Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал электрода электродный измерение под током

    На рис. 4.3 изображен элемент с электродными пространствами, разделенными пористым стеклянным диском О. Предположим, что электрод В поляризован током, идущим от электрода О. Капилляр Ь (иногда называемый капилляром Луггина) электрода сравнения Я (или солевого мостика между электродами Я и В) расположен вблизи от поверхности В, что позволяет уменьшить ошибку измерения потенциала, вызванную омическим падением напряжения в электролите. Э. д. с. элемента В—определяют для каждого значения тока, измеряемого амперметром А с периодичностью достаточной для установления стабильного состояния. Поляризацию электрода В (катода или анода) измеряют в вольтах по отношению к электроду сравнения 7 при различных значениях плотности тока. Как правило, значения потенциалов приводят по стандартной водородной шкале. Этот метод назы- [c.49]


    Большое практическое значение при изучении электродных процессов имеет ртутный капающий электрод. Он представляет собой стеклянный капилляр, из которого вытекают капельки ртути (одна капля через каждые 3—4 сек). Метод, основанный на измерении тока в зависимости от потенциала с использованием ртутного ка- лающего электрода, называется полярографией. Электродный процесс, который протекает на ртутном капающем электроде, можно считать стационарным (в среднем во времени). На каждой новой [c.398]

    Потенциометр для измерения электродных потенциалов на структурных составляющих должен отбирать минимальный ток от измеряемой системы. Такое требование вызывается следующим. Так ка к череа электроды в момент включения может протекать некоторый ток, то, несмотря на кратковременность включения, при компенсации неизвестной электродвижущей силы в этом случае измеряемый потенциал может в результате поляризации электрода несколько измениться. Чем больше плотность тока, протекающего через электрод, потенциал которого необходимо определить, тем больше будет изменение потенциала электрода. Следовательно, измерение электродных потенциалов структурных составляющих, площадь которых столь мала, что и небольшой ток будет вызывать значительную поляризацию электрода, необходимо произво дить потенциометром, отбирающим от измерительной системы мини мальный ток. Кроме того, потенциометр должен обладать высоко чувствительностью, обеспечивающей возможность снятия отсчета с точ ностью до 1,0—0,1 мв. Высокая чувствительность потенциометра совер шенно необходима, так как разность потенциалов между структурными составляющими сплава может быть очень небольшой. Чувствительность потенциометра не должна изменяться при подключении к нему систем с большим внутренним сопротивлением (порядка десятков мгом). [c.12]

    Плотность тока обмена стандартная плотность тока обмена и стандартная константа скорости — важные характеристики электродного процесса. Они не зависят от потенциала электрода. Чем они больше, тем быстрее протекает процесс разряда — ионизации, и, наоборот, чем они меньше, тем большее торможение оказывает электродная реакция протеканию тока через электрод. Ток обмена можно определять из электрохимических измерений или при помощи радиоактивных индикаторов. [c.387]

    Для снятия поляризационных кривых и контроля потенциала электрода в процессе электролиза используют измерительные схемы. Схема установки для измерения электродных потенциалов показана на рис. П. В цепь поляризующего тока включен реостат, играющий роль делителя напряжения постоянного тока (/ ), Для расширения интервала и более плавного регулирования тока, что необходимо для получения поляризационных зависимостей, служит реостат Лз. [c.265]


    Если электрод находится при равновесном потенциале р, то ток в цепи равен нулю. При смещении потенциала электрода относительно равновесного значения на величину АЕ начинается направленный переход электронов или ионов через границу фаз и 1 0. Справедливо и обратное при прохождении через электрод тока / потенциал его отклоняется от равновесного значения на величину АЕ. Сдвиг потенциала АЕ=Е—Е при прохождении тока через электрод называется поляризацией электрода. Изучение кинетики электродного процесса состоит прежде всего в установлении связи между поляризацией электрода АЕ и скоростью электрохимической реакции . Для измерения этой зависимости обычно используют трехэлектродную электрохимическую ячейку (рис. 80). Ячейка изготовляется из стекла [c.143]

