Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды обмен протона

    Сопоставление спектров ЯМР на ядрах Н и Н исходных и выделенных углеводородов проводилось по характеру мультиплетности сигналов отдельных фрагментов с учетом изотопных сдвигов для отдельных изомеров, по измерению соотношения интегральных интенсивностей сигналов. Это сопоставление в сочетании с результатами определения общего содержания дейтерия позволяет сделать вывод о том, что в межмолекулярном обмене участвуют лишь атомы водорода, находящиеся у -углеродных атомов алкильных групп алкилбензолов. На рис. 5.3 приведены спектры ПМР этилбензола, выделенных в одном из опытов (табл. 5.12), сигналы протонов групп СНз соединений, запи- [c.195]


    Влияние степени декатионирования и деалюминирования морденита на каталитическую активность в реакции изомеризации парафиновых углеводородов. Декатионированные формы морденитов можно получить прямым обменом на протон или через аммонийную форму. Прямой обмен ионов натрия на протоны происходит в процессе обработки морденита сильной неорганической кислотой одновременно удаляются ионы алюминия. Второй путь получения декатионированной формы - обработка водными растворами аммонийных солей. [c.61]

    Кислотный водородный обмен обязан сродству углеводорода к протону (дейтрону) и поэтому соответствующую литературу естественно систематизировать именно в этой главе, посвященной углеводородам как основаниям. [c.168]

    Углеводороды способны участвовать в равновесных реакциях с кислотами, причем в благоприятных условиях к молекуле углеводорода присоединяется протон и образуется карбо-ниевая соль. При различии изотопного состава кислоты и углеводорода — основания взаимодействие между ними сопровождается водородным обменом. Измерение его скорости позволяет количественно оценивать силу углеводородов как оснований в согласии с другими описанными методами, а также делать заключения об электронодонорных свойствах отдельных участков молекулы. Кислотный водородный обмен в сочетании с обменом основным раскрывает разные стороны реакционно способности углеводородов и взаимного влияния атомов в их молекулах. [c.237]

    Каркас морденита характеризуется системой пор, параллельных вертикальной оси, он также отличается высокой термостабильностью и устойчивостью к действию неорганических кислот. В водородной форме морденита имеются сильные центры Бренстеда и Льюиса [23]. Концентрация потенциально способных к обмену протонов у Н-морденита составляет от 4 до 5 мэкв на 1 м поверхности [24]. Хотя водородная форма цеолита содержит приблизительно в два раза больше центров, которые можно рассматривать как кислотные, Н-морденит более активен в крекинге н-гексана и других нормальных углеводородов, очевидно, потому, что кислотные центры более сильные [15, 22]. [c.315]

    Ионизационный механизм (7) надо считать типичным для медленного обмена с основными донорами. Ему благоприятствуют факторы, облегчающие первую ступень ионизации — основность среды или присутствие основных катализаторов — и заместители, уменьшающие электронную плотность на атоме углерода в обменивающейся связи С—Н. Влияние заместителей, как известно, проявляется сложным образом и далеко не всегда может быть однозначно предсказано. Однако можно привести ряд примеров, где оно находится в простых соотношениях со способностью к обмену [2, 31. Метан, этан и бензол не обменивают водорода с водой, но в нитрометане, нитроэтане и 1, 3, 5-тринитробензоле обмен идет и катализируется щелочами. Первые способны перегруппировываться в ациформы с отрывом протона от связи С —Н. В присутствии щелочей обмен также идет в ацетамиде и ацетонитриле. В этих примерах проявляется притяжение электронов отрицательными группами N02, N и СО. Увеличение способности к ионизации связи С—Н около тройной связи С С обнаруживается в легком обмене ацетилена с водой в присутствии щелочей. В обмене по ионизационному механизму весьма большую роль играет о — я-сопряжение, значение которого для разных реакций органической химии было показано А. Н. Несмеяновым [19]. Зависимость обмена а-водорода от сопряжения в цепи Н—С—С=0 была подтверждена [20], в циклических кетонах, ацетилацетона-тах и Дибензоилметане, а затем [23] в углеводородах. Обмен в метиленовой группе ацетилацетона и ацетоуксусного эфира идет значительно быстрее, чем в ацетоне, из-за участия в сопряжении двух групп С=0, присоединенных к а-углероду. По той же причине обмен сравнительно легко идет в метиленовой группе малоновых эфиров и цианоуксусного эфира, что можно сопоставить с известной способностью их к конденсации с карбонильными со- [c.59]


