического полимера существуют три температурных характеристики Гкр <Тпл<Ту. Температура плавления, как и Т , зависит от энергии межмолекулярного взаимодействия (энергии когезии) и от способности макромолекул к конформационным превращениям (гибкости цепей) тем выше, чем больше энергия когезии и меньше гибкость макромолекул. В каждом конкретном случае определяется соотношением двух величин энергии когезии и потенциального барьера внутреннего вращения. [c.152]


    Близки для аморфного и кристаллического состояния и коэффициенты упаковки в эластомерах (они определяются как отношение собственного мольного объема атомов и атомных групп в молекуле к истинному объему тела) [ 18, с. 215]. По этим характеристикам каучукоподобные полимеры не отличаются от жесткоцепных (в табл. 1.1 для примера приведены данные для поли-метилметакрилата и полистирола), существование надмолекулярных образований для которых в настоящее время установлено различными методами. [c.38]

    Сложнее обстоит дело с анализом фазовых состояний полимера. В термодинамике различают кристаллические, жидкие и газовые фазы, отличающиеся друг от друга термодинамическими характеристиками (например, свободной энергией, плотностью и т. д.). Переход из одной кристаллической формы в другую сопровождается переменой характера кристаллической упаковки и является следствием изменения дальнего порядка. Переход в жидкое состояние происходит при полном разрушении дальнего порядка. Поэтому в отличие от кристаллических тел тела, находящиеся в жидком состоянии, называют стеклами, а фазовое состояние — стеклообразным. [c.21]

    Таким образом, кристаллические полимеры являются системами, в которых фазовое состояние не определяется расположением одних только малых структурных элементов (звеньев) или расположением одних только больших структурных элементов (цепей). Поэтому структурные методы исследования (например, рентгенография, электронография), дающие оценку упорядоченности малых структурных элементов, и оптические методы, дающие оценку упорядоченности больших структурных элементов (большие отрезки цепей), не могут быть порознь достаточны для всесторонней характеристики фазового состояния кристаллического полимера (хотя могут быть достаточными для доказательства отсутствия кристаллического состояния). Итак, неразрывно связанные для низкомолекулярпых тел термодинамические и структурные критерии фазового состояния в случае полимеров расходятся. Это расхождение и является причиной множества недоразумений, возникших при трактовке результатов структурных исследований полимеров. [c.89]

    Безотносительно к детальной надмолекулярной организации полимеров их теплостойкость (т. е. температурный предел, в котором сохраняются эксплуатационные свойства) определяется в основном температурами стеклования и кристаллизации. В тех случаях, когда полимер работает главным образом в ориентированном и кристаллическом состояниях (например, волокна), доминирующей характеристикой, определяющей теплостойкость, становится температура плавления, в то время как общий комплекс механических свойств непосредственно определяется надмолекулярной организацией. [c.5]

    Характеристики течения аморфных полимеров в состоянии расплава (т. е. много выше температуры стеклования) весьма сходны с характеристиками расплавленных кристаллических полимеров. Для полностью аморфных полимеров нельзя наблюдать точку плавления. [c.265]

    Известно, что одинаковые группы в одинаковом окружении имеют сходные спектральные характеристики — частоты и интенсивности. Поэтому, когда имеется низкомолекулярное соединение, которое содержит группу, аналогичную той, которую надо определить в полимерной молекуле, и ближайшие соседние группы также аналогичны, то определяют е для этого низкомолекулярного соединения и затем используют его для анализа полимерного образца. Анализ образца кристаллической структуры следует проводить при температуре выше температуры плавления полимера. Если модельное соединение имеет кристаллическую структуру, то это не означает, что она аналогична кристаллической структуре полимера, поэтому спектры должны быть получены для образцов в расплавленном состоянии. [c.88]

    В предыдущих очерках были обсуждены свойства однофазных полимерных систем. Все три изученные ранее состояния полимеров соответствовали одной и той же аморфной фазе. Их возникновение связано только с различием скоростей релаксационных процессов и вязкого течения, вследствие чего они не могут сосуществовать в равновесии при одной и той же температуре. Эти состояния были рассмотрены нами достаточно подробно и теперь следует перейти к характеристике другого фазового состояния полимеров-кристаллического состояния, которое осуществляется хотя и не у всех, но у мно гих полимеров. [c.95]