    В связи с этим возникла идея на момент измерения электродной поляризации выключать поляризующий ток, что и достигается применением специального устройства — коммутатора, позволяющего изменением соединений в электрических цепях снизить промежуток времени между выключением внещнего тока и измерением потенциала электрода до 10 —10 сек. В этом случае в измеренную величину сдвига потенциала не включается величина омического падения напряжения, так как Ш = 0. Если перерывы тока будут очень кратковременными, то поляризация в момент выключения будет достаточно близкой к значению ее при заданной плотности тока. [c.256]

    Необходимо, однако, отметить, что для некоторых электродов, например платинового, в щелочных растворах перенапряжение в зависимости от концентрации щелочи не подчиняется уравнению замедленного разряда. Поэтому возникла необходимость в экспериментальной проверке скорости процесса разряда, что и было осуществлено Б. В. Эршлером, П. И. Долиным и А. Н. Фрумкиным, которые показали, что в некоторых случаях удается подобрать такие условия, когда при измерении скорости суммарной электрохимической реакции можно непосредственно измерять скорость одного этапа реакции, например разряда иона с переходом его в адсорбированный атом. Для этого платиновый электрод в определенном интервале потенциалов покрывают адсорбированными атомами водорода количество этих атомов на единице поверхности платинового электрода зависит от потенциала электрода. По мере увеличения анодной поляризации количество их убывает. При потенциале на одну десятую вольта положительнее, чем потенциал обратимого водородного электрода, выделение молекулярного водорода практически прекращается таким образом, можно полагать, что по сравнению с другими процессами оно не играет существенной роли. Если теперь такому электроду сообщить через раствор некоторое количество электричества, то единственно возможной электродной реакцией становится реакция разряда ионов водорода с переходом их в адсорбированные атомы. Дальнейшие стадии — образование молекул водорода — здесь не могут протекать. Для определения скорости процесса разряда удобнее применять переменный ток различной частоты. В самом деле, если электрод включить в цепь переменного тока, то он будет вести себя подобно конденсатору, т. -в. электроду будет эквивалентна электрическая схема, в котором емкость с и омическое сопротивление R включены параллельно. [c.322]

    Во всех опытах по измерению тока потенциал бинарной электродной системы оставался практически неизменным и равным потенциалу недеформируемого электрода. Начальная разность потенциалов между электродами перед включением микроамперметра составляла 2—3 мВ. Величина деформационного сдвига потенциала (по отношению к потенциалу недеформируемого электрода) не превышала 10 мВ, т. е. все опыты проводили в линейной области. Колебания потенциала происходили в областях, соответствующих симметричным участкам поляризационных кривых электродов, и даже в случае равенства площадей деформируемого [c.69]

    Неполяризуемым электродом называют такой электрод, потенциал которого заметно не изменяется при прохождении через него небольшого тока Большинство приборов для измерения потенциала обычно отбирают от электрода сравнения небольшой ток, зависящий от сопротивления цепи. Поляризуемость электрода сравнения тем меньше, чем более высоким током обмена характеризуется протекающая на нем электродная реакция, чем больше поверхность электрода, а также чем выше концентрация потенциалопределяющих частиц, которая не должна заметно изменяться при прохождении тока. [c.193]

    Еще одна трудность, возникающая при проведении потенциометрического редокс-титрования, связана с поляризацией индикаторного электрода. При потенциометрических измерениях всегда потребляется небольшой ток. В случаях, когда величина тока имеет тот же порядок, что и величина тока обмена, определяющего потенциал электрода в данной системе, редокс-потенциал из-за поляризации электрода изменяется. Для устранения электродной поляризации применяют высокоомные потенциометры с низким потреблением тока, либо заменяют электродную реакцию, на которую реагирует индикаторный электрод. [c.239]


