Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

плотность скорость структура химический

    Итак, скорость разрушения силикатного стекла определяется, во-первых, скоростью гидролиза силикатов поверхности и, во-вто-рых, скоростью диффузии воды через защитную пленку. Диффузия, в свою очередь, определяется природой пленки—плотностью ее структуры и толщиной. Наибольшая скорость гидролиза наблюдается у щелочных силикатов, далее идут силикаты некоторых двувалентных металлов—бария, свинца, кальция, магния и других. Наиболее прочны в химическом отношении алюмосиликаты и некоторые боросиликаты (при содержании ВгОз  [c.79]


    Другое дело — кинетический аспект химической стойкости с какой скоростью будет идти процесс взаимодействия разнородных вешеств. Здесь немаловажную роль играют такие факторы, как плотность, морфология, структура и др. К примеру, материал, полученный плавлением горной базальтовой породы, — плавленый базальт содержит в своем составе всего 48 % 8102, и в связи с этим он не может считаться кислотостойким материалом. Однако высокая плотность плавленого базальта (отсутствие пористости) обусловливает только поверхностное взаимодействие с кислотами, протекающее с очень малой скоростью. Поэтому изделия из этого материала в реальных условиях эксплуатации обеспечивают высокую работоспособность конструкций в кислых средах. Другой пример плавленый кварц (99 % 8Ю2) по тем же причинам в реальных условиях эксплуатации достаточно работоспособен в контакте с основаниями и даже едкими щелочами при умеренных температурах. [c.14]

    На втором уровне иерархии рассматриваются процессы в представительном э.ф.о. пористой среды. Целью рассмотрения процессов в представительном объеме является нахождение средних характеристик (эффективных коэффициентов переноса, эффективных констант скорости химических превраш ений) и их взаимосвязи в зависимости от структурных характеристик пористой среды и значений макропеременных. Получение средних значений характеристик может быть осложнено существенной неоднородностью пористой структуры, характеризуемой в пределах каждого масштаба неоднородности своим дифференциальным распределением пор по размерам. Плотность распределения / (г) определяется так, что произведение / г)йг дает относительное число пор радиусом от г до г + < г. Распределение нормировано [c.142]

    Влияние температуры и скорости нагрева на величину кристаллитов и физико-химические свойства углеродистых материалов исследовалось Зайцевой [43]. По ее данным, для достижения оптимальных результатов коксы анизотропной и изотропной структуры нужно прокаливать ири различных условиях. Так, кокс игольчатой структуры нужно прокаливать при 1400—1450°С, прн этом его плотность будет 2120—2140 кг/м рядовой кокс (изотропная структура) —при 1100—1300 °С. [c.199]

    Химические реакции в поверхностных пленках. Надо полагать, что сам факт нахождения молекул в монослое на поверхности жидкости не изменяет ее химическою активность. Тем не менее экспериментальные данные показывают, что возможность химического взаимодействия молекул пленки с молекулами или ионами подкладки в значительной мере зависит от ориентации и плотности упаковки молекул пленки. Вследствие этого скорость реакции вещества пленки существенно зависит от ее структуры. Течение химических реакций в поверхностных пленках можно проследить, измеряя поверхностное давление или скачок потенциала. Первый из этих способов позволяет обнаружить всякое изменение, сопровождаемое заметной переориентацией молекул, второй—всякую реориентацию диполей или изменение полного дипольного момента молекулы. [c.58]


    Если учитывать, что все молекулы с огромной скоростью движутся, колеблются, вращаются, претерпевают валентные, деформационные, крутильные колебания связей, сталкиваются между собою под,всеми возможными углами, что в каждой молекуле молниеносно возникают и пропадают флуктуации электронной плотности, — то картина предстанет крайне сложная. Химика спасает то усредненное представление о моле суле, которое он создает в своем воображении, пользуясь всем арсеналом теории строения. Эта усредненная структура оказывается объектом его мысленного манипулирования, когда он вникает в процесс химического превращения. Вот почему теория химического строения является основой для решения динамических вопросов химии, понимания химических процессов и механизмов. [c.156]

