Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителей на катализ в растворах

    Элементы теории катализа. Для объяснения механизма действия катализаторов обратимся к теории переходного состояния. Специфические свойства активированного комплекса определяют скорость процесса, состав продуктов, степень влияния на процесс различных факторов. Активированный комплекс находится в равновесии как с реагентами, так и с продуктами реакции. В общем случае в его состав могут входить и посторонние вещества, например растворитель при взаимодействиях в растворах. (Этим и объясняется влияние растворителя на скорость реакций). Катализаторы также могут участвовать в формировании промежуточных соединений, при распаде которых происходит образование продуктов реакции и регенерация катализатора, хотя его физическое состояние может измениться. Активированный комплекс, образовавшийся при участии катализатора, естественно, отличается по строению и свойствам от комплекса, образованного только молекулами реагентов. Вследствие различия в структуре и свойствах этих комплексов изменяется энергия и энтропия активации. Это, в свою очередь, может стать причиной того, что в присутствии катализатора образуются одни продукты, а без него другие. В-третьих, из одних и тех же реагентов могут получиться разные продукты, так как различные катализаторы с одними и теми же реагентами образуют неодинаковые активированные комплексы. [c.156]


    В жидкой среде катализ протекает по гетерогенно-гомогенному механизму значительно чаще, чем в газовой. Это происходит по ряду причин 1) вследствие большей скорости, чем в газовых средах гомогенной некаталитической реакции, интенсивность которой часто бывает соизмерима с гетерогенной реакцией на твердых катализаторах 2) в жидких средах нередко катализатор -выступает лишь как возбудитель цепной радикальной реакции, которая продолжается гомогенно в растворе 3) вследствие влияния растворителя. [c.53]

    Межфазный катализ - катализ на границе раздела двух неЭ смешивающихся жидкостей. Роль катализатора заключается переносе реагентов из одной фазы в другую, а также влиянии н реакционную способность переносимого реагента. Как правило реакции межфазного катализа - это реакции между солями, рас- творенными в воде или присутствующими в твердом состоянии одной стороны, и веществами, растворенными в органической фа. зе, - с другой. Межфазный катализ (ускорение реакции) имеет место в малополярных растворителях между ионными соедине- ниями и органическими (не растворимыми в воде) веществами. Наиболее часто межфазными катализаторами являются ониевые соли или комплексообразователи, которые могут связывать, например, ионы щелочных металлов в водной фазе и таким образом переводить их в органический раствор. В настоящее время этот вид катализа широко используется в исследовательской практике, хотя некоторые процессы внедрены в промышленность. [c.378]

    Если реакция проводится в водном растворе, то при общем кислотном катализе наряду с каталитическим влиянием кислоты НА( необходимо учитывать возможное каталитическое влияние растворителя (Н О) и ионов гидроксония (НзО ). [c.430]

    Теория столкновений в растворах. Роль диффузии. Образование активированных комплексов. Влияние природы растворителей на скорость реакции в растворе. Работы Б. Н. Меншуткина. Избирательный характер влияния растворителей. Влияние сольватации метод активированного комплекса для реакций в растворах. Гомогенный катализ. Ионный катализ. Теория промежуточных соединений. [c.217]

    Гомогенно-каталитических реакций в растворах известно очень много. Явление катализа здесь усложняется влиянием растворителя на течение процесса. Поэтому целесообразно прежде всего рассмотреть вопрос о влиянии растворителя на скорость химического превращения вообще. [c.70]


    Наше физико-химическое исследование влияний, которым подвергаются химические реакции в растворе, хотя и является далеко не исчерпывающим, однако все же может теперь послужить для выяснения механизма многих важных и интересных реакций остальная часть этой главы будет посвящена именно этой цели. Примеры подбирались таким образом, чтобы они иллюстрировали применение возможно большего числа изложенных выше принципов. Однако здесь не было сделано даже слабой попытки охватить все примеры влияния растворителей и кислотно-основного катализа, которыми переполнена литература. [c.412]