    Замена протона на ион металла в алюмосиликате, как правило, ухудшает его каталитические свойства в крекинге и некоторых других реакциях углеводородов (например, изомеризации). Бите-наж [604] изучала крекинг бутилбензолов на алюмосиликатах, подвергнутых ионному обмену с различными солями металлов. Оказалось, что выше всего активность алюмосиликата после обмена [c.185]

    Синтетический морденит относится к классу цеолитных катализаторов. Большие каналы морденита образованы 12-членными кислородными кольцами. Система таких больших каналов является одномерной. Присутствующие в мордените катионы, способные к обмену, занимают места вблизи стенок каналов. Морденит, катионы в котором заменены на протон (Н-М), характеризуется большим размером пор, составляющим около 0,9 нм, и можег адсорбировать простыв ароматические соединения и парафиновые углеводороды. Однако мордениты, содержа- дие различные многозарядные обменные катионы, утрачивают способность легко адсорбировать такие ароматические соединения [I], Поэтому эффективный размер пор морденита можно регулировать путем введения ионным обменом катиона, обладающего соответствующим ионным радиусом. [c.306]

    В серии нитроалканов переход от одного члена ряда к другому по-видимому, не отражается на механизме переноса протона, который остается протофильным. С другой стороны, как уже было сказано в главе П1, всегда существует возможность, что при широком варьировании структуры СН-кислоты может измениться сам механизм переноса протона, например вместо протофильного могут реализоваться механизмы присоединения-отщепления (для ароматических углеводородов) или одноэлектронного переноса (в случае полиядерных ароматических систем). Даже если механизм обмена водорода в серии СН-кислот остается протофильным, данные по скоростям водородного обмена могут не отражать истинную кинетическую кислотность, если обмен происходит по возвратному механизму. [c.207]

    Ион карбония сольватирован значительно меньше, чем протон, так как основную долю энергии сольватации протона составляет энергия образования водородной связи, отсутствующая при сольватации иона карбония. Вследствие этого образовавшийся ион карбония значительно легче, чем протон, отрывает гидрид-ион от следующей молекулы углеводорода. В результате образуется новый ион карбония, который в свою очередь оторвет гидрид-ион от новой молекулы углеводорода и т. д. При проведении реакции в присутствии донора дейтерия весь процесс приведет к изотопному обмену водорода. [c.139]

    Карбанионы также могут получиться при депротонировании органических соединений. Насыщенные углеводороды, как правило, являются слабыми донорами протонов, поэтому обычно исходят из веществ, которые легче протонируются из-за образования резонанс но устойчивых карбанионов. При захвате протона карбанионом вновь регенерируется исходное вещество. Чтобы проследить за течением реакции, в водород-содержащий растворитель добавляют реагент, содер жащий дейтерий. Поскольку растворитель находится в избытке, то при взаимодействии карбаниона с растворителем может в конечном результате произойти обмен дейтерия на водород. Эксперимент такого рода представлен на нижеследующей схеме  [c.172]

