Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетическая область протекания каталитических реакци

    Принято различать кинетически и диффузионно контролируемые (или просто кинетические и диффузионные) области протекания гетерогенно-каталитических процессов. В первых из них общую скорость процесса определяет собственно химическая реакция на поверхности, во вторых — диффузия реагентов. Кроме того, существуют области, контролируемые сорбцией реагентов или десорбцией продуктов. Более детально различают следующие пять основных областей. [c.288]


    В стационарных условиях для каждой стадии разности скоростей процесса в прямом и обратном направлениях равны. Однако сами скорости могут существенно различаться. Стадия процесса, протекающая в данных условиях с наименьшей скоростью, называется лимитирующей. Скорость всего процесса в целом и его кинетические закономерности определяются скоростью лимитирующей стадии. В предельных случаях различают кинетическую, адсорбционную и диффузионную области протекания гетерогенно-каталитических реакций. Границы областей определяются условиями проведения процесса, и в каждой из них действуют особые закономерности, свойственные лимитирующей стадии. Между названными предельными областями лежат переходные, которые подчиняются закономерностям смешанного характера. [c.79]

    Проверка влияния диффузионных факторов с выявлением области протекания каталитической реакции представляет собой важнейшую задачу кинетического исследования, без решения которой невозможно использование получаемой информации. Для этой цели применяется ряд экспериментальных и расчетных критериев. Каждый из таких критериев в отдельности часто не позволяет получить однозначный ответ о наличии или отсутствии диффузионного торможения, поэтому целесообразно для этой цели использование нескольких разных методов. Так как в диффузионных и переходных областях в большинстве случаев скорость процесса слабее зависит от температуры, чем в кинетической области, достаточно убедиться в отсутствии таких эффектов у верхней границы температурного интервала. [c.323]

    Если реагенты перед вступлением в реакцию хорошо перемешать, то скорость гомогенных процессов определяется скоростью непосредственно химического превращения веществ. В гетерогенных процессах химические реакции обычно сопровождаются чисто физическими промежуточными стадиями, которые определяют или влияют на наблюдаемую скорость процесса. В простейшем случае при протекании гетерогенного химико-технологического процесса можно выделить два элементарных процесса — диффузию веществ, находящихся в одной фазе, к поверхности раздела фаз или от нее и химическую реакцию внутри одной из фаз. В зависимости от того, какой из элементарных процессов — диффузия или реакция — определяет скорость ХТП, последние разделяют по области протекания. Например, если определяющее значение на скорость ХТП оказывает скорость диффузии, то говорят о химико-технологических процессах, протекающих в диффузионной области если скорость ХТП определяется скоростью химической реакции, то процесс протекает в кинетической области. Методы и приемы интенсификации ХТП, протекающих в диффузионной и кинетической областях, совершенно различны. Знание области протекания процесса особенно важно для анализа гетерогенно-каталитических процессов и управления ими. [c.33]


    Если скорость реакции лимитируется скоростью переноса молекул реагирующих веществ к поверхности катализатора или продукта реакции в объем, то изменение таких факторов, как температура опыта или давление водорода, отразится на скорости реакции согласно соответствующим законам диффузии, но не законам процессов, протекающих на поверхности катализатора. Отсюда следует необходимость разграничения диффузионной и кинетической областей протекания реакции. В диффузионной области скорость каталитической реакции определяется скоростью проникновения исходных веществ к поверхности катализатора, в его поры, или скоростью диффузии продуктов реакции в объем. В кинетической области общая скорость реакции лимитируется одним из элементарных актов, происходящих а поверхности катализатора. [c.67]

    Для рассматриваемого случая гетерогенной каталитической необратимой бимолекулярной последовательной реакции для кинетической области ёе протекания, пользуясь кинетической теорией для химических реакций, проводимых в потоке, (разработанной Г. М. Панченковым [8], дифференциальные уравнения скоростей первой я второй стадий реакции можно записать следующим образом  [c.278]

    Изучение кинетики химического процесса представляет собой сравнительно сложную задачу и требует выполнения исследовательских работ в значительном объеме. Обычно закономерности протекания процесса изучают при различных условиях во всех возможных областях осуществления реакции, т. е. с выявлением всего комплекса зависимостей, которые характеризуют данный химический процесс. При этом следует иметь в виду, что изменение условий протекания процесса (температуры, давления, концентрации и нр.) может существенно изменить сам характер реакции. В частности, процесс, протекающий в одних условиях в кинетической области, может при изменении этих условий перейти в диффузионную область и наоборот. Наиболее сложны закономерности протекания каталитических и ценных процессов, а также процессов, проходящих при одновременном получении [c.18]