    Некоторые особенности осциллографических методов. В осциллографической, как и в классической полярографии встречаются различные по природе виды токов. Для правильной расшифровки экспериментальных данных необходимо отчетливо представлять себе различие между обоими методами полярографии. В то время как в классической полярографии поверхность капельного электрода все время обновляется и на нее почти не оказывают влияния процессы, происходившие на предшествующих каплях, при осциллографических измерениях поверхность электрода поляризуется в широкой области потенциалов, так что в этом случае продукты всех реакций остаются у электродной поверхности и могут воспроизводимо влиять на протекание последующих процессов. Поэтому осциллографическая полярография часто расширяет аналитические возможности классического метода,особенно в случае органических деполяризаторов. С этой точки зрения осциллополярография напоминает полярографию со стационарным капельным электродом (см. гл. П). Например, в щелочной среде трехвалентный хром при положительных потенциалах окисляется до хромата при изменении потенциала электрода до достаточно отрицательных значений образовавшийся на электроде хромат вновь будет восстанавливаться. Таким образом, удается получить кривую восстановления хромата, отсутствующего в растворе, что невозможно осуществить методом классической полярографии (рис. 271). [c.498]

    Принцип компенсационной схемы измерений упрощенно показан на рис. 67. Навстречу ЭДС, возникающей в электродной паре 4> направляют ЭДС источника постоянного тока 1 через реохорд 2. Скользящим контактом измеряют разность потенциалов до полной компенсации. При наступлении полной компенсации, т.е. равенства ЭДС электродов и сухого элемента, гальванометр 3 показывает отсутствие электрического тока в цепи. В этот момент по положению контакта реохорда и определяют величину электродного потенциала (ЭДС электродной пары). [c.401]

    Потенциостатические методы. Контролируемое смещение электродного потенциала от обратимого значения и измерение электродного отклика электрода, т.е. тока, заряда или электрического импеданса. [c.158]

    Из средств, снижающих вероятность протекания каких-либо побочных реакций, а также электродных процессов окисления (восстановления) частиц примесей, например при проведении кулонометрических измерений, первостепенное значение имеет правильный выбор потенциала электрода, который осуществляют, исходя из природы электродов и состава раствора электролита. В идеальном случае значение потенциала должно быть таким, чтобы изучаемый электродный процесс протекал при 100%-ном выходе по току. [c.153]

    При изучении защитных свойств смазочных материалов широкое распространение получили электрохимические методы. Это — измерение электродных потенциалов, снятие поляризационных кривых гальваническими и потенциостатическими методами, измерение силы тока, возникающего между двумя электродами и др., а также измерение электрического сопротивления и емкости (импеданса) пленок, определение их пробивного сопротивления. О скорости электрохимических реакций судят по поляризационным кривым, выражающим зависимость между смещением потенциала электрода и плотностью протекающего через него тока (гальваностатический метод). Образование на металле хемосорбционных соединений четко проявляется по изменению работы выхода электрона из металла, обусловленного электрическим взаимодействием между металлом и адсорбирующимся веществом. [c.321]

    Можно выделить по крайней мере две, а иногда и три причины существования перенапряжения. Во-первых, прохождение тока сразу же приводит к изменению концентрации иона, участвующего в реакции, на поверхности электрода, и, чтобы ток оставался прежним, нужно увеличивать потенциал. Это явление называется концентра-ционным перенапряжением (см.) или концентрационной поляризацией. Второй тип перенапряжения — активационное перенапряжение (см.). Относительное его значение сильно изменяется оно мало для легко идущей реакции, но,если электродная реакция требует высокой энергии активации, оно может быть большим. Третий тип перенапряжения возникает на электроде, покрытом прочно сцепленным с поверхностью слоем плохо проводящего материала. Его сопротивление может быть настолько высоким, что при измерении перенапряжения в определяемую величину войдет величина падения напряжения в поверхностной пленке. [c.136]

    Измерение смещения электродного потенциала сооружения, вызванного переменным током, производят по схеме с компенсацией стационарного потенциала (рис. 8.3). При измерении используют приборы магнитоэлектрической системы, а контакт с землей осуществляют с помощью медносульфатных электродов сравнения. Стационарный потенциал сооружения относительно электрода сравнения компенсируется включением в измерительную цепь встречной ЭДС. [c.212]