    Носители и растворители. Бумага для хроматографирования. В распределительной хроматографии к бумаге предъявляются определенные требования она должна быть химически чистой, химически и адсорбционно нейтральной, однородной по плотности, обеспечивать определенную скорость движения растворителя существенное значение имеет структура и ориентация волокон бумаги. Без соблюдения этих требований успех хроматографического анализа не может быть обеспечен. [c.120]

    Меченые атомы. В химическом отношении изотопы одного и того же элемента почти тождественны. Ответственность за химические свойства несет структура внешних электронных оболочек, а она у изотопов одинакова. Из этого следует постоянство изотопного состава природных элементов, а значит, и постоянство атомных масс элементов. Однако при более точных исследованиях поведения изотопов выяснилось, что различие в изотопных массах все же, хотя и в небольшой степени, сказывается на свойствах (например, на коэффициентах диффузии, константах скорости реакции, давлении пара, плотности и т. п.). Эти небольшие различия — изотопные эффекты — используются в разнообразных методах разделения изотопов. Изотопные эффекты сильнее проявляются у легких элементов, чем у средних и тяжелых. [c.412]

    Коэффициент полноты извлечения может зависеть от целого ряда характеристик скорости вытеснения, поверхностного натяжения на границах фаз, разности их плотностей, структуры порового пространства, угла смачивания твердой фазы, содержания и свойств связанной воды, а также химического состава нефти и вытесняющих ее жидкостей или газа. Исследованиями последних лет установлено, что на полноту извлечения запасов нефти оказывают существенное влияние структурно-механические свойства аномальных нефтей [25, 27 и др.], проявляющиеся при малых градиентах пластового давления. [c.145]

    Значительное влияние на процесс пиролиза и формирования пористой структуры кускового кокса оказывает физическое состояние дисперсной массы углей. Последняя представляет собой гетерогенную среду, компоненты которой разнородны различаются по генетическим признакам - петрографическому составу, степени метаморфизма, химическому строению и минерализации. Оптимизация состояния этой массы является задачей способов подготовки углей к коксованию. С их помощью можно регулировать гранулометрический и вещественный состав угольных шихт, плотность загрузки, скорость и конечную температуру коксования и ряд других факторов процесса. [c.12]

    Определение составных частей резин - полимеров, неорганических и органических компонентов, - выполняется обычно с применением нескольких методов исследования. Так, для идентификации типа полимера в резине наиболее целесообразно использование пиролиза в сочетании с ИКС. Высокотемпературный пиролиз предварительно экстрагированной пробы осуществляют в трубчатых печах при 500-650 °С ИК спектры выделившихся летучих и жидких компонентов сопоставляют с известными спектрами [50]. Условия получения продуктов пиролиза для анализа методом ИКС специфичны большая навеска (0,2-0,5 г), различная скорость пиролиза (который ведут до его полного завершения), сравнительно высокое остаточное давление (5-10 мм рт. ст.). Поскольку близкие по структуре каучуки дают одинаковые спектры продуктов пиролиза, то для их идентификации могут быть использованы величины относительных оптических плотностей (в качестве стандартной предложена полоса 1460 см ).Температура разложения вулканизатов примерно на 30 °С выше температуры разложения эластомеров, которая существенно зависит от их химического состава (табл. 9.2). [c.238]

    Принципиальным отличием трехмерных полимеров от линейных является наличие химических узлов, практически не разрушающихся при умеренных температурах и нагрузках разрушение этих узлов ведет к разрушению полимера. Появление химических узлов делает невозможным движение всей макромолекулы или ее достаточно больших частей, т, е, существенная часть молекулярных движений, возможных в линейных полимерах, в трехмерных полностью вырождена, В трехмерных полимерах может проходить химическая релаксация, связанная с медленной перестройкой сетки химических связей под действием внешней нагрузки [I], При большой плотности узлов могут выродиться и сегментальные движения, что проявляется в исчезновении области высокоэластического состояния. При рассмотрении релаксационных процессов в эпоксидных полимерах следует также иметь в виду, что, как было показано в предыдущих разделах этой главы, структура, замороженная при переходе в стеклообразное состояние, зависит от скорости охлаждения в области Тс, механических деформаций и других факторов [38], [c.64]