    Протекание гетерогенно-каталитического процесса в интервале температур, когда лимитирующая стадия — собственно химическая реакция, называют кинетической областью гетерогенно-каталитического процесса. [c.436]

    Таким образом, разные эффекты, вызывающие отклонения от картины идеального поверхностного слоя, могут быть учтены при трактовке кинетических закономерностей каталитических процессов с получением соответствующих кинетических уравнений, согласующихся с опытными данными. Эти уравнения, однако, часто могут и не отличаться от уравнений для идеального поверхностного слоя, эффекты отклонений проявляются более рельефно в закономерностях адсорбционных процессов. Последнее может быть связано с тем, что явления адсорбции изучаются, как правило, в широких интервалах покрытий поверхности, а протекание каталитических реакций часто ограничивается одной из областей заполнений поверхности, в частности там, где эффекты реального адсорбированного слоя маскируются. [c.280]

    Обычно лимитирующей стадией каталитического крекинга является собственно химическая реакция на поверхности (кинетическая область протекания реакции). В некоторых случаях для цеолитсодержащих катализаторов при неудовлетворительной пористой структуре матрицы скорость процесса лимитируется диффузией реагентов в порах (внутридиффузионная область протекания реакции). Так, по данным [39], для образцов промышленного шарикового цеолитсодержащего катализатора Цеокар-2 размером пор 3,8—4,0 нм наблюдался переход реакции во внутридиффузионную область при 47 "С с соответствующим снижением кажущейся энергии активации крекинга исходного снрья- 46.fr до [c.105]

    Лимитирующей стадией каталитического крекинга является химическая реакция на поверхности — в кинетической области протекания реакции. В случае применения цеолитсодержащих катализаторов, имеющих разветвленную пористую структуру, скорость процесса может лимитироваться диффузией реагирующих молекул в порах катализатора (внутридиффузионная область). Каталитический крекинг углеводородов является необратимой реакцией первого порядка. [c.95]

    Константа скорости каталитического процесса к — в общем сложная величина (см. (5.5)). Однако для кинетической области и протекания процесса вдали от равновесия можно принять к — кх [к — константа скорости прямой реакции). Для диффузион- [c.258]

    Скорость химической реакции зависит от концентрации реагирующих веществ и наличия или отсутствия катализаторов — ускорителей реакции. В связи с этим реакции подразделяются на каталитические и некаталитические. Наконец, реакции могут идти как только с участием валентно-насыщенных молекул или ионов — так называемые неценные реакции, — так и с участием свободных радикалов или атомов. В последнем случае реакции идут по цепному механизму и относятся к классу цепных реакций. В зависимости от условий протекания реакции механизм кинетических процессов меняется. Поэтому для различных условий течения реакции характерны специфически отличные кинетические законы. Это приводит к необходимости разделения кинетики на разделы кинетика некаталитических и каталитических реакций. Каждая из этих глав может быть в свою очередь разделена на кинетику нецепных реакций и кинетику цепных-реакций. Нецепные и цепные реакции могут быть как гомогенными, так и гетерогенными. Кинетика гомогенных реакций объединяет кинетику газовых реакций и кинетику реакций в растворах. Специфика гетерогенных реакций зависит как от фазового состояния системы, так и от того, в какой области (кинетической, диффузионной или переходной) протекает реакция. [c.6]


    В этот же период в лаборатории С. 3. Рогинского было положено начало еще одному направлению — макрокинетике каталитических процессов. Я. Б. Зельдович создал теорию равнодоступной поверхности, с помощью которой удалось четко разделить кинетический, внутреннедиффузионный и внешнедиффузионный режимы протекания каталитических реакций. Оказалось, что в области внутренней диффузии энергия активации каталитической реакции уменьшается вдвое. С. Ю. Елович и Г. М. Жаброва разработали макрокинетику жидкофазных каталитических процессов применительно, к гидрированию киров. [c.7]