    В условиях перепассивации сумма скоростей растворения металла и окисления среды равна анодной плотности тока. Соответственно этому обе указанные скорости можно опреде- лить измерением одной из них и плотности тока. В нашем исследовании измеряемой была скорость растворения металла. Скорость растворения металла, плотность тока и анодный потенциал измерялись в гальваностатических условиях в И-об-разном сосуде, разделенном стеклянным фильтром на два отделения. Исследуемым электродом служила железная проволока с содержанием 0,09% углерода диаметром 0,06 см. Длина, конца проволоки, соприкасающегося со средой, в опытах с измерением потенциала — 1,2—2 см, в опытах без измерения потенциала 0,5—0,8 см. Электроды сравнительно малых размеров применены для устранения или возможного уменьшения перегревания раствора электрическим током. Для возможного снижения омической составляющей электродного потенциала электрод был упруго прижат к капиллярному кончику трубки электролитического ключа, и испытания проводились тем более кратковременные, чем большей была скорость растворения металла. Скорость растворения металла определялась по потере веса образца и вычислялась в электрических единицах, [c.3]

    При измерении равновесных, потенциалов необходимым условием стабилизации потенциала является наличие тока обмена. Но последний должен неизбежно приводить к искажению совершенной кристаллической плоскости. Следовательно, измеренные потенциалы нельзя просто связать с энергетическими особенностями данной плоскости. Тем более вероятно такое искажение при анодной поляризации или при действии на металл агрессивной среды, в которой он корродирует. К. М. Горбунова [31] наблюдала, что перенапряжение восстановления ионов на цинковом электроде максимально на плоскости (0001). Но равновесный потенциал, устанавливающийся после выключения тока, одинаков для всех граней монокристалла. Это подтверждает, что электродный процесс (анодный или катодный) искажает грани монокристалла. [c.54]

    Электронно-лучевой осциллограф был впервые введен в электрохимическую практику Лебланом. Для определения временной зависимости потенциала электрода при пропускании тока постоянной величины метод успешно использовали В. А. Рой-тер, В. А. Юза и Е. С. Полуян. Они определяли токи обмена между твердыми металлическими электродами и электролитом. К этой же группе относится и осциллографическая полярография, основанная на измерении временной зависимости тока при изменении электродного потенциала. [c.259]

    Другие методы определения конечной точки. С первого взгляда могло бы показаться, что непосредственное измерение потенциала электрода (аналогично измерениям pH) может быть легко использовано для определения рМ в процессе титрования ЭДТА. К сожалению, многие металлические электроды не являются обратимыми, особенно при крайне низких концентрациях соответствующих ионов металлов (для переходных металлов обратимость не наблюдается даже при сравнительно высоких концентрациях ионов этих металлов). Часто мешают не только малые плотности токов обмена, но также побочные электродные реакции, приводящие к возникновению смешанного потенциала (раздел 15-10). Это особенно относится к наиболее активным металлам в растворах их ионов с очень низкими концентрациями в этом случае металлы имеют высокие восстановительные потенциалы и определение сталкивается со множеством помех. В частности, мешающее действие часто оказывает выделение водорода. [c.264]

    В цепи, содержащей металлический электрод в контакте с расплавленной солевой системой, например Сс1(МОз)2 в NaNOs—KNO3, к которой добавляется КС1, потенциал электрода при постоянном токе зависит от диффузии катионов, в данном случае d " , к границе электрод — электролит. Хотя скорость диффузии ионов к межфазной границе контролируется градиентом активности, коэффициент активности ионо в растворенного вещества вблизи электрода не зависит от расстояния, так как ионная сила определяется преимущественно концентрацией растворителя (в данном случае смеси нитратов), которая не является функцией расстояния. Поэтому изменение электродного потенциала со временем в переходных процессах зависит от изменения концентрации частиц в растворе, с которыми электрод находится в равновесии. Иными словами, измерения переходного времени позволяют определять изменения концентрации потенциал-определяющих ионов в расплаве, которые обусловлены комплексообразованием, в отличие от изменений активности в объеме электролита, обусловленных любыми причинами. Анализ переходных процессов позволяет, таким обра зом, судить о составе и концентрации каждого комплексного иона. [c.57]