    Рассеяние обусловливается тем, что материал не является строго однородным. В нем имеются граничные поверхности, на которых звуковое сопротивление внезапно изменяется, поскольку там соприкасаются по сути два вещества с различной плотностью или скоростью звука. Такими неоднородностями могут быть, во-первых, просто посторонние включения, например неметаллические включения в поковках или поры. Во-вторых, ими могут быть собственно дефекты материала — естественные или намеренно полученные, как пористость в материалах, изготовленных методами порошковой металлургии. Однако возможны и материалы, неоднородные по самой своей природе, например литейный чугун, который представляет собой конгломерат зерен феррита и графита, совершенно различных по своим упругим свойствам. В других случаях кристаллиты различной структуры и разного химического состава как бы пронизывают друг друга, как в латуни и сталях. Но даже если материал состоит только из кристаллов одного вида, он может быть неоднородным для ультразвуковых волн, если зерна расположены беспорядочно, поскольку отдельные кристаллы всегда имеют различные упругие свойства в различных направлениях, а следовательно, и разные скорости звука. Такие материалы называют анизотропными. Упругая анизотропия является обязательным свойством металлов только у разных металлов она проявляется более или менее резко. [c.129]

    Таким образом, граница раздела оказывает двоякое влияние на процессы синтеза и структурообразования в трехмерных полимерах, увеличивая вероятность реакции обрыва на начальных стадиях реакции и затрудняя обрыв на более глубоких стадиях вследствие адсорбционного взаимодействия растущих цепей с поверхностью, которое, в свою очередь, влияет на скорость реакции и структуру сетки. В результате можно считать, что такая важная характеристика сетки, как эффективная плотность сшивки, учитывающая физические и химические узлы сетки, оказывается различной для случаев проведения реакции в присутствии и в отсутствие границы раздела с наполнителем. Это положение особенно хорошо иллюстрируется на примере изучения системы, в которой вклад физических узлов в эффективную густоту сетки очень велик по сравнению с вкладом химических узлов, а именно, на примере трехмерных полиуретанов [253]. [c.178]

    Широко известным методом вспенивания, который может сочетаться с процессом напыления, является введение в композицию химического соединения, способного выделять газ при нагревании или в результате химической реакции с другим компонентом композиции. Образование пены, продолжительность и скорость выделения газа связаны с вязкостью и поверхностным натяжением смолы. Поскольку в процессах пено-образования преобладают поверхностные явления, наиболее важными характеристиками являются поверхностная вязкость и предел текучести. Если вязкость мала, то газ улетучивается, если чрезмерно велика,—получаются пены высокой плотности, что нежелательно наилучшими свойствами обладают пены, состоящие из множества мелких ячеек. Такая структура получается при образовании в смоле большого количества пузырьков газа, увеличение размеров которых ограничивается высокой поверхностной вязкостью материала. Если поверхностная вязкость значительно превосходит объемную вязкость, то пузырьки газа быстро расширяются, стенки пор становятся все более тонкими и влияние поверхностной вязкости возрастает, что в конечном счете приводит к прекращению расширения пузырьков газа. [c.163]

    Образование Н-связи в растворе или в чистом веществе изменяет большинство физических и некоторые из химических свойств соединения. При ассоциации свойства вещества обычно меняются в такой степени, что поведение ассоциированных соединений требует специального рассмотрения. Это не представляется удивительным, так как образование Н-связи может изменить не только массу, размеры, форму частиц и расположение отдельных атомов, но и электронную структуру функциональных групп. Наиболее важными или чаще всего наблюдаемыми эффектами являются смещение частоты в ИК-спектре и в спектре комбинационного рассеяния (КР), изменение температур плавления и кипения, изменение растворимости в результате возникновения Н-связи между растворенным веществом и растворителем, отклонение от законов идеальных газов и идеальных растворов, изменение диэлектрических свойств и электропроводности и смещение сигнала протонного магнитного резонанса. В некоторых случаях (как правило, при наличии сильных межмолекулярных связей) изменениям подвергается и ряд других свойств, многие из которых были использованы для исследования ассоциации. К числу этих, менее существенных свойств принадлежат плотность жидкости и пара, молярный объем, парахор, вязкость, электронные спектры, а также теплопроводность и скорость распространения звука. [c.15]