    Во многих случаях получены доказательства того, что при катализе кислотами и основаниями каталитическое действие обязано не только ионам Н или ОН, но и присутствию воды и недиссоциированных молекул. Увеличение каталитической активности сильных кислот при добавлении соответствующих солей заставляет предполагать существование специфических солевых эффектов. Большинство каталитических реакций происходит в растворах различных ионов и существенное изменение процессов под влиянием солей привело к признанию солевого эффекта. Сделаны попытки объяснить влияние нейтральных солей в катализе кислотами и основаниями, учитывая изменения диэлектрической константы, вязкости или других свойств растворителя, так же как и коэффициентов активности растворенных веществ. [c.224]

    В итоге приведенного краткого обсуждения некоторых аспектов специфической сольватации можно еще отметить, что последняя оказывает влияние, вполне аналогичное обычному гомогенному катализу. Только в данном случае катализатор является одновременно и растворителем. Но такое же положение имеет место и при кислотном катализе в растворах концентрированных минеральных кислот. [c.303]

    Перекисные соединения, в том числе и перекись водорода, как известно, вещества малостабильные, способные распадаться с выделением кислорода. Склонность их к распаду под влиянием различных причин (температуры, катализа, среды) создает определенные трудности в достижении высоких выходов этих соединений при их получении. В работах некоторых авторов [1, 2] имеются указания о еще меньщей стабильности перекисных соединений при получении их в металлических реакторах. Известна малая термическая стабильность перекиси водорода в ее водных растворах, особенно в присутствии каталитически активных примесей. При разработке промышленного метода получения перекиси водорода окислением изопропилового спирта было замечено, что перекись водорода в органических растворителях более стабильна, чем в водных растворах. В частности, большая устойчивость перекиси водорода в изопропиловом спирте, чем в водной среде, наблюдалась авторами при изучении влияния -у-лучей на скорость реакции окисления изопропилового спирта. [c.19]

    Полученные результаты внесли важный вклад в теорию растворов и теорию гомогенного катализа и оказали особенно большое влияние на развитие теории кислот и оснований, так как осветили состояние кислотно-основного равновесия в зависимости от свойств растворителя. [c.214]

    Изучали катализ аутоокисления моноолефиновых углеводородов в присутствии ионов тяжелых металлов в неполярной среде [4]. При применении в качестве растворителя одного циклогексена или смеси его с геп-тановой кислотой каталитическое действие металлов было существенно различным в полярной среде реакция протекала гораздо быстрее (см. таблицу). Следовательно, механизм оки ления, действующий в полярной среде, не распространяется на углеводородные растворы. Окисление в цикло-гексене в присутствии двухвалентного марганца характеризуется индукционным периодом, который не наблюдается при добавлении гидроперекиси трет-бутила. Изучение каталитического влияния хелатообра-зуюших реагентов на следы металлов в циклогексене [18] показало, что эффективность этих реагентов обусловлена их пространственным влиянием и действием на окислительно-восстановительный потенциал металла последнее может повышать или снижать каталитическую активность. Медь можно связывать в виде комплексного соединения при помощи различ- [c.301]

    В принципе тяжелые атомы растворителя (как, например, бромбензола [193] или этилиодида [123]) могут посредством межмолекулярного взаимодействия возмущать молекулы растворенного органического вещества в триплетном состоянии, нарушая правило сохранения спина, как это только что было видно для кислорода, окиси азота и хелатированных ионов металлов. Такого рода эффект сообщался для растворов в жидком иодистом этиле [123]. Однако в более ранних работах не было замечено эффекта катализа тяжелыми атомами (спин-орбитальное взаимодействие) безызлучательной интеркомбинационной конверсии в жидкостях. Так, например, Ливингстон и Таннер [195] не наблюдали заметного влияния сероуглерода или бромбензола на время жизни триплетных состояний антрацена. [c.256]