    Выполнение экспериментальных работ в электрохимическом практикуме, как, впрочем, и в научных исследованиях, связано с использованием большого комплекса аппаратуры для измерений тока, протекающего через электрохимическую ячейку, потенциала и заряда электрода, составляющих электродного импеданса и т. д. Для этих целей у нас в стране и за рубежом выпускаются специальные приборы потен-циостаты, гальваностаты, высокоомные вольтметры, кулонометры, мосты переменного тока, автоматизированные системы для проведения электрохимических и коррозионных намерений, В последние годы все шире используется импульсная техника в сочетании с аналого-цифровыми преобразователями и электронно-вычислительными ма-1иинами. [c.38]

    Таким образом, потенциалы металлов можно сравнивать по эдс гальванической цепи с водородным электродом. Однако из-за условия стандартности концентраций ионов h+= uu+ = 1 моль/л описываемое устройство непригодно для такого рода измерений, так как вольтметр покажет равновесное значение эдс только в момент замыкания цепи. Вследствие прохождения тока и протекания реакции концентрации ионов в растворах сразу же начнут изменяться, эдс будет непрерывно уменьшаться и, когда в системе будет достигнут минимум изобарного потенциала, эдс станет равной нулю. Поэтому для измерения электродного потенциала применяют метод, при котором ток в цепи не протекает и потенциалы на электродах сохраняются постоянными. Этот метод, называемый компенсационным, заключается в том, что от внешнего источника тока на электроды методом подбора подают такое напряжение, которое равно разности потенциалов между электродами, но противоположно по знаку. При этом ток в системе будет отсутствовать и на электродах установится состояние, максимально приближающееся к равновесному. Таким образом, измерение потенциала сводится к измерению компенсирующего напряжения. Прибор для измерения разности потенциалов (или эдс) этим методом называется потенциометром. [c.261]

    Принцип метода. В методе используется сохранение заданной силы тока электролиза э постоянной в течение всего процесса анализа и измерение продолжительности электролиза Тэ- Но так как в отличие от прямой амперостатической кулонометрии в данном случае метод применяется для определения растворенных веществ, в процессе электролиза невозможно одновременное сохранение и силы тока, и потенциала электрода постоянными. Поэтому, как было указано ранее, при работе с постоянной силой тока электролиза из-за изменения потенциала электрода неизбежны побочные электрохимические процессы и не обеспечивается 100%-ная эффективность тока для необходимой электродной реакции. Для предупреждения затраты электричества на побочные электрохимические реакции в испытуемый раствор вносят электроактивное вещество (вспомогательный реагент), которое с самого начала или после некоторого периода электролиза (в зависимости от условий) участвует в электрохимической реакции. При этом необходимо, чтобы продукт реакции (промежуточный реагент) был способен количественно химически взаимодействовать с определяемым веществом. [c.198]

    Потенциостатический метод снятия поляризационных кривых, существо которого заключается в том, что при каждом заданном значении потенциала электрод выдерживается до установления стационарной плотности тока, был применен А. И. Левиным с сотрудниками для определения характера электродной поляризации при осаждении цинка, железа, хрома и меди (в последнем случае из комплексного пирофосфатного электролита) с совместным выделением водорода. С помощью потенцио-статических измерений Деляхею удалось определить зависимость силы тока от потенциала для отдельных электрохимических процессов при одновременном протекании нескольких электродных реакций. [c.255]

    Следовательно, при поляризации переменным током часть его /р, пропорциональная мс, представляет ток перезаряжения двойного слоя. Другая часть тока (фарадеевский ток) /ф, пропорциональная Мг, характеризует скорость электрохимической реакции. Отношение I/1ф — <лГрС определяется тангенсом угла сдвига фаз. Измерение амплитудных значений потенциала электрода, поляризующего тока и угла сдвига фаз дает возможность рассчитать доли емкостного и электрохимического токов. Рассматривая последний ток, можно сделать заключения о характере самих электродных процессов. В общем случае емкость и сопротивление электрода зависят от потенциала, поэтому появляются искажения синусоидальной кривой, что затрудняет применение этого метода к изучению электрохимических реакций. Применением прямоугольного переменного тока удается снизить влияние тока перезаряжения двойного слоя. При подаче на электрод единичного прямоугольного импульса тока (рис. 127) скорость заряжения определяется емкостью двойного слоя с и сопротивлением электрической цепи г. Если внутреннее сопротивление электролитической ячейки мало, а генератор прямоугольных импульсов имеет низкое выходное сопротивление, то в силу малой величины постоянной времени цепи (т = гс) электрод будет заряжаться за время т = 5т . Следовательно, через время т все изменения потенциала электрода и силы поляризу-228 [c.228]