    Состав электролита, плотность тока и другие условия должны быть подобраны так, чтобы получался очень мелкозернистый однородный слой, прочно сцепленный с подложкой. Для улучшения сцепления иногда предварительно наносят очень тонкий слой какого-нибудь металла, который образует твердые растворы и с металлом подложки, и с наносимым поверх него металлом. Образованию микрокристаллической структуры обычно способствует применение в качестве электролита комплексных соединений (чаще всего солей цианистоводородной кислоты). Растворы для нанесения гальванических покрытий могут также содержать буферные добавки, небольшие добавки поверхностно-активных веществ, которые, как установлено опытным путем, улучшают структуру покрытия, и инертные электролиты. От раствора требуется хорошая рассеивающая способность , т. е. способность давать однородное покрытие и в том случае, когда у изделия имеются выступы (они расположены ближе к аноду) или впадины (где, по-видимому, плотность тока меньше). От инертных электролитов зависит относительное количество материала, приносимого к поверхности за счет проводимости. На рассеивающую способность влияют также изменение перенапряжения (см.) при изменении плотности тока, скорость диффузии и химическая устойчивость различных комплексных ионов, имеющихся в приповерхностном слое. [c.37]

    Ниобий и тантал имеют одинаковые параметры решетки, весьма близкие ионные и атомные радиусы, не подвержены полиморфным превращениям и при сплавлении друг с другом образуют непрерывный ряд гомогенных твердых растворов [55—58]. С увеличением содержаиия тантала коррозионная стойкость сплавов ниобий — тантал повышается, приближаясь к стойкости чистого тантала [49]. Сплавы этой системы с успехом могут заменить чистый тантал во многих химических производствах и в значительной мере снизить его расход. Использованию этих сплавов способствуют и их хорошие механические и технологические свойства, а также отсутствие склонности к межкристаллитной коррозии и коррозии под напряжением. Они хорошо свариваются аргоно-дуговой сваркой. Экспериментально также установлено, что сплавы ниобий—тантал могут применяться в нагартованном состоянии, так как скорость коррозии их в зависимости от степени деформации изменяется незначительно, а именно на 0,01—0,02 мм год [59]. Указанное свидетельствует о том, что увеличение плотности дислокаций в решетке, повышающее уровень внутренних напряжений в результате деформации [60], сопровождающееся изменением структуры от полиэдрической до волокнистой, не оказывает существенного влияния на изменение химической стойкости сплавов ниобий — тантал. Результаты исследования микроструктур указывают, что ни коррозионная [c.85]

    Изучение С. полимерами имеет большое практич. значение ввиду широкого применения полимеров в качестве упаковочных пленочных материалов, защитных, изоляционных и отделочных покрытий, ионитов и разделительных мембран для очистки воды и т. д. Химические, механические, электрические и др. свойства полимеров зависят от природы и количества сорбата, поглощенного полимером, а характер изменения этих свойств определяется скоростью С. Проницаемость полимеров по отношению к газам, парам и жидкостям определяется сорбционной способностью и коэфф. диффузии сорбата, к-рые м. б. рассчитаны по данным сорбционных измерений. Изучение С.— эффективный метод оценки пористости волокон, пленок и ионообменных смол. Исследование С. полимерами представляет и значительный теоретич. интерес, т. к. является источником информации о структуре полимера, плотности упаковки его макромолекул, их подвижности в различных условиях, свойствах бинарных систем полимер — сорбат и др. [c.231]

    Спекание представляет собой процёсс, в, резуль-тате которого зерна порошков, обладающие определенными свойствами, под влиянием температуры и иногда дополнительного давления слипаются друг с другом. Очевидно, что этот процесс приводит к определенной равновесной плотности зернистой структуры, а его скорость служит мерой возрастающего спекания. Спекание часто связано со сложными дополнительными объемными изменениями — сжатием или расширением. Оно имеет определенное сходство с истинными химическими реакциями и так же может трактоваться качественно и количественно, хотя последнее применяется еще не достаточно широко. Согласно Давилю , можно выделить два основных случая спекания в присутствии расплава ( жидкостное спекание или, как часто говорят в европейской литературе, фриттование ) и в отсутствии расплава ( сухое спекание). [c.692]