    Итак, для получения надежных величин удельной активности условия эксперимента должны быть достаточно жестко лимитированы необходимо исследовать катализаторы,длительно поработавшие, достигшие стационарного состава исследования должны выполняться в изотермических условиях и в кинетической области. Последний фактор особенно важен для жидкофазных каталитических процессов. В жидкофазных реакциях, исключив влияние внешнедиффузионных ограничений, часто упускают из виду возможность протекания реакции во внутридиффузионной области. Для тонкопористых катализаторов это приводит к росту удельной активности с увеличением степени дисперсности катализаторов, если ие учитывается степень использования внутренней поверхности катализаторов, если в уравнения для расчета удельной активности не вводится при этом коэффициент т]. [c.143]

    Кинетика каталитической изомеризации жидкого а-пинена в присутствии алюмосиликатного и промышленного титанового катализаторов (титановой кислоты) изучалась Рудаковым, Ивановой, Писаревой и Боровской [77, 155]. Реакцию проводили в колбе с мешалкой (от 60 до 3000 об/мин) и в термостатированной качающейся утке (60 и 180 двойных качаний в минуту). В этих условиях реакция протекает в кинетической области. Это показывает, что свойства катализатора в значительной мере определяют область протекания процесса. [c.59]

    Несмотря на то что гетерогенные каталитические процессы нашли широкое применение в промышленности, данные о влиянии давления на скорость их протекания явно недостаточны, а зачастую и противоречивы. Не всегда учитывается влияние давления на изменение общей характеристики кинетического режима, порядка реакций, на соотношение объемных и поверхностных реакций. Всегда для проведения химических реакций необходимо осуществлять подвод и отвод реагирующих веществ к поверхности катализатора, а следовательно, учитывать их влияние на скорость суммарного процесса. Очевидно, что воздействие давления на скорость можно правильно выявить лишь в кинетической области, где практически отсутствует влияние физических факторов. Однако при изучении кинетики гетерогенных химических реакций под давлением наблюдается быстрый переход [c.115]

    В стационарных условиях для каждой стадии разности скоростей процесса в прямом и обратном направлениях равны. Однако сами скорости могут существенно различаться. Стадия процесса, протекающая в данных условиях с наименьшей скоростью, называется лимитирующей. Скорость всего процесса в целом и его кинетические закономерности определяются скоростью лимитирующей стадии. В предельных случаях различают кинетическую, адсорбционную и диффузионную области протекания гетерогенно-каталитических реакций. Границы областей определяются условиями проведения процесса и в каждой [c.100]

    Диффузия реагентов внутри зерна катализатора оказывает суш,ественное влияние не только на суммарную скорость процесса, но и на выход отдельных продуктов сложных каталитических реакций. При обсуждении особенностей диффузионной кинетики сложных реакций следует подчеркнуть, что понятие области протекания реакции имеет смысл применительно к каждой отдельной реакции, но не к процессу в целом. Сложная реакция может включать как медленные, так и быстрые реакции, которые в одинаковых условиях могут протекать в различных областях — диффузионной или кинетической. Одной из главных характеристик реакции является ее селективность (избирательность), т. е. отношение скорости образования целевого продукта к скорости расходования исходного веш,ества. Характер влияния диффузионного торможения на селективность сложных реакций зависит от структуры сложной реакции [52]. [c.178]

    Если процессы переноса вещества протекают значительно быстрее химических стадий (которые и являются лимитирующими), то говорят о протекании реакции в кинетической области. Пожалуй, только для этого случая можно считать правомерной трактовку катализа ионитами как гомогенного кислотноосновного катализа Если же суммарный процесс лимитируется диффузионными стадиями или же протекает с такой большой скоростью, что зоной реакции является только поверхность зерна катализатора, то катализ ионитами можно рассматривать как гетерогенный. Наконец, картине смешанной кинетики, наблюдаемой при сравнимых по величине значениях скоростей отдельных стадий, отвечает разновидность каталитических реакций, которые можно назвать гомогенно-гетерогенными. В катализе ионитами этот вид реакций, по-видимому, является наиболее распространенным. [c.28]

    Известно, что в значительном большинстве случаев активность однокомпонентных катализаторов, отнесенная к единице поверхности (удельная активность) приблизительно постоянна и не зависит от способа приготовления, дисперсности и т. п. Следовательно, скорость каталитических реакций пропорциональна величине поверхности [I—3]. Однако это справедливо лишь при протекании реакции в кинетической области при наложении диффузионного торможения степень использования поверхности и, следовательно, активность катализаторов более или менее снижаются. [c.278]