    В работах [65-67] было показано, что катионные формы морденита проявляют высокую активность в реакциях гидрирования ароматических углеводородов, олефинов и кетонов. Оптимальной активностью в этих реакциях обладают Na -формы морденита. Поэтому было высказано предположение [66], что катионы Na" участвуют в образовании монофункциональных гидрирующих активных центров. Это подтверждается следующим экспериментальным фактом [66] гидрирующая активность уменьшается при увеличении числа протонов в цеолите и вновь возрастает при обмене водородной формы морденита на катионы Na , причем степень ионного обмена не влияет на содержание примесей, главным образом железа. [c.129]

    Концевая ацетиленовая группа быстро обменивает протон в полярных растворителях в присутствии оснований. Были определены [67, 68] скорости изотопного обмена ацетилена и фенилацетилена в водном растворе. В этой реакции, вероятно, осуществляется общий основной катализ, и каталитическая константа скорости зависит от силы основания, применяемого в качестве катализатора. При измерении скорости методом ЯМР было показано, что обмен фенилацетилена в водном пиридине является реакцией первого порядка как по углеводороду, так и по гидроксильному иону [69], и рассмотрена зависимость между скоростями обмена в водном тре/п-бутиловом спирте и величинами а [70]. Скорости обмена в диметилформамиде дают неудовлетворительную корреляцию с ст-константами Гаммета и с Стх [12]. Вероятно, резонанс не играет существенной роли в стабилизации ацетиленовых карбанионов более предпочтительными кажутся эффекты поля и индуктивный, хотя никаких количественных доказательств нет. [c.30]

    Кинетика катализируемой кислотами реакции присоединения воды к олефинам также связана с равновесием олефин—карбониевый ион, как и обмен водорода в ароматических соединениях с равновесием между ароматическими углеводородами и карбоний-ионами, являющимися соответствующими сопряженными кислотами. Механизм реакции в водном растворе включает перенос протона от кислоты-катализатора к олефину в лимитирующей стадии это означает, что в переходном состоянии протон находится на полпути от кислоты-катализатора к тому положению, которое он занимает в образующемся спирте. Детальными кинетическими исследованиями недостаточно систематически охвачена область широких структурных изменений [c.130]


    Отсука [138] изучал полимеризацию газообразных олефинов над фосфорной кислотой. Предложенный нм механизм реакций включал обмен протоном между кислотой и углеводородом. [c.339]

    Хенсфорд предложил весьма подробную картину обмена с участием поляризованного олефинового углеводорода, инициирующего комплекса катализатор — углеводород, адсорбированного изобутана и продолжающего цепь комплекса катализатор — углеводород. Здесь дано несколько видоизмененное объяснение. Предполагается, что гидрид-ион удаляется из третичного положения в изобутане, оставляя положительный заряд третичного углеродного атома. Этот трет-бутил-ион, находясь на катализаторе, быстро обменивает свои девять первичных водородных атомов на атомы дейтерия. Можно считать, что при этом обмене протоны оставляют бутил-ион, а их место занимают дейтроны, причем известно, что Р-расщепление бутил-иона будет приводить к образованию протона и изобутилена. В то же время дей-терш катализатора, вероятно, присутствующий в гидроксильных группах, сильно ионизирован и может легко образовать дейтрон. Лоложительпо заряя енный третичный углеродный атом карбоний-иона Не может принять положительный дейтрон. Дейтрон не будет также присоединяться в это положение и к образовавшемуся как промежуточное соединение изобутилену, так как это привело бы к получению мепее стабильного первичного иона. Следовательно, в конечном продукте дейтерий не появляется в третичном положении. Вместо этого третичный углеродный атом отнимает гидрид-ион от молекулы изобутапа. Таким образом, атомы дейтерия занимают девять первичных положений в метильных группах, в то время как в единственном третичном положении должны находиться только водородные атомы. [c.437]

    Для доказательства существования ионного реакционного механизма в химии угловодородов многое сделали своими экспериментальными работами Бик и сотрудники [3, 30, 38, 42]. Взаимный обмен изотопами водорода между серной кислотой и изопарафинами трудно объяснить иначе, чем обменом дейтронов катализатора с протонами углеводородов. Более того, особая роль, которую играет третичный водород в системе углеводород -f катализатор при образовании иоиа карбония, позволяет сделать заключение, что перенос гидридного иона между ионами карбония и углеводородами следует расслштривать как важную стадию такого механизма. [c.138]