    Итак, скорость разрушения силикатного стекла определяется, во-первых, скоростью гидролиза силикатов поверхности и, во-вторых, скоростью диффузии воды через защитную пленку. Диффузия, в. свою очередь, определяется природой пленки— плотностью ее структуры и толщиной. Наибольшая скорость гидролиза наблюдается у щелочных силикатов, далее идут силикаты некоторых двухвалентных металлов—бария, свинца, кальция, магния и других. Наиболее прочны в химическом отношении алюмосиликаты и некоторые боро-силикаты (при содержании В2О3 не более 10—15%)-Строение кремнеземной пленки определяется химическим составом тех силикатов, из которых она образовалась. Только в результате гидролиза щелочных силикатов может образоваться чисто кремнеземная пленка. При гидролизе, например, силикатов щелочных земель пленка содержит в более или менее значительных количествах и труднорастворимые гидроокиси и водные силикаты. [c.111]

    Для увеличения скорости крашения гидрофобных волокон в водной красильной ванне приходится красить эти волокна на заводе химического волокна методом крашения в массе, или в геле или добавлять в красильную ванну ускорители вызывающие набухание волокна, или же значительно повышать температуру крашения (см. рис. 11.1). Повышение скорости крашения введением ускорителей или поднятием температуры (способом высокотемператзф-ного крашения) становится особенно необходимым с увеличением плотности молекулярной структуры волокна. Поэтому гидрофобные волокна с рыхлой структурой (например, полиэфирные волокна из [c.325]

    Плотность материала ФС а, г/см1 Состав, структура и плотность ФС часто оцениваются по скорости жидкостного химического травления материала ФС К,, нм/мин, в стандартных травителях и при стандартных условиях == 101325 Па и = 298,16 К и по усадочной деформации толщины пленки (shrinkage) ЪИ , %, при высокотемпературном отжиге с заданной температурой (обычно 1000°С) за определенное время. [c.43]

    Условия синерезиса магнийсиликатного гидрогеля определяют пористую структуру катализатора, его активность и физико-химические свойства. Стадия синерезиса приводит к увеличению удельного объема пор и уменьшению насыпной плотности, а также к повышению активности алюмомагнийсиликатного катализатора. Скорость и глубина синерезиса зависят от содержания сухого вещества в свежесформованном гидрогеле, от температуры и pH среды, в которой протекает процесс, и от продолжительности процесса. Повышенпе температуры вызывает увеличение радиуса [c.94]

    Фуллерены С60 являются аллотропной формой чистого углерода со сферической молекулярной структурой в отличие от полимерных сеток алмаза и графита. В настоящее время известны многочисленные свойства фуллерена С60, многие из которых являются уникальными. Среди практически перспективных путей промышленного применения фуллеренов можно отметить синтез различных водорастворимых соединений С60, обладающих ценными фармакологическими свойствами синтез фуллеренпривитых полимеров, являющихся высококачественными смазочными и антифрикционными материалами. Процессы синтеза данных соединений осуществляют в растворах с использованием различных органических растворителей. Для выбора оптимальных условий синтеза, проводимого в растворах, приводящего к максимальным выходам целевого продукта химической реакции, а также для проведения процессов с максимальной скоростью и минимальными материальными и энергетическими затратами, необходимо знать особенности поведения фуллерена С60 в растворах различных растворителей и взаимодействие его с растворителем. Данные по структуре и фазообразованию фуллерена С60 в растворах отсутствуют. Кроме того, свойство растворимости фуллеренов в органических растворителях широко используют в процессах выделения их из фуллеренсодержащей сажи на стадии синтеза и разделения различных видов фуллеренов. Актуальность исследований свойств растворенного фуллерена С60 имеет также фундаментальный аспект, связанный с необычной структурой данной молекулы, являющейся объемным аналогом ароматических соединений с высокой плотностью я-электронов, находящихся в сферическом пространстве фуллерена. [c.6]

    Определение качественного состава смеси проводится путем сопоставления времени удерживания данного компонента и эталона — вещества известной структуры. При строгом воспроизведении всех условий анализа время удерживания компонента tR, которое определяется как время, прошедшее с момента ввода пробы до выхода максимума пика, является такой же физико-химической характеристикой вещества, как его плотность, показатель преломления и т. д. При сопоставлении обычно используют так называемое исправленное время удерживания 1 — интервал между выходом максимумов пиков несорбирующегося вещества (воздух или метан) и исследуемого соединения. При постоянной скорости движения диаграммной ленты время удерживания обычно описывают в единицах длины — миллиметрах или сантиметрах (рис. 59). Совпадение времен удерживания эталона и определяемого компонента может указывать на их идентичность. Эталон чаще всего добавляется в исследуемую смесь (метод метки). При этом число пиков на хроматограмме не должно изменяться, а интенсивность пика одного из [c.53]

    Селективность процесса димеризации кетильных радикалов и анион-раднкалов определяется электронной структурой частиц (характером делокализацин плотности неспаренного электрона) и стерическими факторами, а также зависит от состава раствора и его температуры. На параметрах поляризационной кривой двойственная реакционная способность промежуточных продуктов сказывается лншь через изменение эффективной константы скорости йд бимолекулярной химической реакции. [c.254]

    Хроматографическая бумага должна быть чистой, однородной по плотности, структуре и ориентации во-Л01ЮН. В наиболее простом случае используют плотные сорта фильтровальной бумаги. Обычная бумага гидрофильна и содержит до 20 % влаги, что является вполне достаточным количеством в том случае, когда НФ служит вода, а ПФ — несмешивающийся с водой органический растворитель. В хроматографии на бумаге можно реализовать обращенно-фазовый вариант. В этом случае бумагу предварительно пропитывают гидрофобным веществами (парафин, каучук и др.), либо подвергают специальной химической обработке, устраняя гидроксильные группы ,еллюлозы. Подвижной фазой в обращенно-фазовом варианте служат вода и смеси воды с полярными органическими растворителями. В хроматографии на бумаге, как и в других видах хроматографии, большое значение имеет правильный выбор неподвижной и подвижной фаз. Используемые фазы ие должны смешиваться друг с другом. Анализируемые вепгества должны растворяться в НФ луч не, чем в ПФ, иначе они будут двигаться со скоростью движения фронта элюента. В настоящее-время в качестве ПФ индивидуальные растворители используют, как правило, реД со. Чаще применяют смеси эмпирически подобранных компонентов. Хроматограмма аналогична полученной в методе ТСХ и имеет вид пятен более или менее отделенных друг от друга. Для проявления пятеп пригодны методы, описанные для ТСХ. [c.615]

    Анализ взаимосвязи характеристик пористой структуры углеродных материалов, скоростей диффузии компонентов газовой фазы со скоростью химической f )eaкции разложения углеродсодержащих веществ в газовой фазе и отложение слоя пироуглерода сделан в работе [112]. Авторы этой работы обращают особое внимание на распределение пор по размерам и показывают, что более 90 % общей поверхности графита недоступно для химической реакции, так как на преобладающие поры, размером обычно больше 1 мкм, приходится около 10 % поверхности. С учетом размерЬв пор и диффузии при разных давлениях в них выведено уравнение для глубины проникновения реакции в поры материала X = - 1п с/со / Оэф/Аг, где к - константа скорости поверхностной реак-. ции. Уравнение дает связь глубины проникновения реакции с изменением концентрации, с константой скорости реакции на поверхности к) и эффективным коэффициентом диффузии Юэф). Определение константы скорости реакции на гладкой поверхности углерода позволило рассчитать глубину проникновения реакции и характер распределения концентрации газообразного реагента по толщине материала. Получено, что для графита ГМЗ глубина проникновения реакции при 900 °С составляет 30-35 мм и убывает до 2,0-2,5 мм при 1200 °С. Сопоставление распределения плотности образца, уплотненного пироуглеродом, с концентрацией метана по образцу, представлено на рис. 72. [c.187]

    Осн. характеристики спектров ЭПР число линий, расстояния между ними (константы СТВ), относит, интенсииности линий и их ширины. По спектру ЭПР можно идентифицировать природу радикала. Для этой цели составлены атласы спектров ЭПР. По константам анизотропного и изотропного СТВ можно вычислять плотность неспарениого электрона на з- и р-орбиталях радикала, определять область делокализации неспарениого электрона и положения химически активных центров в радикале. Ширина и форма линий позволяют получить информацию о взаимод. частиц внутри в-ва, характере и скорости мол. движений и жидких и ТВ. телах (см. Парамагнитного зонда метод), внутри- и межмолекулярных обменных процессах, о структуре и конформации своб. радикалов, бирадикалов и частиц в триплетных состояниях (как основных, так и возбужденных). [c.702]

    Однако уравнение (22) может быть удовлетворено и в том случае, если некоторые из функций IVj таковы, что IVJ Ф 0. Уравнение (22) устанавливает, что изменение энтальпии равно нулю, если реакция идет с малой скоростью при постоянном давлении и плотности .) Далее, рассмотрение структуры волны показывает, что фактически для всех детонационных волн с химическими реакциями (т, е. для волн ЗНД, а также волн, соответствующих кривым с и й на рис. 4) характерно наличие точки пересечения с равновесной кривой Гюгонио, которая на рис. 8 совпадает с точкой О или располагается над ней, так что состояние, соответствующее этой точке, достигается раньше, чем замороженное конечное состояние Чепмена — Жуге (точка С). Поэтому чрезвычайно трудно корректно описать структуру замороженной волны Чепмена — Жуге (например, нужно было бы ввести эндотермические реакции вблизи горячей границы ). Дополнительные трудности возникли в связи с экспериментами Щ, в которых наблюдались скорости детонационных волн, соответствующие линии Рэлея, имеющей наклон даже более крутой, чем наклон линии в замороженной точке Чепмена — Жуге (линия АСО на рис. 8). Это означает, что заморожены не только реакции, но также и некоторые внутренние степени свободы молекул [19, 27] (или, возможно, означает, что всегда присутствует турбулентность, которая увеличивает скорость детона- [c.220]

    В зависимости от морфологии получаемой пов-сти химическое Т. может быть выравнивающим (полирующим, шлифующим) и избирательным (селективным). При выравнивающем Т. происходит сглаживание рельефа пов-сти, уменьшение ее шероховатости, цри избирательном Т.-увеличение неоднородности пов-сти, выявление дефектов структуры, границ двойников и доменов, растравливание трещин, царапин и т.п. Грани монокристаллов с разл. ориентацией раств. с разной скоростью. Поэтому избирательное Т. монокристаллов связано с образованием фигур (ямок) Т., форма к-рых опреде.чяется структурой кристалла, ориентацией пов-сти, в1щом дефектов и составом травителя, а кол-во-плотностью дефектов. [c.616]

    При использовании описанных представлений в исследованиях турбулентного горения необходимо учесть целый ряд нетривиальных эффектов. Один из них обусловлен влиянием изменения плотности газа на гидродинамическую структуру течения, вследствие чего изменяются средние скорости исходных горючих компонентов и продуктов сгорания. Этот процесс прежде всего воздействует на крупномасштабную часть спектра турбулентности. Следовательно, характеристики последнего слабо зависят от кинетики химических реакций и в основном определяются отношением штотностей исходных горючих компонентов и продуктов сгорания. При горении однородной смеси, помимо отмеченных факторов, существенную [c.15]

    В данной главе обсуждаются основные представления о турбулентном движении при больших числах Рейнольдса, необходимые для анализа структуры турбулентных потоков и закономерностей протекания в них химических реакций. Масштабы длины и скорости, определяющие число Рейнольдса Яе, соответствуют крупномасштабным флуктуациям в потоке, т.е. Яе = qL V где д - среднеквадратическое значение пульсационной скорости, L — интегральный масштаб турбулентности, V - кинематическая молекулярная вязкость. В главе рассматривается перемежаемость и качественный вид плотностей распределений вероятностей в турбулентных потоках. Как указывалось во введении, эти характеристики имеют первостепенное значение для теории турбулентного горения и собственно теории турбулентности. В настоящее время благодаря обширным экспериментальным исследованиям стало ясно, что качественный вид плотностей распределений вероятностей существенно определяется перемежаемостью и локальной структурой турбулентности, вследствие чего эти вопросы невозможно рассматривать изолированно друг от друга. [c.17]