    Контактные аппараты с кипящими слоями катализатора (КС) находят все более широкое применение. Они обеспечивают протекание каталитических процессов при изотермическом температурном режиме даже при высоких тепловых эффектах реакции. Независимость гидравлического сопротивления кипящих слоев от размера частиц и линейной скорости газа дает возможность нрн-менения мелкозернистых катализаторов. Это позволяет эффективно проводить процессы в кинетической области при полном использовании внутренней поверхности катализаторов. Высокая теплопроводность кипящего слоя, обусловленная подвижностью частиц, создает благоприятные условия для отвода или подвода теплоты непосредственно в слое катализатора, без опасения вызвать локальные затухания или перегрев контактной массы. При этом вследствие высоких значений коэффициентов теплопередачи от кипящего слоя к тепловому агенту обеспечивается наиболее эффективный теплообмен и соответственно уменьшаются размеры теплообменных узлов. [c.141]

    Относительная роль реакции гибели и передачи цепи меняется не только при изменении химического состава или природы каталитических систем, но и при изменении температурной области полимеризации в одной и той же системе [62, с.114], а также концентрации катализатора в реакционной смеси. Это находит отражение в величинах АЕ, которые изменяются при полимеризации изобутилена (как и ряда других мономеров) в весьма широких пределах, охватывая также и отрицательные значения. В частности, низкотемпературной ветви кривой Аррениуса (от 85 до 175 К), характеризующей полимеризацию изобутилена под действием А1С1з в СН3С1, отвечает АЕ = -0,84 кДж/моль, причем степень полимеризации Р в этих условиях не зависит от концентрации мономера. С повышением температуры Р становится чувствительной к концентрации мономера, а АЕ =- 15,1 кДж/моль [268], что обусловлено протеканием и других, помимо передачи цепи на мономер, реакций ограничения роста цепи. я-Алке-ны обычно не влияют на молекулярную массу, но уменьшают выход полиизобутилена, являясь ядами. Алкилгалогениды снижают молекулярную массу, не влияя на выход полимера, что характерно для агентов-передатчиков материальной цепи. Многие соединения проявляют в большей или меньшей степени оба эффекта, например Р-алкены. На рис.2.13 обобщены экспериментальные данные о кинетических параметрах реакций отравления и передачи цепи при полимеризации изобутилена [68, с. 146]. Чистые яды (пропилен, бутен-1, пен-тен-1 и т.п.) и чистые передатчики цепи попадают на горизонтальную и вертикальную оси соответственно. Как видно, достаточно эффективными передатчиками цепи являются грег-бутилхлорид и трет-бутилбромид. [c.117]

    Изменение температуры мало сказывается на скорости процесса в том случае, если процесс протекает в области внешней диффузии. Поэтому температура газа, поступающего в реактор, должна быть выше минимальной температуры, необходимой для протекания реакции в области внешней диффузии. Для палладиевого и платинового катализаторов эта температура составляет 30—50° С. При более низкой температуре реакция переходит в кинетическую область и скорость каталитической очистки резко снижается. [c.77]

    Существенной характеристикой протекания сложной каталитической реакции в открытой системе является зависимость поведения реакции от скорости При малых скоростях потока, когда мы находимся в линейной области вблизи равновесия, стационарной состояние, как правило, единственно. С другой стороны, может быть выделена область больших скоростей потока V, также обладающая этим свойством. Эта область начинается с некоторых V, достаточно больших для того, чтобы подавить кинетическую нелинейность системы. В работе [17] существование такой области показывается для гомогенных химических реакций (обмен по всем веществам) и для гетерогенных каталитических в предположении квазистационарности по всем промежуточным веществам. [c.30]

    Принято различать кинетическую и диффузионную области протекания гетерогенно-каталитических п юцессов. В кинетической области скорость процесса определяется химической реакцией на поверхности катализатора. В диффузионной области скорость процесса определяется диффузией реагентов (внешнедиффузионная - диффузией реагентов из потока к внешней поверхности зерна катализатора, внутридиффузионная - диффузией реагентов от внешней поверхности зерна катализатора к внутренней его поверхности). [c.673]