    Высокоупорядоченные аморфные полимеры и кристаллические полимеры, обладающие различной степенью упорядоченности (или различной дефектностью кристаллической решетки), могут обладать идентичной структурой, анизотропностью, способностью к образованию надмолекулярных структур, но различаться по термодинамическим параметрам. Поэтому использование только рентгенографического метода, как это делается в настоящее время многими исследователями, для характеристики фазового состояния различных полимеров, в частности целлюлозы и ее производных, недостаточно.для однозначного решения этого вопроса Необходимо использование ряда дополнительных методов — как структурных, так и термодинамических — для получения более обоснованных выводов, а также для выяснения характера самопроизвольно протекающих процессов. [c.43]


    Положение в этой области науки о полимерах резко изменилось в последнее время. Было синтезировано большое количество кристаллизующихся высокомолекулярных соединений, изучены условия возникновения кристаллических структур в полимерах, получены и подробно исследованы разнообразные морфологические типы кристаллических образований. И хотя эта область науки о полимерах еще находится в стадии дальнейшего интенсивного развития, все же многие стороны понимания природы кристаллического состояния высокомолекулярных соединений существенно прояснились. Поэтому в настоящее время уже можно дать характеристику кристаллическим полимерам. [c.168]

    Необходимо сразу же сказать, что в области изучения закона трения твердых стеклообразных полимеров нет единого мнения относительно вида зависимости силы или коэффициента трения от нагрузки, нет и четких значений коэффициента трения. По нашему мнению, это связано с двумя обстоятельствами во-первых, с использованием различных методов исследования (режимы нагружения, скорости скольжения, внешние условия и т. п.) во-вторых, с сильным различием между исходными физико-механическими характеристиками у исследуемых полимеров. Возьмем в качестве примера хорошо исследованный фторопласт-4. Это материал, степень кристалличности которого колеблется в зависимости от технологии изготовления от 0,45 до 0,80 [29]. Принимая во внимание, что температура плавления этого материала равна 327° С, а температура стеклования аморфной части около —120° С, можно ясно видеть, в каком широком интервале могут меняться физические свойства в исходном состоянии. Фторопласт-4 имеет различные модификации кристаллической фазы [30]. Весьма важным его свойством является холодное течение под действием постоянного напряжения. Широкий диапазон физико-механических свойств имеют и другие полимерные материалы (см. гл. 1). Вполне понятно, что без учета особенностей строения и физико-механических свойств полимеров трудно разобраться в конкретных закономерностях и природе трения. [c.68]

    Обобщен экспериментальный материал по термодинамике и кинетике фазовых и агрегатных переходов, реологическим, тепловым и другим свойствам полимеров. Предложен ряд новых количественных соотношений, позволяющих в простой и наглядной форме описать зависимость макроскопических характеристик полимеров в аморфном и кристаллическом состоянии от их молекулярных параметров. [c.2]

    Во Введении даются определения основных параметров, характеризующих форму и размеры индивидуальных макромолекул полимеров, и приводятся эмпирические методы оценки параметра термодинамической гибкости цепи и ее толщины. Как показано в первой главе, именно значение отношения этих двух фундаментальных молекулярных параметров полимера (т. е. параметра локальной анизотропии макромолекулы) определяет отношение удельных объемов полимера в кристаллическом и аморфном состоянии, которое может служить эмпирической мерой масштаба флуктуации плотности сегментов в аморфном полимере. Описанные в последующих главах многочисленные эмпирические корреляции между этими отношениями и различными физическими характеристиками линейных гибкоцепных полимеров качественно подтверждают исходную предпосылку об определяющем значении флуктуаций плотности в свойствах блочных полимеров. По существу систематический анализ совокупности физических свойств полимеров в рамках модели, учитывающей возникающую в результате флуктуаций плотности микрогетерогенность их структуры, и отличает данную книгу от некоторых других широко известных монографий, в которых этот аспект анализировали с других позиций. [c.8]