    Разновидностью г.отенциостатического метода является циклический потенциостатический метод, в котором потенциал электрода меняется так, как это показано на рис. 21, а. Здесь измененне постоянной составляющей напряжения достигается с помощью генератора прямоугольных импульсов (рис. 21,6). Напряжение этого генератора является программирующей составляющей потенциостата, с которого снимается пропускаемый через ячейку ток. Ток меняется так, что разность потенциалов между электродом сравнения и исследуемым электродом становится равной напряжению, поступающему от генератора. Так как границы применения потенциостатов зависят от коэффициентов усиления постоянного тока, то, если, например, усилитель имеет коэффициент усиления порядка 2000, удается определить константу скорости электродной реакции Кр до 10 см/с. при этом можно проверить выполнение нотенциостатического условия с помощью внешнего сопротив.чения. Наиболее часто циклические потенциостатические измерения применяют для изучения кинетики окислительно-восстановительных реакций. В общем же случае величина поляризующего тока при постоянном потенциале исследуемого электрода может изменяться в зависимости от концентрации реагентов в приэлектродном слое, адсорбции ПАВ на электродах, от материала и размеров электрода. Все это в одинаковой степени характерно и для капельного и для твердых электродов. [c.43]

    СТАНДАРТНЫЙ ПОТЕНЦИАЛ (нормальный потенциал), значение электродного потенциала, измеренное в стандартных условиях относительно выбранного электрода сравнения (стандартного электрода). Обычно С.п. находят в условиях, когда термодинамич. активности а всех компонентов потенциалопределяющей р-ции, протекающей на исследуемом электроде, равны 1, а давление газа (для газовых электродов) равно 1,01 -10 Па (1 атм). Для водных р-ров в качестве стандартного электрода используют водородный электрод (Pt Н [1,01 Ю Па], Н [й=1]), потенциал к-рого при всех т-рах принимается равным нулю (см. Электроды сравнения) С. п. равен эдс электрохимической цепи, составленной из исследуемого и стандартного электродов. Согласно рекомендациям ИЮПАК (1953), при схематич. изображении цепи (гальванич. ячейки) водородный электрод всегда записывается слева, исследуемый-справа. Потенциал исследуемого электрода считается положитель-ньпи, если в режиме источник тока слева направо во внеш. цепи движутся электроны, а в р-ре-положительно заряженные частицы. Напр., С. п. хлорсеребряного электрода равен эдс гальванич. ячейки [c.414]

    Для вьиисления емкости но выражению (118) необходимо знать истинную площадь поверхности электрода (истинную плотность тока). Емкость, вьиислеппая по уравнению (118), представляет собой среднюю емкость электрода на участке II кривой заряжения. Если заряд электрода изменяется от О до q, а электродный потенциал - от ф =о ДО Ф (потенциал точки нулевого заряда), то измеренная емкость носит название интегральной емкости двойного электрического слоя  [c.75]

    К первой группе методов принадлежит также параметрическая полярография, основанная на измерении гармонической составляющей тока на РКЭ с частотой, определяемой периодом обновления электрода при медленном линейном изменении электродного потенциала и фазовой селекции фарадеевского тока. Следует заметить, что кривая фарадеевского сигнала в форме полярографической волны наблюдается и в других случаях, когда измеряются стационарные значения фарадеевского тока (с использованием ультрамикроэлектродов, вращающихся электродов и др.) при линейном изменении потенциала электрода. [c.319]