    В связи с выступлением А. Розовского я хочу сказать, что нельзя применять кинетические уравпеиия не только для диффузионной области протекания реакции, но и для кинетической, так как мы не знаем математических уравнений, которые бы хорошо описывали гетерогенные каталитические процессы, происходящие в этой области. [c.226]

    Соблюдение последних условий предполагает также необратимость каталитической реакции, кинетическую область ее протекания и кажущийся нулевой порядок, т. е. отсутствие влияния обратного процесса и. факторов диффузионного торможения и независимость скорости процесса от концентрации реагирующих веществ при определенном ее значении. [c.34]

    Классические работы Лебедева [185 —187 J по избирательному каталитическому гидрированию олефинов послужили отправной точкой для развития и применения этой реакции как метода установления строения непредельных соединений и анализа многокомпонентных смесей этиленовых углеводородов. В основу этого метода была положена различная прочность кратных связей у олефинов разного строения. Сопоставление кинетических кривых гидрирования многокомпонентных смесей олефинов неизвестного состава с кинетическими кривыми эталонных смесей олефинов позволило составить представление о строении компонентов анализируемых смесей. Принципиальные научные положения Лебедева о применимости избирательного каталитического гидрирования к решению структурных вопросов в области непредельных органических соединений были распространены нами на реакцию гидрогенолиза сераорганических соединении. Проведенные экспериментальные исследования по изучению закономерностей протекания реакции гидрогенолиза индивидуальных сераорганических соединений разного строения и их смесей полностью подтвердили наше предположение о возможности применения избирательного каталитического гидрирования для установления строения сераорганических соединений. [c.410]

    Выше было показано, что для химических преврашений строгое выполнение линейных соотношений взаимности Онзагера обеспечивается при очень малых значениях сродства этих преврашений даже на элементарных стадиях 1 КТ. Однако при протекании типичных лабораторных или промышленных химических реакций (например, прямого либо каталитического синтеза разнообразных соединений) значения сродства для брутто-процессов составляют обычно 40—100 кДж/моль (см. гл. 4, 5), в то время как при комнатной температуре ЯТ 2,5 кДж/моль. Даже для большинства биохимических превращений у4,у 4 8 кДж/моль. Таким образом, офомное число практически важных химических превращений осуществляется обычно вдали от термодинамического равновесия (вдали от области применимости соотношений линейной неравновесной термодинамики), что значительно усложняет их термодинамическое рассмотрение, и нередко для описания системы требуется использовать прямые кинетические методы, базирующиеся на дифференциальных уравнениях. [c.348]

    Общая скорость гетерогенного каталитического процесса ог]ределя-ется относительными скоростями отдельных стадий и может лимитироваться наиболее медленной из них. Ра шичают три области протекания каталитических реакций кинетическая, внутридиффузионная и внешнедиффузионная. [c.88]

    При сохранении кинетической области протекания реакций построение математической модели реактора по сравнению с кинетической моделью сводится к дополнительному учету теплового баланса и нензотермичности процесса в реакторе, учету обратного смешения н неоднородности поля скоростей, наличие которых доказано в работах [320, 321 1. Последнее обстоятельство, по-внднмому, снимается в реакторах с горизонтальным потоком газа, которые приняты для современных установок каталитического риформинга, поскольку в этих реакторах отсутствует пристеночный эффект, вызывающий указанную неоднородность. Метод конструктивного расчета реакторов с горизонтальным током газа, обеспечивающий равномерное распределение реакционного потока по высоте реактора изложен в работе [322]. Обратное смешение, как показано в [319], распространяется в зернистом слое только иа расстояние 3—5 диаметров зерна, поэтому в реакторах риформинга как радиальных, так и аксиальных им можно пренебречь. [c.199]