    Согласно приведенным выше результатам, температура стеклования — это фундаментальная характеристика аморфного полимера. Значения Тg, определенные в квазистатических условиях эксперимента, закономерно изменяются в зависимости от длины молекулярной цепочки и ее химической природы. Количественное описание этой зависимости с помощью эмпирически найденных универсальных феноменологических критериев стеклования, важнейшие из которых рассмотрены в разд. 11.4, оказалось, однако, невозможным. Это относится, в частности, к соотношению (11.296), предсказывающему постоянство доли свободного объема при для всех полимеров независимо от их молекулярного строения. Предположение об инвариантности избыточного значения коэффициента объемного термического расширения Да как возможной причины отклонений от соотношения (296) не согласуется с имеющимися экспериментальными данными (см. рис. 11.21 и табл. 11.6). Как было показано в разд. 11.7, если под занимаемым объемом полимера понимать значение удельного объема кристалла при Тв, то непостоянство g можно отнести к закономерному изменению рыхлости молекулярной упаковки полимера в кристаллическом состоянии в зависимости от конформации повторяющегося звена макромолекулы. [c.93]

    Таким образом, совокупность приведенных в данном разделе экспериментальных данных качественно согласуется с представлением о наличии в расплавах гибкоцепных полимеров упорядоченных участков небольших (до 20 А) размеров, возникновение которых может быть связано с локальными термическими флуктуациями плотности [129—133, 195]. Как известно [196], вероятность dW того, что в жидкости имеются области, локальная плотность р которых выше, чем в среднем по всему объему ( р ), выражается уравнением iW =f(p)Ap, где Ар = = Р— ( Р ) > /(р) — плотность распределения вероятностей значений параметра р. Если приравнять ( р ) =ра и, с учетом результатов работы [191], р = рк, то в качестве количественной меры вероятности флуктуации плотности в аморфном полимере (и, соответственно, степени его упорядоченности) можно предположить безразмерное отношение (рк—ра)/рк= ( а-Ук)/ а [122, 197]. (Здесь рк и ра — значения плотности полимера в кристаллическом и аморфном состоянии при данной температуре, UK и ua — значения соответствующих удельных объемов). Систематическое применение этого отношения позволило количественно объяснить зависимость критической длины молекулярной цепочки [126, 127], энергии активации вязкого течения расплава [197, 198], скорости кристаллизации из расплава [197, 199, 200] и других макроскопических характеристик линейных гибкоцепных полимеров в аморфном состоянии от их химической природы .  [c.19]

    Если не ставится каких-либо специальных задач, требующих выделения определенного температурного участка, ТМА должен обеспечить получение термомеханических характеристик во всем темнературном интервале существования полимерного материала. Поэтому нагрев обычно начинают от температур, при которых полимер находится в стеклообразном (либо кристаллическом) состоянии, и ведут опыт до полного завершения пенетрации. Многие образцы в обычных условиях являются твердыми нагрев их ведется от комнатной температуры. [c.198]

    Кристаллические линейные полимеры при нагревании их выше температуры кристаллизации Т р переходят либо в высокоэластическое состояние, либо в вязкотекучее. Такие полимеры при Т<Ткр ведут себя при малых напряжениях как твердые тела, и величины деформаций их весьма незначительны. При 7 >Г р деформации резко возрастают. Таким образом, термомеханическая характеристика кристаллических линейных полимеров весьма проста. Этого нельзя сказать о структурирующихся пространственных (сетчатых) полимерах (рис. 45). Если образование поперечных полимерных связей (сшивание) происходит при Тсш>Тт, то полимер с повышением температуры переходит в вязкотекучее состояние лишь до определенного предела. По мере развития процесса сшивания величина деформации течения уменьшается (кривая ). В дальнейшем с ростом температуры течение вовсе становится невозможным, и полимер из вязкотекучего состояния переходит в высокоэластическое и, наконец, в стеклообразное. Если в полимере образование поперечных связей происходит при Тст<Тт, В зоне высокоэластического состояния, то переход в вязкоте- [c.107]