    Для предотвращения изменения реакционной среды в серии экспериментов, желательно проводить реакции при постоянной ионной силе и постоянном составе растворителя. Прежде чем начинать большую серию измерений, необходимо выбрать стандартные экспериментальные условия. В случае использования высоких концентраций реагирующего вещества или буфера само вещество может изменить природу растворителя, причем часто бывает трудно сделать правильные поправки. Различные теоретические уравнения, описывающие влияние солей или растворителей на скорости реакций, практически имеют так много исключений, что являются почти бесполезными для введения поправок в наблюдаемые скорости реакций в отсутствие непосредственных экспериментальных данных, демонстрирующих их справделивость для исследуемой реакции. Поэтому желательно, если это возможно, сделать непосредственную экспериментальную оценку влияния изменений в условиях реакции. Приведение к постоянной ионной силе можно осуществить в соответствии с простым уравнением Дебая — Хюккеля, однако даже в умеренно концентрированных растворах специфическое влияние ионов и растворителя на коэффициенты активности реагентов и переходного состояния (гл. 7 и 8) становится много большим, чем эффект Дебая — Хюккеля, и может приводить к существенному изменению кинетического поведения. Так, общеосновной и общекислотный катализ аминолиза фенилацетата алкиламинами трудно обнаружить, если ионная сила создается хлоридом калия, который в противоположность хлориду тетраметиламмония обнаруживает специфический ускоряющий эффект [12, 18]. Влияние других изменений в природе растворителя, вызванных реагентами или буферными соединениями, можно оценить при исследовании влияния соответствующих модельных соединений. Например, диоксан можно использовать в качестве модели для оценки влияния углево-дород-эфирного кольца морфолина. Тот факт, что такие модельные соединения и соли не могут быть полностью адекватны моделируемым реагентам, означает, что необходимо внимательно относиться к небольшим изменениям в константах скорости (связанным, например, с малыми каталитическими членами), проявляющимся при высоких концентрациях реагентов, особенно если известно, что реакций чувствительна к влиянию солей и растворителя. Большую чувствительность некоторых реакций незаряженных молекул к влиянию растворителей можно проиллюстрировать 50%-ным уменьшением скорости гидролиза ангидрида ацетилсалициловой кислоты в присутствие 10% диоксана [19]. [c.435]

    Имеются указания на некоторые различия в механизмах для растворов в четыреххлористом углероде, с одной стороны, и бензольных растворов — с другой. Хотя бензол и неполярен, он более поляризуем, чем четыреххлористый углерод, и, следовательно, имеет более сильное сольватирующее влияние на ионные пары, сравнимое с влиянием самого стирола. Это предположение сделано на основании кинетических порядков относительно мономера в этих двух растворителях. В соответствии с этим предположением было показано, что скорости полимеризации при катализе хлорным оловом выше для ароматических растворителей, чем для алифатических при той же диэлектрической проницаемости [54]. [c.217]

    Для реакций в растворах, наряду с сольватацией электростатической природн ("неспецифическая сольватация"), во многих случаях имеет решающее значение образование ассоциатов ("специфическая сольватация"). Ввиду изменения реакционной способности субстрата из-за ассоциации с растворителем (образование водородных связей, -комплексов и т.д.) понятие специфической сольватации тесно связано с понятием гомогенного катализа, и выделение специфических влияний среды приобретает первостепенное значение для выяснения сущности происходящих процессов  [c.158]

    По существу установление факта биоэлектрокатализа при анодном растворении золота биохимическими растворителями подтвердило ранее высказанное суждение автора [42, с. 143], который, анализируя выявленный тогда факт возможности выщелачивания золота растворами некоторых белков без добавок химических окислителей, писал, что это объясняется либо влиянием ферментативного катализа, либо значительным снижением окислительно-восстановительного потенциала системы до величины, когда растворенный кислород воздуха способен окислять золото как при выщелачивании цианистыми растворами. Глубокое изучение вопро- а может определить существенный прогресс бактериального вы- Делачивания . Можно полагать, что к электрокаталитическим Процессам относятся растворение и выщелачивание золота цианистыми растворами и многие другие процессы его растворения. [c.59]

    Нет необходимости, конечно, пересказывать. содержание программы, однако следует отметить, что изложению современных теорий предшествует подробное ознакомление с химической кинетикой и выяснением отношений между катализом и термодинамикой. Подробно излагается теория цепных реакций Н. Н. Семенова по материалам последней конференции по кинетике и реакционной способности. Важной частью курса является рассмотрение кинетики и механизма каталитических реакций в растворах. Этот раздел дает возможность обосновать теорию промежу. точных соединений и при помощи метода активированного комплекса выяснить механизм влияния растворителя на скорость реакции. Вместе [c.215]