    Переходя к рассмотрению некоторых черт механизма окисления водорода на переходных металлах, следует прежде всего отметить, что наличие корреляции между скоростью окисления водорода и позволяет, как и в случае окислов, постулировать разрыв связи Ме—О в лимитирующей стадии реакции. Однако, в случае металлов, судя по зависимости активности и от энергии связи Ме—Н, в лимитирующей стадии реакции происходит также разрыв связи Ме—Н. Следовательно, состав активированных комплексов лимитирующей стадии процесса окисления водорода на окислах и на переходных металлах различен, эти вещества в рассматриваемой реакции неоднотипны [42, 211]. Это подтверждается тем, что зависимости скоростей окисления на металлах и окислах различаются (рис. 40). Приведенные на этом рисунке данные об активности металлов относятся к кинетической области протекания реакции окисления водорода. Необходимо подчеркнуть также, что характерной чертой этого процесса на металлах является возможность его осуществления по гетерогенно-гомогенному механизму. В то же время, даже на одном из наиболее активных катализаторов окисления водорода — платине — эта реакция, во всяком случае в отсутствие свободных объемов, при температурах ниже 100° С протекает чисто гетерогенно. Это подтверждается практическим постоянством величин удельной каталитической активности платиновых катализаторов, удельные поверхности которых различаются примерно на 4 порядка [261]. В этих условиях реакция окисления водорода на платине осуществляется, по-видимому, по стадийному механизму через взаимодействие кислорода с поверхностью с образованием ОН-групп и их последующую реакцию с водородом, приводящую к выделению воды. Во всяком случае, протекание окисления водорода по такому механизму однозначно показано на пленках серебра при комнатной температуре [44, 217, 262—264]. [c.246]

    Глава VII Цепные реакции дополнена рассмотрением роли возбужденных молекул в цепных реакциях, толуольного метода определения энергии связи в органических молекулах, количественных зависимостей от концентрации и температуры нижнего и верхнего пределов самовоспламенения написан новый 3 Обрыв цепи . Большим изменениям подверглась глава VIII Фотохимия , которая дополнена кинетическими расчетами квантовых выходов и 4—7. Глава IX Химическое действие излучений большой энергии включает новый дополнительный материал по принципам дозиметрии, радиолизу воды, новый текст 6. Сильно изменена глава X Каталитические реакции . Особенно большие изменения и дополнения сделаны в разделе Гомогенные каталитические реакции , расширен параграф, посвященный разложению перекиси водорода, кислотноосновным реакциям и их классификации. В разделе Гетерогенные каталитические реакции более подробно рассмотрены переходы реакций из кинетических областей протекания в диффузионные области, дополнен 16. В главе XI Теория активных центров в катализе написаны новые 4, 11, расширено изложение электронного механизма адсорбции и химических реакций на полупроводниках. В главе XIV Применение меченых атомов в химической кинетике написан новый 4 Изотопные кинетические эффекты . [c.13]

    Рассматриваемый здесь подход к описанию релаксации скорости гетерогенной каталитической реакции является феноменологическим, потому что он основывается на явлениях и зависимостях, которые регистрируются соответствующими химическими экспериментами, а их математическим описанием служит система (1.8), параметры которой могут быть найдены экспериментально. Эта система передает лишь существенные стороны явления и, будучи в этом смысле упрощенной, никак не может заменить или исключить необходимость исследования нестационарной кинетической модели процесса. Поскольку система (1.8) является линейным приближением общей задачи (1.7), то она, строго говоря, может быть применима для анализа малых отклонений от квазистационарпого состояния. Однако часто ее можно с достаточной степенью точности использовать и за пределами области линейного приближения. В работе [34] приведены примеры исследования динамических свойств поверхности катализатора при протекании процессов различной степени сложности. Полученные данные сравнивались с результатами, найденными из анализа математического описания (1.8), в которое подставлялись значения М и Р, оцененные из исходного выражения типа (1.7а). Из сравнения релаксационных кривых следовало, что в широком диапазоне концентраций и констант скоростей стадий наблюдаемые скорости химического превращения с небольшой но- [c.19]

    По Фросту р всегда должно быть меньше 1 и может равняться ей лишь в предельном случае, когда сумма значений адсорбционных коэффициентов продуктов реакции намного выше величины адсорбционного коэффициента реагирующего вещества. В то же время, согласно данным [15], величина р достигла 1,08 1,12. Позднее А. Я. Розовским было доказано [24, 25], что уравнение Фроста формально описывает кинетику гетерогенных каталитических реакций первого порядка, протекающих не только в кинетической области, но и в диффузионной и адсорбционной областях. При этом меняются физический смысл и величина коэффициентов уравнения 1в зависимости от области протекания реакции. [c.93]