    Фазовое состояние полимера слабо влияет на ил, так как аморфная фаза в некристаллическом и кристаллическом состояниях полимера характеризуется близкими значениями плотности. Сильное влияние на оказывает микронеоднород-ная (в частности, надмолекулярная и надсегментальная) структура через образование субмикро- и микротрещин, которое происходит как нри получении полимеров, так и при воздействии на них внешних факторов или обработке (тепловой, механической) изделий. В полимерных волокнах прочность аморфных областей микрофибрилл, где цепи также находятся в ориентированном состоянии, примерно в три раза ниже прочности полимерного монокристалла (10—20 ГПа при 297 К) за счет перенапряжения цепей, равного хо = 3 по Зайцеву [3.6] (см. вьпне). Прочность бездефектного неориентированного аморфного полимера меньше, чем прочность полимерного кристалла в направлении ориентации его цепей, за счет увеличения флуктуационного объема в три раза. Снижение прочности вызывают микротрещины из-за концентрации напряжений. Для ориентированных кристаллических полимеров в итоге общий коэффициент перенапряжения равен >с = иоР, а для аморфных неориентированных полимеров и = 5. О промежуточных вариантах можно сказать следующее. Для неориентированного кристаллического полимера, в котором аморфная фаза не ориентирована, и = р. Для ориентированного аморфного полимера в случае предельной ориентации и = хо 5, а следовательно, его прочность должна быть в 3 раза больше, чем неориентированного кристаллического полимера, т. е. достигать прочности монокристалла в направлении полимерных цепей. Однако достигнуть предельно ориентированного состояния или близкого к нему практически невозможно. Следовательно, можно считать, что у является скорее характеристикой образца, детали, изделия, нежели полимера как материала. [c.115]

    Предыдущие результаты по поведению при термическом переходе предполагают, что соответствующий отжиг или в случае поли-бис-трифторэтоксифосфазена контролируемая кристаллизация из истинного расплава может улучшить организацию мезоморфного состояния. Это проявляется в значительном влиянии термической истории образца при температурах выше Г(1) на характеристики кристаллического состояния, о чем свидетельствует улучшение дифракционной картины и возрастание температуры перехода, площади пика и его острота при Г(1). Подобные операции отжига важны с точки зрения улучшения кристаллической организации с целью увеличения количества информации, которая может быть получена при рентгенографических исследованиях с целью разрешения структурных проблем. Однако, как и для других полимеров, улучшение кристаллической организации сопровождается увеличением хрупкости образца, полученного из раствора или литьем под давлением. [c.325]

    Различные рассмотренные фазовые равновесия и переходы в системах полимер — растворитель можно изобразить схематически, как это показано на рис. 30. Процесс 1 представляет собой обычное плавление или кристаллизацию полимеров, сопровождаемую конфор-мационными изменениями. При этом аморфная фаза III может содержать или не содержать растворитель, но состояние I всегда будет соответствовать чистой кристаллической фазе. Переход этой категории был рассмотрен на стр. 47 и 56. Образование изотропного разбавленного раствора П, в котором молекулы сохраняют конформационные характеристики кристаллического состояния /, обозначено как процесс 2. Его можно также рассматривать как обычное растворение, но с сохранением молекулярной конформации, в отличие от процесса 1. Обратный процесс представляет собой образование чистой упорядоченной фазы из разбавленного раствора анизотропных молекул. Переход спираль — клубок обозначен как процесс 3. Разбавленная тактоидная фаза / образуется из разбавленной изотропной фазы в результате процесса 2 при незначительном увеличении концентрации полимера. [c.74]

    В первом томе этой книги, состоящем из четырех глав, образованные макромолекулами кристаллы охарактеризованы на молекулярном уровне степенью сохранения дальнего порядка в положении атомов и самим положением атомов макромолекулы в кристаллической решетке (разд. 2.4). Показано, что факторами, определяющими образование различных кристаллических структур, являются потенциальные барьеры вращения вокруг ковалентных связей, существование поворотных изомеров и соблюдение принципа плотнейшей упаковки (разд. 2.3). Морфология кристаллов, как было обнаружено, тесно связана с макроконформацией молекул полимеров (разд. 3.2), а ла-мелярная и фибриллярная формы кристаллов являются наиболее общими и наиболее хорошо сформированными габитусами полимерных кристаллов (разд. 3.3 и 3.8). В разд. 4.2 и 4.3 также показано, что детальная характеристика кристаллического состояния линейных макромолекул в большой степени осложняется наличием кристаллических дефектов. [c.15]