    Гомогенные реакции в твердых веществах редко встречаются, химические изменения, в которых участвуют твердые вещества, происходят обычно на их поверхности, а также у центра зарождения новой фазы, где комбинируются химическое превращение и рост кристалла [247]. Единственная, еще нерассмотренная разновидность гомогенных систем в катализе, —это системы, компоненты которых находятся в жидком состоянии или в растворе (табл. 58 — 64). Предложено [421] классифицировать гомогенный катализ на непосредственный или химический и косвенный или катализ с участием среды. Участие катализатора в процессе не отображается стехиометрическим уравнением, и его влияние зависит от образования промежзт очных молекулярных комплексов, между тем как каталитически действующая среда влияет на скорость реакции, нарушая условия, от которых зависит данная реакция, такие, например, как образование комплексов или их диссоциация. Характер среды или растворителя, — это фактор, влияющий на условия каталитической реакции. Предполагают, что действие прямого катализатора подчиняется закону химического действия масс, так как он реагирует химически, влияние среды — непрямых катализаторов, которые практически могут принимать участие всей массой, интерпретируется иначе. По предположению Розанова, относительное изменение константы скорости реакции пропорционально изменению концентрации каталитически действующей среды. Розанов, обобгцая понятие влияния растворителя, выразил его математически уравнением  [c.194]

    Писаржевский и Глюкман [42] исследовали влияние растворителя на каталитическое разложение перекиси водорода над платиной и двуокисью марганца на угле. Растворителями служили вода, эфир, смесь эфира и воды и ацетон. Каталитическое разложение в водных растворах происходит мономолекулярно. Кинетика реакции сильно меняется, если в качестве растворителя употреблять смесь воды и эфира скорость реакции в воде с эфиром всегда выше, чем в чисто й Воде или чистом эфире. Наиболее важный фактор во влиянии растворителя на разложение перекиси водорода — действие эффективного пространства растворителя. Оно накладывается на взаимодействие молекул растворителя с ионами действующ его как катализатор металла и ведет к образованию сольватов ионов, участвующ,их тем или иным способом в катализе. Сольватация молекул перекиси водорода, повидимому, не играет особой роли. Пользуясь в качестве растворителя ацетоном, который в противоположность эфиру смешивается с водой во всех пропорциях, Рлюкман [19] обнаружил, что вода ускоряет реак цию, и присутствие 10—15% воды необходимо в этом случае для получения того же эффекта, как и при содержании 0,7% воды в эфире. Небольшое изменение концентрации растворенной в эфире воды (0,7—1,2%о) всегда сильно влияет на скорость реакции (20—30 раз). Для достижения такого же изменения скорости реакции в растворе ацетона приходится добавлять гораздо больше воды, именно до 80%. Кривые, изображающие зависимость скорости реакции от содержания воды, в случае эфира имеют максимум, но этого не наблюдается у ацетона. [c.682]

    Природа растворителя влияет не только на состояние веществ в растворе, но и на стабильность активированных комплексов, ЧТО также изменяет скорость реакции. Влияние сольватации переходных состояний прослеживается в реакциях между нейтральными полярными молекулами, сольватация которых меньше влияет на реакционную способность, чем в реакциях с участием ионов. Согласно качественной теории влияния растворителей Хьеоз а и Ингольда [72, с. 379], скорость реакции между незаряженными молекулами, протекающей через пере--ходное состояние с частичным разделением зарядов, возрастает с увеличением полярности среды. В соответствии с этим правилом реакции ароматического замещения, которые протераюг через переходное состояние, подобное по структуре биполярным 0-комплексам, ускоряются с увеличением полярности растворителя. Однако влияние растворителей зависит не только от их полярности. Наиболее обстоятельно это показано на примере )еакции ароматических галогенпроизводных с аминами [239], Лри близкой полярности растворители тем больше ускоряют реакцию с пиперидином (30)->(33), чем больше их основность диоКсан больше, чем бензол, пиридин больше, ем нитробензол,. и т.д. Это объясняют специфической сольватацией путем образования водородной связи в а-комплексе (31), облегчающей отрыв протона от атома азота (общий основный катализ). В значительной степени влияние основного растворителя зависит от природы замещаемого атома. Так, скорости реакции с пиперидином при 50 °С в таких растворителях, как бензол, этилацетат, метилэтилкетон, ацетонитрил, диметилформамид и диметилсульфоксид, составляют для п-нитрофторбензола соответственно 1, 11, 59, 300, 1950, 7200, а для /г-нитрохлорбен-зола они равны соответственно 1, 2, 15, 34, 142, 412 при отношении скоростей обмена атомов фтора и хлора в бензоле, равном 24 1 [240]. Большее влияние основных полярных растворителей (В) на скорость замещения атома фтора объясняют образованием более прочных водородных связей с сопряженными кислотами (ВН ) на стадии отрыва галогенид-аниона [формула (32)] (общий кислотный анализ).-Для растворителей (1), обладающих как основным, так и кислотным характером (например пиперидин), допускается возможность одновременного образо- [c.81]