    Зауглероживание катализаторов наблюдается во-многих процессах крекинг, риформинг, дегидрирование и др. [40, 51, 89]. Кокс, образующийся на поверхности катализаторов, всегда содержит некоторое количество водорода и по химическому строению представляет собой высококонденснрованные ароматические углеводороды. Образование кокса принято считать, побочной стадией основного каталитического процесса. По существующим данным, кокс на катализаторах откладывается до определенного предела— Спред 192]. Фактическое содержание кокса зависит от температуры, природы сырья, пористой структуры и химического состава катализаторов. Обычно в кинетической области Спред не равно объему пор катализатора, который определяет максимально возможное количество кокса. Так, для алюмосиликатного катализатора Спред никогда не превышает 48 % (масс.), что составляет 56 % объема пор [93]. При протекании реакции в диффузионной области отложение кокса по радиусу частиц можно описать следующим уравнением [51, 92]  [c.91]

    В большинстве случаев можно предположить несколько схем протекания каталитического процесса, которые приводят к одному и тому же кинетическому уравнению. Поэтому естественно желание исследователей, работающих в области механизма каталитических процессов, воспользоваться мечеными атомами для выяснения отдельных стадий протекания реакции. В частности, для вскрытия механизма окислительных каталитических реакций на окисных катализаторах большие надежды возлагались на применение тяжелого изотопа кислорода. Мне кажется, что в первый период применения этого метода им слишком увлекались. Если посмотреть первые работы в этой области, то создается впечатление, что авторы их считали возможным во всех случаях совершенно однозначно толковать результаты, полученные нри применении тяжелого кислорода. Если кислород катализатора переходит в продукты реакции, то реакция протекает за счет попеременного окисления и восстановления катализатора. Если этого перехода нет, значит кислород, связанный с катализатором, не принимает участия в реакции. Однако противоположные выводы, к которым пришли исследователи при изучении механизма с помощью тяжелого кислорода одной и той же реакции на одном и том же катализаторе, показывают, что данный метод пе дает столь однозначных результатов, как это полагали вначале. Основной причиной этих разногласий является, несомненно, то, что этот метод применялся и, к сожалению, часто применяется и в настоящее время чисто формально, т. е. без достаточного учета специфики того или иного каталитического процесса. В частности, так обстоит дело, например, с использованием тяжелого кислорода для выявления механизма каталитического окисления окиси углерода на двуокиси марганца. А. М. Розен и С. М. Кариачева нри изучении этой реакции определяли изменение изотопного состава газовой фазы и пришли [c.137]

    Каталитическая активность цеолитов определялась импульсным микрокаталитическим методом [И]. Протекание реакции в кинетической области в изученном интервале температур специально доказано с использованием безградиентного метода. Для обработки экспри-ментальных результатов использовалось уравнение первого порядка [12]. Перед опытом катализатор прогревался в токе воздуха в течение 2 час при 550°С. Регенерация катализаторов иослс опытов проводилась в токе воздуха при 550°С. [c.6]

    В работе [23] показано, что при окислении водорода на платине наблюдается появление неустойчивого окисла Р1д04, который не образуется при прямом взаимодействии платины с кисл ор одом в отсутствие каталитического процесса. Особенности кинетики этого процесса [24], в частности, наличие экстремумов скорости реакции при изменении концентрации водорода и кислорода, различия наблюдаемых кинетических закономерностей в разных областях концентраций и температур также согласуются с полученными выводами. Отметим, что подавление реакций катализатора при протекании каталитического процесса окисления водорода на пятиокиси ванадия доказано прямым экспериментом [25]. [c.325]

    В качестве катализаторов были взяты бис-я-аллил- и бис-я-кротилни-кельхлорид, синтезированные по методу Фишера из тетракарбонила никеля и хлористого аллила (кротила) [9]. Исследованию каталитического гидрирования диена (бутадиен) предшествовало изучение реакции комплексов с водородом — гидрогенолиза. Гидрогенолиз проводился в статической циркуляционной установке [10], водород барботировал через толуольный раствор никелевого комплекса, при этом скорость циркуляции обеспечивала протекание реакции в кинетической области. [c.127]


Смотреть страницы где упоминается термин Кинетическая область протекания каталитических реакци: [c.22]    [c.334]    [c.249]    [c.60]    [c.349]   
Введение в теорию и расчеты химических и нефтехимических реакторов (1968) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Кинетическая область реакции

Кинетические области протекания

Кинетические области протекания реакций

Области протекания каталитических

Области протекания каталитических реакций

Область кинетическая

Реакции каталитические

Реакции кинетическая



© 2025 chem21.info Реклама на сайте