    Согласно теории электрокапиллярных кривых, емкостный ток равен нулю в точках максимума этих кривых (т. е. при потенциале электрокапиллярного нуля), когда на поверхности ртути нет зарядов и двойной электрический слой отсутствует. При потенциалах, более положительных, чем потенциал электрокапиллярного нуля (его значение зависит от состава раствора и, например, в хлоридах равно —0,56 в относительно н. к. э. см. табл. 1), поверхность капли заряжена положительно, и электроны во внешней цепи проходят в направлении от капельного электрода к вспомогательному. Так возникает анодный емкостный ток, которому в полярографии приписывают отрицательное направление (знак минус). При потенциалах, более отрицательных, чем потенциал электрокапиллярного максимума, поверхность капли имеет отрицательный заряд в этом случае емкостный ток течет в противоположном направлении (знак плюс) и называется катодным емкостным током (рис. 16 и 17). На кривых зависимости среднего емкостного тока от потенциала электрода, зарегистрированных с помощью обычно применяемого в полярографии гальванометра, так же как и на кривых зависимости среднего тока, обусловленного электродной реакцией, от потенциала, имеются осцилляции. В области электрокапиллярного максимума они исчезают, так как при потенциале электрокапиллярного максимума двойной слой не образуется и ток заряжения отсутствует. По уравнению (3) можно рассчитать среднее значение емкостного тока, которое интересно сравнить с экспериментально найденными величинами. Рассмотрим конкретный пример. В 0,1 н. КС1 скорость вытекания т = = 1 мг-сек , период капания = 1 сек, а удельная емкость (измеренная другим методом) С = 20 мкф1см . При потенциале капельного электрода = — 1,56 б (н. к. э.) емкостный ток 4= 0,85-20-10 -(—1,56 + 0,56) х X (1 10 ) - з-(1) з = 1J. 10 а такое же значение получено и экспериментально. Следует подчеркнуть, что в уравнения для емкостного тока нужно подставлять потенциал, отнесенный к потенциалу электрокапиллярного нуля в данной среде (обозначается Е ). [c.48]

    Скотт, Пикема и Коннели [652] предложили новый метод кулонометрии, позволяющий повысить чувствительность анализа до 10 моль определяемого соединения. Метод заключается в измерении силы тока, проходящего через ячейку, в которой исключена концентрационная поляризация рабочего электрода. Потенциал этого электрода изменяется с постоянной скоростью. Количество электричества, протекшее в цепи, равно площади,. заключенной между осью абсцисс и кривой, отражающей зависимость силы тока, протекающего через ячейку, от потенциала электрода. Поправку на количество электричества, потребляемое на побочные электродные процессы, находят из холостого опыта. Оказалось, что для вычисления концентрации определяемого вещества достаточно знать максимальное значение тока, протекающего через ячейку. Описанный способ применяют для определения железа. Анализ ведут в хлорнокислом растворе в инертной атмосфере (гелий) с золотым или платиновым рабочими электродами. Для получения достаточно воспроизводимых результатов необходимо поддерживать постоянными температуру, объем электролита и скорость продувания инертного газа (соответственно [c.71]

    Характеристика сурьмяного электрода. Преимущества и недостатки сурьмяного электрода при его применении для определения pH, электрометрического титрования, промышленного контроля и )егулирования pH обсуждались неоднократно [12, глава 7, 59, 64]. Быстрота, с которой устанавливается потенциал электрода, и простота устройства способствовали его применению для непрерывного регистрирующего контроля в промышленности в тех случаях, когда не требуется высокая точность. Его можно использовать в условиях меняющейся температуры и в щелочных растворах. Низкое сопротивление сурьмяного электрода позволяет применять его при высокой влажности, когда из-за большой утечки тока нарушается работа электронных усилителей, необходимых для измерения потенциалов стеклянных электродов. Сурьмяный электрод полезен в качестве индикатора конечной точки титрования и может заменить водородный и хингидронный электроды в растворах цианидов и сульфитов, в которых эти электроды не пригодны. Сурьмяный электрод применяется для измерений в присутствии сахаров [71], алкалоидов [72], желатины и 3% агара [73]. Он успешно используется при титровании в водно-спиртовых растворах [74]. Поскольку вода участвует в электродной реакции [уравнение (IX. 15)], то, по-видимому, кривая титрования будет несколько смещаться при изменении активности воды. Поэтому в процессе титрования со- став растворителя следует поддерживать постоянным. [c.227]

    Измеренный относительно произвольного электрода сравнения, потенциал электрода устойчиво и воспроизводимо определяется концентрацией потенциалопределяющего иона М " " в растворе. Попытки поляризовать такой электрод (т.е. пропускать через него ток от внешнего источника) лишь сдвинули бы равновесие влево или вправо в зависимости от направления тока. Система будет идеально неполя-ризуемой при бесконечно большой скорости электродной реакции. [c.52]

    Если предсташть систему в виде упрощенной эквивалентной схемы, пока-занной на рис. 5 для случая кинетического контроля, станут понят ными некоторые факторы, ответственные за уменьшение электродно го потенциала после отключения тока. Обозначим емкость двойного слоя j, комплексный нелинейный импеданс, обусловленный элек трохимическими реакциями (фарадеевские компоненты),, сопро тивление электродной фазы, сопротивление электролита между рабочим электродом и электродом сравнения ( ),, внешнее сопро тивление по отношению к цепи рабочий электрод - электрод сравне ния (Rg)2 Разность потенциалов на емкости непосредственно перед и сразу же после отключения поляризующего тока одинакова из за наличия конечного заряда на конденсаторе. Ток, текущий через (фарадеевский ток), также одинаков до и сразу после размыкания внешней цепи. Фарадеевский ток после отключения поляризующего то ка обусловлен разрядкой емкости С , Однако омические падения напряжения на (fi ) , R n R ) исчезают практически мгновен но. Таким образом, потенциал между поляризованным электродом и электродом сравнения, измеренный сразу после прерывания внешне го тока, эквивалентен стационарному перенапряжению без включения каких либо омических падений напряжения. [c.188]

    Основным методом исследования кинетики электрохимических реакций является получение кривых, передающих связь между потенциалом электрода под током и плотностью тока. Эти кривые называются обычно I — е (или поляризационными) кривыми. Анализ формы поляризационных кривых, а также анализ характера их зависимости от состава раствора, температуры и других физико-химических параметров, позволяют получить довольно полные сведения о природе изучаемого электродного процесса. Поляризационные кривые снимают чаще всего по прямому компенсационному методу. В этом случае ка исследуемый электрод подается постоянный ток и измеряется установившееся значение потенциала или, точнее, значение разности потенциалов между исследуемым электродом и соответствующим электродом сравнения. При таком способе измерения (рис. 49) в величину потенциала включаются омические потери в контакте (кбод), в подводящем проводнике (до точки разветвления компенсационной и поляризационной схем — 180 ), в самом электроде ( еом) и в слое электролита между электродом и капиллярным концом электролитического соединительного ключа (збод). Омические потери напряжения в металлических проводниках обычно малы и их всегда можно или снизить до желаемой величины (увеличением сечения проводника, сокращением его длины и т. п.), или учесть на основании прямых измерений и расчетов. Падение напряжения в электролите труднее поддается учету и может составить заметную долю от всей измеряемой величины. Кабановым были предложены расчетные формулы, по которым можно получить ориентировочную величину омического падения напряжения, если известны геометрия электрода и способ подведения к нему электролитического ключа, а также удельная электропроводность раствора. Вследствие конечной скорости транспортировки ионов, слой электролита в непосредственной близости к электроду имеет состав, отличный от состава исходного раствора. Кроме [c.322]


Смотреть страницы где упоминается термин Потенциал электрода электродный измерение под током: [c.8]    [c.101]    [c.115]    [c.35]    [c.61]    [c.211]    [c.41]   
Теоретическая электрохимия (1965) -- [ c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал измерения

Потенциал электрода

Потенциал электрода электродный

Потенциал электродный потенциал

Потенциалы электродов для измерения

Электрод измерение

Электродный потенциал



© 2025 chem21.info Реклама на сайте