    При крекинге фракций, являющихся сложной смесью углеводородов разной реакционной способности, активность обменных форм цеолитов типа X и Y в конверсии исходного сырья определяется общей кислотностью [22], а селективность выхода продуктов— наличием кислотных центров определенной силы [18, 21]. На рис. 3,15 приведена зависимость конверсии нефтяной фракции (газойля) от протонной кислотности кальциевой, марганцевой и редкоземельной (лантановой) форм цеолита типа X [22], Влияние кислотности цеолита REHY, изменяемой термопаровой обработкой, на селективность выхода бензина и кокса при крекинге нефтяной фракции показано на рис, 3.16. Факторы бензина и кокса, определяемые как отношение нх выхода на исследуемом катализаторе к выходу на стандартном катализаторе при равной конверсии сырья, существенно зависят от числа сильнокислотных центров Hq —8,2 мэкв/г) [18]. С уменьшением числа сильнокислотных центров при термопаровой обработке селективность по бензину растет, а по коксу—падает. Это свидетельствует об отрицательном влиянии сильнокислотных центров на селективность выхода бензина при крекинге нефтяных фракций. [c.38]

    Пентакоординированные карбониевые ионы образуются за счет присоединения, когда катион связывается с уже насыщенным центром молекулы. Наиболее достоверно такой процесс доказан для газофазных реакций (масс-спектрометрия высокого давления, ион-циклотронная резонансная спектроскопия), при которых протоны или крупные катионные (карбениевые) частицы взаимодействуют с насыщенными молекулами уравнение (И) [15]. Водородный изотопный обмен в растворе метана в РЗОзН/ЗЬРз можно объяснить промежуточным образованием пентакоординированного алкана, однако возможны и другие объяснения [16]. Протонированные алканы можно рассматривать как интермедиаты в процессах изомеризации и фрагментации [16], а также при анодном окислении [14] насыщенных углеводородов в суперкислой среде. [c.520]

    Зарождение цепей происходит в результате взаимодействия 1сислорода со свободными радикалами, выходящими из частиц дисперсной фазы в дисперсионную среду. Компоненты масел превращаются преимущественно в компоненты смол. Не исключено, что в начальном периоде окисления ассоциаты смол могут выполнять роль ловушки для свободных радикалов, которые в ассоциатах рекомбинируют с образованием молекул или менее активных радикалов. В границах следующего этапа происходит прергмущественное окисление наименее полярных компонентов смол, которые превращаются в асфальтены, претерпевающие по мере накопления структурные изменения. Имеются данные, полученные с использованием метода импульсного ЯМР, что структурная перестройка в нефтяных остатках вызвана динамическим упорядочением алифатических цепей и ароматических углеводородов в 01фуже-нии ядер частиц, находящихся в дисперсной фазе. Обнаружен обмен между протонами сольватной оболочки и протонами дисперсионной среды. Важным здесь является то, что во всех случаях уменьшение константы диссоциации соответствует сохранению и накоплению компонента при протекании реакций окисления, а увеличение — наоборот, его расходу. Эти данные можно рассматривать как предпосылку возможной взаимосвязи между явлениями физического агрегирования вещества и его реакционной способностью в реакциях жидкофазного окисления органических веществ кислородом. [c.788]

    Методы анализа, основанные на изотопном обмене с тритием, описаны для определения растворимости воды в углеводородах и других неполярных органических веществах. Обычно при этом применяют тяжелую воду НТО и измеряют интенсивность наведенной -радиоактивности с помощью газовых или жидкостных счетчиков. Тайлор и сотр. [7, 30] осуществляли такой протонный обмен, барботируя воздух, насыщенный парами НТО, через жидкий бензол и другие углеводороды. Радиоактивную воду извлекали, абсорбируя ее оксидом кальция, а углеводород удаляли дистилляцией в вакууме. Затем тритий извлекали из сорбента обменной реакцией с парами этилового спирта и определяли радиоактивность с помощью газового счетчика Гейгера— Мюллера. Давление в счетчике регулировали, добавляя необходимое количество аргона. Каддок и Дэвис [10, И] также барботировали воздух через жидкие углеводороды при определении растворимости воды, но радиоактивнрсть измеряли более простым методом с помощью жидкого сцинтиллятора. Схема прибора, применявшегося в этих исследованиях, приведена на рис. 10-1. В дальнейшем обсуждаемая методика была усовершенствована — для насыщения пробы ее встряхивали с водой, содержащей тритий [29, 57, 58]. Так, Джонс и Монк [29] встряхивали несколько миллилитров содержащей тритий воды (активность около 2 мКюри/мл) с 10—25 мл сухой пробы не менее 4 ч в закупоренном стеклянном термостатированном сосуде. Большую часть насыщенной органической фазы сливают в подогретую пробирку и пробу объемом 5 мл переносят с помощью подогретой пипетки в колбу емкостью 10 мл, содержащую 5 мл НгО. Закупоренную колбу встряхивают около 4 ч. Затем отбирают порцию водной фазы объемом 1 мл и оценивают радиоактивность с помощью вы-сокостабильных счетных устройств на основе жидких сцинтилляторов, например 50 г нафталина, 7 г 2,5-дифенилоксазола и 0,05 г [c.520]

    Кроме того, в кислотно-основных каталитических реакциях катализаторы несомненно обменивают протоны с исходными веществами и растворителем, как показано в изотопных исследованиях с применением дейтерокислот или окиси дейтерия. При окислении окиси углерода или разложении закиси азота, катализируемом окислами металлов, применение подобным же образом указало на кислородный обмен между газами и поверхностью окислов [15]. При полимеризации замещенных олефинов типа изобутена, катализируемой трехфтористым бором с окисью дейтерия, присутствующей как сокатализатор , в полимере [16] возникают связи D — С эти реакции полимеризации протекают по ионному цепному механизму, и когда цепь обрывается, а построение молекулы полимера уже завершено, происходит регенерация катализатора, и сокатализатор содержит атомы водорода, перешедшие из мономера. Формально аналогичные свободно-радикальные реакции полимеризации ненасыщенных производных углеводородов можно инициировать фрагментами, получающимися при термическом разложении веществ типа перекиси бензоила и азо-бис-изобутиронитрила. Эти фрагменты действительно появляются в молекуле полимера, как было показано при использовании инициатора, меченного [17, 18]. [c.24]

    Анализ литературных данных за последние годы показывает, что исследования велись по пути оценки кислотной силы уже общепризнанной кислоты и подсчета числа кислотных центров на каталитической поверхности. Дискуссия в литературе идет по вопросу о типах кислотных центров [1 —14], существующих на поверхности алюмосиликатных катализаторов и ответственных за их каталитическую активность. Мнения разделяются на две основные группы. Одна группа авторов [1, 4, 5, 9, 14] поддерживает ту точку зрения, что каталитическая активность связана с наличием в алюмосиликатном комплексе протона (кислоты типа Брен-стеда), обуславливающего легкость обменных реакций и многочисленные реакции углеводородов. Другая группа авторов [2, 3, 7, 10—13] считает, что такая протонизированная структура в виде кислоты не стабильна в отсутствие оснований и более вероятным является участие в катализе алюмосиликатной структуры без протона с недостатком электронной пары в валентной оболочке атома А1, т. е. кислоты типа Льюиса. Такая структура может объяснить легкость превращений углеводородов (хотя причина десорбции продуктов реакции остается неясной), но не объясняет наличия максимума активности катализаторов одного состава от содержания воды в нем и легкости обменных реакций без предварительной гидратации апротонных центров. Так, в работе Дэнфорса вода интерпретируется как сокатализатор [10]. Гельдман и Эммет [И], исследовавшие водородный обмен между изобутаном и дейтерированным катализатором крекинга в отношении природы активных центров А —51, также допускают либо наличие, либо присоединение молекул воды на кислотных центрах Льюиса прежде, чем изобутан претерпит активированную адсорбцию на поверхности катализатора. Таким образом, и эти авторы признают, что для объяснения обмена и протекания самой каталитической реакции па центрах Льюиса требуется предварительная гидратация поверхности. [c.247]