    Рассмотрим прежде всего схему Зельдовича — Щелкина. Основная идея схемы, высказанная Щелкиным, заключается в том, что спиновая детонация возникает в тех случаях, когда благодаря сравнительной химической инертности смеси, воспламенение в плоской ударной волне (как это имеет место в обычной детонации) становится невозможным, и газовая смесь зажигается благодаря особого рода сильному возмущению...— излому фронта ударной волны, обладаюп ему более высокой температурой и плотностью, чем плоская ударная волна [42, стр. 501]. Развивая эту идею, Зельдович [8, 11] дает схематическую структуру детонационной волны (рис. 254), в которой плоский фронт, движущийся со скоростью стационарной волны, имеет излом 0 —0 , движущийся с той же скоростью по оси трубы и, соответственно, с повышенной скоростью, нормальной к излому. Это приводит к ряду следствий. [c.352]

    В физической аэродинамике большое внимание уделяется исследованиям неравновесных процессов в течениях газа и плазмы, что связано с задачами авиационной и космической техники, физики высокотемпературной плазмы и т. д. В историческом аспекте для задач газовой динамики наряду с определением макроскопических параметров течения характерным является переход ко все более детальному учету микрохарактеристик потока на молекулярном, атомном и даже ядерном уровнях. Так, для решения задач обтекания при сравнительно небольших температурах достаточно информации о распределении макроскопических величин плотности р, давления р, скорости V и т. д. в поле течения, так что описание всех явлений может быть получено с помош,ью обычных уравнений Навье —Стокса. При переходе к более высоким температурам, например в задачах расчета структуры ударных волн, теплопередачи к поверхностям обтекаемых тел, течений в соплах двигателей и аэродинамических установках и т. д., необходимо учитывать явления, связанные с конечностью скоростей протекания физико-химических процессов возбуждение колебательных степеней свободы молекул, диссоциацию, ионизацию и т. д. Это, в свою очередь, требует детальной информации о микроструктуре течения вероятностях и сечениях элементарных процессов, кинетике физико-химических реакций и т. д. Относящийся сюда класс релаксационных явлений, характеризуемый химической и температурной неравновесностью, исследован в настоящее время достаточно подробно [39]. [c.122]

    Максимальная скорость коррозии ненаводорояенного / /В наблюдалась на гранях монокристаллов с большей ретикулярной плотностью и наибояее несовершенной структурой в слабокислых растворах. НВ ниобия в зависимости от pH и температуры электролита может приводить как к потере его пассивности, так и к повышению коррозионной стойкости. Повышение химического сопротивления наблюдается в слабокис1шх средах (рН=4,5), в сильнокислых (рН=0,45-1,8), напротив, скорость коррозии-растет. [c.10]

    Значительное число мембран, используемых в качестве ультрафильтров, получают методом спонтанного студнеобразования. Как следует из рассмотренной выше диаграммы фазового равновесия (рис. 3.7), необходимым условием спонтанного студнеобразования является более высокая упругость паров растворителя по сравнению с упругостью паров нерастворителя. Факторами, определяющими структуру и свойства мембран, помимо химического состава полимера являются природа растворителя и нерастворителя, концентрация полимера в растворе, скорость испарения растворителя, температура, при которой происходит распад раствора на фазы. Закономерности процесса во многом сходны с закономерностями стадии предформования при получении мембран методом сухо-мокрого формования. Распад исходного раствора на фазы может быть зафиксирован по изменению оптической плотности системы [83]. Проведенные с помощью этого метода исследования показали, что кинетика спонтанного студнеобразования в системе ацетат целлюлозы — ацетон — вода существенно зависит от концентрации исходного раствора (рис. 3.14). На кинетику процесса оказывают влияние также молекулярная. масса полимера (рис. 3. 15), концентрация нерастворителя в системе (рис. 3. 16) и температура испарения (рис, 3.17). Обычно увеличению размера пор способствует снижение концент  [c.106]


Смотреть страницы где упоминается термин плотность скорость структура химический: [c.46]    [c.199]    [c.193]    [c.195]    [c.125]    [c.129]    [c.270]   
Коррозия металлов Книга 1,2 (1952) -- [ c.0 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Химические скорость

плотность скорость



© 2025 chem21.info Реклама на сайте