    Характер отрицательного противоиона также может оказывать влияние на катионную полимеризацию. Чем больше и чем слабее связан противоион, тем легче происходит рост цепи. Влияние противоиона, так же как и влияние растворителя, может быть очень широким. Так, эффективная константа роста цепи для полимеризации стирола при 25 °С в растворе в 1,2-дихлорэтане возрастает от 0,003 при катализе иодом до 0,42 и 17,0 нри катализе 8нС14-Н20 и НСЮ4 соответственно [26, 27]. [c.295]

    Необходимо упомянуть еще об одном эффекте, связанном с влиянием растворителя, который до сих пор не привлек достаточного внимания исследователей. Речь идет о том, что при тщательном исследовании ферментов в их активных центрах были найдены неполярные области. Этот фактор может иметь решающее значение в ферментативном катализе, поскольку он может обеспечить осуществление неводных реакций в водном растворе. Хорекер [21] обсудил преимущества такого гидрофобного окружения субстрата в молекуле альдолазы, при действии которой должна выделиться молекула воды и образоваться шиффово основание. Однако пока еще такого рода явления количественно не исследованы. [c.110]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    Мицеллярный катализ оказывает сильное влияние на скорости реакций. Мицеллы — это агрегаты с большим содержанием молекул мыла или детергента, довольно рыхло связанные преимущественно за счет гидрофобных (неполярных) взаимодействий. При увеличении концентрации детергента в водном растворе происходит постепенное изменение физико-химических свойств раствора поверхностного натяжения, плотности, pH и электропроводности. Однако наступает такой момент, когда изменения перестают быть плавными и при небольшом увеличении концентрации детергента какое-либо из свойств раствора резко меняется. Концентрация детергента, при которой наступает такой скачок, называется критической концентрацией ми-целлообразования (ККМ). Мицеллы обычно образуются в водном растворе полярные и неполярные группы находятся соответственно на поверхности и внутри мицелл. Известны и обращенные мицеллы, т. е. агрегаты поверхностно-активных веществ в неполярных растворителях, в которых полярные и неполярные группы расположены соответственно внутри и на поверхности мицелл. За счет неполярных взаимодействий мицеллы связывают множество органических субстратов, что приводит к ускорению химических реакций (или порой к их замедлению). Катализируемые мицеллами реакции обычно протекают на поверхности мицелл. Более того, мицеллярный катализ носит определенные ферментоподобные черты например, кинетика мицеллярных процессов подчиняется уравнению Михаэлиса— Ментен, и катализ характеризуется заметной стереоспецифичностью. Все это указывает на то, что мицеллы можно использовать для моделирования ферментативного катализа [22]. [c.337]

    В работе обобщены результаты исследований по получению поливиниленов кристаллической структуры в полимеранало-гичном процессе дегигидрохлорирования полимеров винилхлорида в растворе в условиях межфазного катализа. Показано, что надмолекулярная структура поливиниленов зависит от структуры поверхности раздела фаз между раствором полимера и раствором дегидрохлорирующего агента и от природы каталитической системы. В двухфазной системе из несмешива-ющихся растворителей на границе раздела фаз происходит кристаллизация образующегося поливинилена, в отличие от систем в смешивающихся растворителях, в которых образуется преимущественно аморфный полимер. В оптимальных условиях образуется поливинилен с размерами кристаллов порядка 10 мкм. Обсуждается влияние надмолекулярной структуры поливиниленов на их химические и электрофизические свойства и на свойства продуктов их высокотемпературных превращений. [c.128]