    При большом содержании воды в катионите (10,5 и 15 моль/моль сульфогрупп) основным процессом превращения олефиновых углеводородов является не полимеризация, а изомеризация и гидратация до спиртов [139]. Так, 3-метил бутан-1 в присутствии катионита КУ-2 X 7 (Н+) в состоянии предельного набухания (15 моль воды/моль сульфогрупп) при 423 К за 24 ч превращается на 14 % в 2-метилбутен-1, на 60 % — в 2-метилбутен-2 и на 5 % — в полимер. В тех же условиях пентен-1 и пентен-2 превращаются в равновесную смесь, состоящую на 94% из пентена-2 и на 6 % — из пентена-1. Замедление полимеризации олефинов в присутствии катионита с большим содержанием воды обусловлено низкой растворимостью углеводородов в воде и нахождением протонов преимущественно в виде НдО+, а не в карбокатионе. Поэтому и термостойкость сульфокатионита определяется мольной концентрацией гидратированных протонов в сорбированной воде. По мере снижения содержания сорбированной воды в нонйте до 3,6 моль/моль сульфогрупп протекает полимеризация, а гидратация олефинов до спиртов не наблюдается. По-видимому, протон существует в виде гидратированного карбокатиона, и его сродство к связи С—5 должно повышаться по мере уменьшения содержания сорбированной воды вблизи сульфогрупп с одновременным понижением стойкости сульфогрупп к замещению. Можно предположить, что снижение содержания воды в катионите до 1 моль/моль сульфогрупп должно привести к максимальным потерям его обменной емкости. При дальнейшем снижении влажности катионита снизится число диссоциированных сульфогрупп и карбокатионов, что приведет к естественному снижению скорости замещения сульфогрупп на водород или алкильный радикал. [c.84]

    Полученные нами данные по обмену могут быть использованы для уточнения механизма крекинга углеводорода на алюмосиликатах. Оказалось, что скорость процесса обмена ниже, чем скорость тех реакций, которые мы изучили, — реакции крекинга и реакции изомеризации циклогексена. Эти результаты показывают, что упрощенное представление о механизме каталитического крекинга как кислотно-протонного каталитического процесса неверно. Если бы образовался ион карбония с последующим распадом путем обмена ионами водорода между углеводородом и катализатором, то тогда нужно было бы ожидать, что окончание процесса обмена должно было быть связано с прекращением тех процессов, которые протекают на катализаторе. А в действительности мы видим, что процесс происходит достаточно хорошо и тогда, когда обмен полностью прекращается. Наша работа заставляет пересмотреть такие упрощенные представления о механизме алюмоснликатного катализа. Возможно, что алюмо-кремпевая кислота является не кислотой бренстедтовского типа, а льюисовского, и ион карбония, если он возникает, тоже особого типа, который может получиться при взаимодействии углеводорода с кислотой льюисовского типа. [c.168]

    Следствием этого является водородный (протонный) обмен между катализатором и углеводородами, что неоднократно доказьгаалось при помощи атомов дейтерия [25]. Правда, в последнее время в некоторых интересных работах Г. М. Пан-ченкова [26, 27] положение о водородном обмене между катализатором и углеродамн было поставлено под сомнение. Изучая распад кумола и изомеривацию циклогексена в присутствии дейтерированного алюмосиликатного. катализатора, он не нашел прямой связи между скоростями реакции изомеризации и крекинга и скоростью водородного обмена. Однако в то же время не были получены продукты превращения, не содержащие дейтерия, и данные работы показали, что водородный обмен протекает и независимо от каталитических превращений. Так что пока нет оснований отказываться от предположения о том, что большинство каталитических реакций, идущих в присутствии алюмосиликатов и других кислотных катализаторов, носит ионный характер и вызывается присутствием на поверхности последних подвижных ионов водорода. [c.17]

    В работе ЛИР [8] непосредственно сравнивалась скорость изотопного обмена водорода СН-связей в нескольких органических веществах с этиловым спиртом и с жидким аммиаком. Два из них были углеводородами (инден, флуорен) и два кетонами (ацетофенон и р-нафтилметилкетон). В названных веществах обмениваются с обоими растворителями одни и те же атомы водорода—в метиленовых группах углеводородов и в метиленовых группах кетонов. Это доказано следующим образом дейтерий, введенный в вещество изотопным обменом с тяжелым спиртом, вновь замещался на протон после того, как то же вещество затем растворяли в жидком аммиаке обычного изотопного состава. [c.39]

    В том же направлении, что и общий заряд иона, изменяет скорость водородного обмена частичный заряд — понижение или соответственно повышение электронной плотности у атома углерода, с которым соединен атом водорода, обменивающийся на дейтерий. Оно происходит при введении в молекулу углеводорода заместителя электропоакцепторного или электронодо-норного характера (стр. 21). Повышение электронной плотности у атома углерода (3 ) должно способствовать изотопному обмену с кислотой (условно обозначим ее О" ) вследствие электростатического притяжения разноименных зарядов, а понижение электронной плотности (5+) должно затруднять обмен. Противоположный результат получится нри проведении обменной реакции с основанием (условно обозначим его В ), так как в данном случае реакция происходит вследствие оттягивания протона СН-связи. [c.50]

    Согласно работам Д. Н. Курсанова с сотрудниками [173, 177], в изопарафиновых углеводородах водород не обменивается, если вместо дейтеросерной кислоты взять дейтероуксусную или дейтерофосфорную кислоты. Авторы объяснили это наблюдение тем, что названные кислоты ие обладают окислительным действием. Более вероятно, что при этом играет роль меньшая сила этих кислот [194] (ср. величины функции кислотности io стр. 76). Что касается водородного обмена с серной кислотой, то он тоже зависит от степени кислотности последней. Бик и его соавторы [170] на примере изобутана показали суш,ество-вание линейной зависимости между скоростью обмена и функцией кислотности серной кислоты. По их мнению, фактором, от которого зависит обменная реакция, может быть образование комплекса между очень слабым основанием — изобутаном и сильной кислотой. Ингольд [161, 162] считает, что изотопный обмен водорода между дейтеросерной кислотой и углеводородом (безразлично ароматическим или насыш енным) имеет об-1цие закономерности, в частности, легче всего подвержены атаке кислоты участки молекулы с повышенной электронной плотностью. По Ингольду, единственным способом, каким серная кислота может участвовать в реакции изотопного обмена, является отдача протона (или дейтрона). [c.236]

    Так, метилбензол (толуол) при —78 °С образует с хлорово-дородом комплекс состава 1 I, причем реакция легко обратима. Тот факт, что не происходит образования связи между атомом углерода кольца и протоном из НС1, подтверждается при проведении этой реакции с D 1. В этом случае также возникает л-комплекс, но его образование и распад не приводят к обмену дейтерия на атом водорода кольца. Это означает, что связь С—D в комплексе не образуется. Ароматические углеводороды образуют л-комплексы также с галогенами и ионами Ag+ хорошо известны комплексы с пикриновой кислотой 2,4,6-(02N)3 6H20H, представляющие собой устойчивые окрашенные кристаллические соединения, температуры плавления которых можно использовать для характеристики углеводородов. Такие аддукты называют комплексами с переносом заряда. Было показано, что в комплексе, который бензол образует с бромом, молекула галогена ориентирована вдоль оси симметрии Се перпендикулярно плоскости бензольного кольца. [c.146]

    Углеводород I представляет собой удобную модель для изучения катализируемой основаниями аллильпой миграции протона. Эта миграция происходит в сравнительно мягких условиях, что позволяет использовать для ее изучения различные растворители и основания. Равновесие между сопряженными (II и III) и несопряженными (I) компонентами аллильпой системы сильно смещено в сторону сопряженных продуктов. Образующиеся продукты в условиях перегруппировки не способны к обмену водород — дейтерий. Поскольку исходный углеводород содержит асимметрический атом, то можно одновременно следить и за ходом перегруп- [c.194]

    В течение ряда лет велась дискуссия относительно природы кислотных центров алюмосиликатов. Одни приводили доводы в пользу льюисовской природы кислотных центров, а другие, включая меня, предпочитали представления, основанные на протонной природе центров. Ни одна из этих точек зрения не могла полностью объяснить все экспериментальные факты, в частности влияние малых количеств воды на водородный обмен между углеводородами и катализатором и на самое реакцию крекинга. Предположение Данфорта о то.м, что вода является сокатализатором, дает возможность разрешить спор, ибо теперь эти две идеи могут быть логически объединены. Так, вероятно, требуется минимальное количество воды, чтобы вытеснить реакционный комплекс с активного центра типа кислоты Льюиса и, таким образом, ускорить реакцию. На некоторой стадии процесса может присутствовать кислота Бренстеда и может идти реакция водородного обмена. Короче говоря, теперь, вероятно, можно сказать, что как кислота Льюиса, так и кислота Бренстеда могут играть роль в механизме каталитического крекинга. [c.717]

    Благодаря большой электрофильпости протона ассоциативный механизм водородного обмена сводится к механизму электрофильного замещения. Систематическое изучение обмена с дей-терокислотами в ароматических соединениях обнаружило, что ему способствуют те же факторы, которые облегчают реакции электрофильного замещения (сульфирования, нитрования, галоидирования и др.), а именно — сильная кислотность донора дейтерия, и заместители, увеличивающие электронную плотность на атоме углерода в связи С — Н, в которой происходит обмен. Например, А. И. Шатенштейном[17] было показано, что обмен углеводородов с жидким бромистым дейтерием ускоряется при введении электроположительных заместителей —СНд и —ОСН3 и замедляется при введении электроотрицательных заместителей —СК и -N02- [c.58]

    Структурная стабильность менее прочных цеолитов (X и У) повышается после обмена ионов N3" на многозарядные ионы (Са , Mg , Ьа ). Термическая стабильность водородных форм цеолитов, полученных при обмене катионов на протон или при разложении аммониевых форм, на несколько сотен градусов ниже, чем у исходных цеолитов. В случае высокотемпературных реакций, катализируемых этими кислотными формами цеолитов (крекинг углеводородов), необходимо стабилизировать структуру цеолитов путем замещения исходных катионов на многозарядные. Так, цеолиты NH4Y, замещенные ионами редкоземельных элементов (РЗЭ), после дегидратации являются хорошими катализаторами крекинга (как по их кислотности, так и по термической стабильности). [c.11]


Смотреть страницы где упоминается термин Углеводороды обмен протона: [c.247]    [c.128]    [c.240]    [c.225]    [c.270]    [c.200]    [c.170]    [c.51]    [c.15]    [c.30]    [c.71]    [c.83]    [c.95]    [c.24]    [c.265]   
Быстрые реакции в растворах (1966) -- [ c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Обмен протона

Протонный обмен



© 2025 chem21.info Реклама на сайте