    На примере полиэтилентерефталата — важнейшего практического полимера нефтехимической промышленности — разработан ИК-спек-троскопический метод определения энергетических характеристик конформаций макромолекул аморфно-кристаллических полимеров. Метод включает стадию перевода полимера из аморфно-кристаллического состояния в аморфное и последующее изучение температурной зависимости интенсивностей характеристических полос поглощения различных конформаций. Показано, что определение АЕ гош- и транс-кон-формаций полимера следует проводить в расплавленном состоянии, в котором изменения относительных интенсивностей ИК-полос с температурой, при одинаковой природе соответствующих колебаний, обусловлены исключительно изменением константы конформационного равновесия трансг гош. Для полиэтилентерефталата ДЕ=2340 кал/моль. [c.87]

    В обзоре [13] отмечается, что полифторалкоксифосфазены имеют лабильную структуру, зависящую от условий получения полимера и его термической предыстории. Главной причиной формирования мезоморфного состояния этих полимеров является специфическое взаимодействие основной полимерной цепи с боковыми цепями, содержащими большое число электроотрицательных атомов фтора. Особенно большое внимание уделялось исследованию поли[бис(трифтор-этокси)фосфазена]. Отмечается, что своеобразное строение мезофазы этого полимера обуславливает способность полимерного материала в мезоморфном состоянии течь подобно жидкости. Структура изотропного расплава полифосфазена сохраняет основные черты строения мезофазы, отличаясь свернутой конформацией макромолекул [212]. В области 453-493 К существенно изменяются реологические свойства и ряд структурных характеристик мезофазного расплава полимера, что сопровождается тепловым эффектом [213]. Предполагают, что в этой области температур происходит конформационное превращение макромолекул полимера с образованием структуры, промежуточной между одномерной слоевой и двумерной псевдогональной. Обнаружена высокая чувствительность мезофазы поли[бис-(фторэтокси)фосфазена] к приложенному давлению (до 400 МПа) повышение температуры перехода полимера (Г]) из кристаллического состояния в мезофазу, резкое расширение области существования мезофазы с ростом давления, а также ее упорядочение [211]. [c.352]

    Вопрос о структуре некристаллических областей, которые определяют перенос газов и жидкостей в полукристаллических полимерах, рассматривался в работе За основную структурную характеристику таких областей была принята степень напряженности сегментов полимерных цепей. Предполагается, что полимерная цепь может проходить последовательно через кристаллические и некристаллические области, причем кристаллические области играют роль сшивок или частиц наполнителя в аморфном материале, вследствие чего участки между ними находятся в напряженном -состоянии. Активность растворителя, сорбированного такими напряженными областями, отличается от активности растворителя в ненапряженных областях. За характеристику степени напряженности сегментов была - взяга величина V — соотношение наблюдаемой активности к активности в гипотетическом состоянии полимера, в котором отсутствует влияние кристаллитов и сшивок. Значение V может быть вычислено, исходя из степени кристалличности, числа эффективных эластических элементов в цепях и других параметров. В работе установлено на примере линейного и разветвленного полиэтиленов, подвергнутых различной термической обработке, что значение определяется в первую очередь температурой, а не степенью кристалличности. [c.144]

    У аморфно-кристаллического (двухфазного) полимера (см. рис.6.1, в) переходы состояний более сложные. У таких полимеров имеются четыре температурные характеристики Тс < Г,р <Тпл< т- При нафевании аморфно-кристаллического полимера в первую очередь при Гс (Гр) яроисходит нефазовый переход аморфных стеклообразных областей в высокоэластическое состояние во вторую очередь, при дальнейшем повышении температуры до Г ,л, осуществляется фазовый переход кристаллических областей (плавление) до полного превращения полимера в аморфный высокоэластический. Затем при 7 происходит нефазовый переход полимера из высокоэластического состояния в вязкотекучее. При охлаждении будет происходить обратный нефазовый переход (затвердевание) полимера в высокоэластическое состояние. При достижении произойдет частичная кристаллизация, а при дальнейшем вхлаждении до Тс осуществляется второй переход в твердом состоянии - стеклование. После охлаждения расплава аморфно-кристаллического полимера с кристаллизацией и последующим стеклованием степень кристалличности по сравнению с исходной может измениться. [c.153]

    Главное различие в прочностных свойствах полимеров с кристаллической и аморфной структурой рассмотрено в 1 и 2 гл. П. На прочность полимеров, кроме того, влияют плотность унаковки—одна из характеристик первичной структуры полимера, определяемая гибкостью (или жесткостью) цепей, и межмолекулярные взаимодействия цепных молекул. Например, по Ла-зуркину рыхло упакованные каучуки (СКБ, СКС) при низких температурах в стеклообразном состоянии обладают лучшими прочностными свойствами, чем плотно упакованные каучуки (НК, бутилкаучук, полихлоропрен). У рыхло упакованных полимеров температурный интервал вынужденной эластичности необычайно широк (около 100 °С), ВТО время как у плотно упакованных полимеров хрупкий разрыв наблюдается лишь на 20—25 С ниже температуры стеклования. Дипольные и водородные межмолекулярные связи повышают хрупкую прочность полимера и поэтому понижают температуру хрупкости. Это особенно четко [c.131]

    Учитывая, что образование переходной области на границе раздела фаз между несовместимыми компонентами должно облегчаться в случае близких значений гибкости их макромолекул, а также понижения молекулярной массы полимера-матрицы, было интересно исследовать композиции на основе линейного полиэтилена (размер частиц 40 мм) и олигоэтиленгликольадипината (ОЭГА). Эти полимеры обладают сходными конформационными характеристиками как в растворе, так и в кристаллическом состоянии. [c.235]

    Физико-механические характеристики пленок сшитой жтилцел-люлоаы. Теоретическая прочность полимерного материала определяется силами химических связей в макромолекулах в объеме полностью упорядоченного полимера. Поэтому наиболее прочны материалы нз кристаллических ориентированных полимеров. Эти материалы являются и наиболее жесткими, ибо макромолекулы полимера, находящегося в таком состоянии, наиболее сильно взаимодействуют друг с другом. [c.226]

    Представления о структуре аморфных полимеров в конденсированном состоянии как о системе перепутанных цепных молекул привели к разработке молекулярных механизмов пластицирующего действия добавок низкомолекулярных веществ, вводимых в такие полимеры, выражаемого правилами мольных [1] или объемных [2] долей. Влияние низкомолекулярных веществ на механические свойства полимеров рассматривалось в этих случаях на молекулярном уровне характеристики явления пластификации. Однако в последнее время эти представления претерпели существенные изменения. Оказалось, что полимеры представляют собой систему высокоупорядоченных вторичных структурных образований [3], имеющих в отдельных случаях строгую геометрическую огранку, сходную с кристаллическими формами [4—7]. Новые данные, полученные по характеристике структуры аморфных полимеров, оказались весьма плодотворными для понимания явления пластификации полимеров низкомолекулярными веществами, которые ограниченно совмещаются с полимерами. Было показано, что влияние именно таких низкомолекулярпых веществ на механические свойства полимеров, определяющие их пластифицирующий эффект, связано со степенью распада надмолекулярных структур в полимерах. Можно представить, что процессы распада надмолекулярных структур в полимерах имеют такой же ступенчатый характер, как и процессы самого структурообразования. Полное разрушение всех вторичных структурных образований характеризуется возникновением термодинамически устойчивого раствора [8]. Уменьшение хрупких свойств материала в этом случае приводит к так называемой внутри-пачечной пластификации полимера [9]. Введение в полимер низкомолекулярных веществ, ограниченно совмешающихся с ним и вызывающих разрушение вторичных надмолекулярных образований, приводит к полученииз системы из молекул таких веществ, равномерно распределенных между первичными надмолекулярными образованиями — пачками цепей. Если при этом уменьшаются хрупкие свойства полимерного материала, имеет место так называемая межпачечная пластификация полимера [9]. Наконец, можно представить и существование начального акта распада, который должен характеризоваться нарушением контактов между вторичными надмолекулярными структурными образованиями. При этом подвижность таких сложных образований должна возрасти, а количество низкомолекулярного вещества, сорбированного на местах контактов, должно быть, по-видимому, весьма небольшим. Излон енные соображения явились предметом настоящего исследования. [c.387]

    В период с 1937 г. и до конца жизни в НИФХИ под руководством В. А. Каргина проводились фундаментальные исследования в области физико-химии растворов полимеров, механических свойств высокомолекулярных соединений, механизма образования полЕмерных студней, процессов структурообразования в кристаллизующихся полимерах и морфологии кристаллических структур, исследование влияния надмолекулярной структуры на механические и другие физические свойства полимеров, изучение характеристик вязкотекучего состояния и процессов структурообразования в расплавах полимеров, разработка методов модификации физико-механических свойств кристаллических полимеров, а также исследования в области молекулярной пластификации полимеров, приведшие к установлению правил объемных долей. [c.8]

    Плавление фибриллярного белка коллагена изучено очень подробно и его термодинамические параметры известны. Исследования Флори и Гарретта [21] показали, что АЯм и А5м, найденные для этого природного полимера, очень близки к соответствующим характеристикам для более простых синтетических полимеров. И теплота, и энтропия плавления имеют нормальные значения так, например, удельные теплоты плавления коллагена и синтетических полиамидов практически совпадают. Какое бы ни было повышение стабильности кристаллического состояния, которое можно приписать образованию водородных связей, оно незаметно, если не принимать во внимание, что вклад их в устойчивость структуры намного меньше ожидаемого. [c.133]

    В справочнике приведены сведения о температурах переходов и изменении термодинамических характеристик, сопровождающем процессы стеклования, плавления и кристаллизации полимеров, значения кристаллографических параметров, валовых скоростей кристаллизации из расплава, зависимости удельного объема и теплофизических характеристик от температуры и давления, данные о реологических свойствах расплавов, поверхностном натяжении полимеров в твердом и жидком состоянии, газопронипаемости, а также об упругих характеристиках полимеров в стеклообразном и кристаллическом состоянии. [c.4]

    Кристаллическое (аморфно-кристаллическое) состояние. М. с. полимеров в аморфно-кристаллич. состоянии во многом определяются тем, что в этом состоянии полимеры представляют собой своеобразные микроконструкции, состоящие из связанных между собой элементов (кристаллических и аморфных областей) с различными мехаппч. характеристиками. Различные области нолимера деформируются по-разному, а в пределах одной области разные макромолекулы напряжены и деформированы такн е различно. Физич. методы позволяют установить особенности реакции отдельных структурных элементов на механич. воздействие. В частности, исследование смеш,епия рефлексов па широко-угловых рентгенограммах кристаллич. иолимеров ири их растяжении позволило рассчитать величины деформации и модули Юпга кристаллич. участков. Рассчитанные модули для всех иолимеров превышали модули Юнга, определенные по механич. испытаниям, причем для полиэтилена ири растяжении примерно на 10% на долю кристаллич. участков пршилась деформация всего в 0,1%, а модуль Юнга кристаллич. решетки достиг значения 25 0()0 Мп/м (2500 кгс мм-), превысив значение механич. модуля Юнга на 2 порядка. [c.118]

    При обычном рентгеноструктурном анализе полимеров в целях получения более резких рентгенограмм и облегчения их последующей расшифровки образцы высокомолекулярных веществ чаще всего исследуются в ориентированном состоянии. Это состояние полимеров дает весьма характерную картину симметрии на рентгенограммах, выражаемую возникновением сколько угодно малых и острых рефлексов вместо диффузно-размытых интерференционных колец, типичных для этого же полимера в неориентированном состоянии. Возникновение таких острых рефлексов, или так называемой текстуры, на рентгенограммах растянутого аморфного полимера приписывали обычно симметрии предполагаемых кристаллических образований в полимере, а отсюда делали неправильные выводы о наличии кристаллических структур в таких, например, ориентированных полимерах, как целлюлоза или обычный поливиниловый спирт, неспособный образовывать кристаллические структуры в конденсированном состоянии. Вот почему при обычном рентгепоструктурном анализе полимеров в случае использования ориентированных образцов необходимо использование специальных приемов, с помощью Которых полученные рентгенограммы можно было бы интерпретировать с большей уверенностью в отношении характеристики структуры полимерного образца. [c.172]

    Как показывают данные табл. 52, выход радикалов в полимерах сравнительно невелик и меньше выхода при облучении углеводородов и других органических соединений. По данным работы [98], выход радикалов в полиэтилене достигает G = 2,9 0,6. В полимерах с преобладанием кристаллической структуры выход радикалов, как правило, выше, чем при относительно малой кристалличности. Это, по-видимому, обусловлено меньшей подвижностью полимерной цепи или ее элементов в кристаллическом состоянии. Половинное время жизни радикалов не может рассматриваться как величина, имеющая конкретный физический смысл и характеризующая свойства радикалов. Она прелставляет собой время от первого измерения, произведенного сразу после облучения, в течение которого концентрация радикалов уменьшается вдвое. Она может рассматриваться лишь как некоторая эффективная характеристика образования радикалов, обусловленная свойствами полимера. [c.267]

    При охлаждении расплавов кристаллизующихся полимеров, как указывалось выше, происходит лишь частичный их переход в кристаллическое состояние. Иными словами, наблюдаются твердые образования, которые обладают некоторой степёнью кристалличности, зависящей от кинетических параметров полимера, его теплофизических характеристик, от интенсивности внешнего охлаждения, размеров и конфигурации образца и других факторов. [c.112]

    Следует иметь в виду еще одно обстоятельство, которое связано с характеристикой жидкокристаллического состояния в полимерах. Для этих систем характерно в случае склонности полимера к кристаллизации образование так называемых паракристаллических систем. Понятие о паракристаллическом состоянии как об искаженной кристаллической решетке было введено Хозема-ном 4—6]. Имея в виду, что паракристаллическое состояние обусловлено только нарушениями истинной, трехмерной кристаллической решетки, а не является универсальным состоянием с определенной системой отклонения от идеальной кристаллической структуры, следует считать, что паракристаллы не являются жидкими кристаллами. Собственно, понятие паракристалл появилось при разработке системы анализа рентгенограмм полимеров на основе использования оптических моделей с различными типами функций распределения рассеивающих центров [6]. Термодинамические принципы клас- [c.28]

    Свойства высокомолекулярных соединений определяются также агрегатным состоянием полимера. В. А. Каргин и Т. И. Соголо-ва , на основе температурной зависимости механических свойств, предложили различать стеклообразное, высокоэластическое и вязкотекучее состояния аморфных линейных полимеров. Переход из одного агрегатного состояния полимера в другое характеризуется непрерывным изменением свойств , в то время как переход полимера в кристаллическое состояние сопровождается скачкообразным изменением свойств. Специфические изменения свойств полимера проявляются и при образовании поперечных связей между макромолекулами и возникновении трехмерной структуры. Эти изменения оказывают существенное влияние на газопроницаемость полимеров, в связи с чем при характеристике газопрони- [c.186]

    Характерной чертой колебательного спектра пептидных соединений является наличие структуры полосы валентных колебаний группы NH, участвующей в водородной связи. Если для гидроксильных соединений колебательный спектр группы ОН обычно имеет вид одной широкой полосы, то для пептидной группы NH не было замечено случая, чтобы колебательный спектр состоял только из одной полосы. Цель данной работы — описать различные типы проявления водородной связи в спектрах пептидных соединений и кратко рассмотреть возможные причины этого явления. Были изучены соединения нескольких основных типов с сеткой пептидноводородных связей ангидриды аминокислот, короткие вытянутые пептиды в кристаллическом состоянии и некоторые полимеры (полипептиды, полиамиды). Для опознавания полос N—Н-колебаний применялось дейтерозамещение. Дополнительная характеристика спектрального проявления была получена в результате изучения температурной зависимости интенсивности при понижении температуры до —150 С. [c.310]


Смотреть страницы где упоминается термин Характеристика кристаллического состояния полимеров: [c.167]    [c.367]    [c.160]    [c.73]    [c.113]   
Смотреть главы в:

Химия и технология полимерных плёнок 1965 -> Характеристика кристаллического состояния полимеров




ПОИСК





Смотрите так же термины и статьи:

Полимер три состояния

Состояни кристаллическое

Состояние кристаллическое

Характеристики состояния



© 2025 chem21.info Реклама на сайте