    В первой статье по межфазному катализу Старкс [7] показал, что в октаноне-2 легко происходит обмен под действием 5%-ного раствора ЫаОО в тяжелой воде. Также сообщалось [52], что бисульфат тетрабутиламмония катализирует обмен дейтерий — водород в некоторых тиазолах. Систематическое изучение реакции показало, что на ее скорость оказывают влияние температура и концентрация катализатора положение равновесия зависит от характера заместителя в гетероцикле. Однако в общем случае скорости реакции большие и процент обмена высокий. В одной из работ, посвященных реакциям изотопного обмена солей сульфония в межфазных условиях, установлено, что на скорость реакции оказывают влияние как природа растворителя и мицеллярные эффекты, так и стабильность образующихся карбанионов [53]. [c.169]

    Кроме того, константа 2 уменьшается с увеличением рК а имидазола, а кз уменьшается с увеличением рКа фенола. Так как скорость реакции определяется соотношением кг = к]а1 (а+ I), то 1 и а и, следовательно, кг зависят от относительных основностей атакующей и уходящей групп. Влияние природы уходящего фенолят-иона на скорость катализа имидазолом изучалось Брюсом и Шмиром [107] (28,5%-ный раствор этанола в воде 30°) и Брюсом и Бенковичем [43] (водный раствор 30°). Было найдено, что значения константы Гаммета р равны +1,8 и +1,9 в двух растворителях соответственно [когда в схеме (1-86) X—п-ЫОг, ж-ЫОг, П-С1, п-СНз и п-ОСНз]. Чувствительность реакции по откош ению к природе уходящей группы сравнима с чувствительностью нуклеофильной атаки тех же эфиров аммиаком (см. табл. 1-1). [c.66]

    В 1951 г. К. П. Мищенко и А. М. Сухотин ввели представление (I границе полной сольватации [23], т. е. о той концентрации, при которой наличие молекул растворителя отвечает сумме координационных чисел сольватации катионов и анионов. При более низкой концентрации имеется свободный растворитель и эту систему можно рассматривать как растворы соли в воде. Выше этого предела свободного растворителя нет при возрастании концентрации электролита происходит только перераспределение воды в сольватных сферах в пользу более гидрофильного иона и система является как бы раствором воды в раз-дпипутой решетке электролита. Реальность этой границы была подтверждена рядом независимых методов. Многие авторы использовали это понятие для истолкования наблюдаемых явлений (процессы высаливания и всаливания, кислотный катализ кислородного обмена между анионами и водой, влияние солевых добавок на параметры уравнения текучести воды, перелом на ряде кривых зависимости термодинамических характеристик солевых растворов от концентрации и др.). [c.198]

    Некоторые нуклеофильные агенты, содержащие в определенном положении по отношению к нуклеофильному центру кислотную группу, обладают особой реакционной способностью. Это их свойство объясняют часто внутримолекулярным общекислотным катализом. В неводных растворителях именно такое содействие приводит в ряде случаев к значительному ускорению реакции (при отсутствии внутримолекулярного катализа эти реакции протекают лишь при наличии специального катализатора или при сольватации третьей молекулой). Однако в водном растворе молекулы воды, по-видимому, эффективно сольватируют молекулы субстрата за счет водородных связей еще до реакции, и поэтому известно мало систем, для которых можно показать, что кислотная группа нуклеофила действительно вытесняет молекулу воды и выполняет роль катализатора. Многие из предполагаемых механизмов подобного рода, якобы происходящих в водном растворе, не выдержали тщательной проверки. Еще большее число таких систем пока подробно не анализировали. В тех случаях, когда предполагают наличие внутримолекулярного катализа под действием протонодонорных групп (например, с участием гидроксильной группы), целесообразно изучить реакционную способность родственных соединений, в которых кислотный атом водорода замещен алкильной группой, а также соединений, у которых кислотная группа размещена в таком положении, откуда она может оказывать лишь полярное влияние как заместитель, но не может участвовать в реакции в качестве внутримолекулярного катализатора. [c.89]


Смотреть страницы где упоминается термин Влияние растворителей на катализ в растворах: [c.117]    [c.51]    [c.330]    [c.395]    [c.274]    [c.134]    [c.34]    [c.199]    [c.564]    [c.90]    [c.299]    [c.128]    [c.557]    [c.395]    [c.459]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте