Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование химической связи в молекулах. Энергия связи

    Известно, что в образовании химических связей молекулы принимают участие различные по форме и энергии орбитали одного и того же исходного атома 5- и р- з-, р- и с1- з-, р-, й- и Число участвующих в связи орбиталей может возрастать при возбуждении атомов в процессе химических реакций. Так, в возбужденных атомах углерода (С 2р ), бора (В 251 2р ), ртути (Hg  [c.100]


    Возможность образования химической связи не при помощи электронной пары, а посредством одного электрона наиболее отчетливо видна на примере ионизированной молекулы водорода Эта частица была открыта в конце XIX вг Дж. Дж. Томсоном она получается при бомбардировке молекул водорода электронами. Спектроскопические исследования показывают, что расстояние между ядрами в этой частице составляет 1,06 А, а энергия связи равна 2,65 эВ таким образом, это довольно прочная молекула. Поскольку в имеется только один электрон, то очевидно, что в данной молекуле осуществляется одноэлектронная связь. [c.183]

    В ММВ на расстояниях, характерных для жидкого состояния, когда соседние молекулы находятся в непосредственном контакте друг с другом, основную роль играют слабые химические связи с энергией 1...10 кДж/моль. а вклад дипольного, лондоновского и поляризационного взаимодействий незначителен и им можно пренебречь [17... 19]. Влияние же дипольного момента на свойства жидкости объясняется возникновением реактивного поля, которое уменьшает энергию образования ассоциатов и комплексов при одновременном снижении их устойчивости [18]. [c.64]

    Согласно этой теории, при образовании молекул происходит изменение формы и энергии атомных орбиталей. Вместо неравноценных, например 5- и р-орбиталей, образуются равноценные гибридные орбитали, имеющие одинаковую энергию и форму, т. е. происходит гибридизация (смешение) атомных орбита-лей. При образовании химических связей с участием гибридных орбиталей выделяется больше энергии, чем при образовании связей с участием отдельных 5- и р-орбиталей, поэтому гибридизация атомных орбиталей приводит к большему понижению энергии системы и соответственно повышению устойчивости молекулы. На рис. 11.8 представлена форма гибридной орбитали, возникающей при комбинации атомных 5- и р-орбиталей. [c.43]

    В процессе образования кристалла происходит перекрывание внешних электронных орбиталей атомов по аналогии с образованием химической связи в молекулах. В соответствии с методом МО при взаимодействии двух атомных орбиталей образуются две молекулярные орбитали связывающая и разрыхляющая. При одновременном взаимодействии Л/ микрочастиц образуется N молекулярных орбиталей. Величина N в кристаллах может достигать огромных значений (порядка 10 ). Поэтому и число электронных орбиталей в твердом теле чрезвычайно велико. При этом разность между энергиями соседних орбиталей будет ничтожно мала. Так, в кристалле натрия разность энергетических уровней двух соседних орбиталей имеет порядок 10 Дж. Таким образом, в кристалле металла образуется энергетическая зона с почти непрерывным распределением энергии, называемая зоной проводимости. Каждая орбиталь в этой зоне охватывает кристалл по всем его трем измерениям. Заполнение орбиталей зоны проводимости электронами происходит в соответствии с положениями квантовой механики. Так, из условий минимума энергии электроны будут последовательно заполнять все орбитали, начиная с наинизшей, причем на каждой орбитали в соответствии с запретом Паули может располагаться лишь два электрона с антипараллельными спинами. С повышением температуры за счет теплового возбуждения электроны будут последовательно перемещаться на более высокие энергетические уровни, передавая тепловую энергию с одного конца кристалла на другой и обеспечивая таким образом его теплопроводность. [c.73]


    Теория валентных связей и теория молекулярных орбиталей используются и для описания химической связи в молекулах более тяжелых элементов. В таких молекулах в образование связи вовлекаются не только s-орбитали, но также р-, d- и даже /-орбитали. Но так же как и при образовании ионов, энергией, подходящей для возникновения ковалентных связей, обладают только орбитали валентной оболочки. Остовные орбитали, с более низкой энергией, продолжают испытывать существенное влияние только одного ядра и не дают значительного вклада в образование молекулярной связи. Орбитали с более высокой энергией, чем в валентной оболочке, могут заселяться электронами в возбужденных состояниях молекул, однако их энергия слишком велика, чтобы они смогли принимать заметное участие в образовании связи у невозбужденных молекул, в их основном состоянии. [c.117]

    Мы знаем, в чем главная причина различия этих двух явлений. Два электрона, участвующие в образовании химической связи, должны в соответствии с принципом Паули иметь противоположные значения магнитных моментов (спинов). Но, поскольку при поглощении света поглощается столь много энергии, что один из этих электронов может переместиться совсем в другую часть молекулы, взаимная ориентация электронных спинов уже не лимитируется принципом Паули. Как и раньше, они могут остаться ориентированными противоположно друг другу подобно двум магнитам, поля которых компенсируют друг друга. Такое состояние называется синглетным , или синглетом . Но электронные спины могут стать и параллельными друг другу, так что их магнитные поля складываются и усиливают друг друга. Такое состояние мы называем триплетным , или просто триплетом . Мы знаем, что флуоресценция наблюдается при испускании света молекулами, которые находятся в синглетном состоянии как в начале, так и по завершении процесса. Для фосфоресценции, напротив, необходим переход из триплетного состояния в синглетное, или наоборот. Очевидно, что необходимость изменить ориентацию электронного спина сильно затрудняет испускание света, поэтому оно и протекает более медленно. [c.143]

    Установлено, что в ряде случаев определяющую роль в образовании химической связи играют не электронные пары, а отдель--ные электроны. На возможность образования химической связи при помощи одного электрона указывает существование иона Н . При образовании этого иона из атома водорода и иона водорода выделяется энергия 255 кДж (61 ккал). Таким образом, химическая связь в ионе Щ довольно прочная. Если попробовать описать химическую связь в молекуле кислорода по методу валентных связей, то придем к заключению, что, во-первых, она должна быть двойной (о и п), во-вторых, в молекуле кислорода все электроны должны быть спарены, т. е. молекула Ог должна быть диамагнитна. Экспериментальные данные показывают, что по энергии связь в молекуле кислорода действительно двойная, но молекула является не диамагнитной, а парамагнитной. В ней и.меются два неспаренных электрона. Метод валентных связей бессилен объяснить этот факт. [c.110]

    Для некоторых молекул в образовании химической связи определенную роль играют не электронные пары, а отдельные электроны. Это наиболее отчетливо видно на примере ионизированной молекулы водорода Но, которая получается при электронной бомбардировке молекулярного водорода. Спектральные исследования показывают, что расстояние между ядрами в этой частице составляет 108 пм, а энергия связи равна 2,65 эВ таким образом, это довольно прочная молекула. Поскольку в Ш имеется только один электрон, то очевидно, что в данной молекуле осуществляется одноэлектронная связь. [c.99]

    Таким образом, можно ожидать, что образуется устойчивая молекула Ь1Р. Термин устойчивая означает, что для разрушения молекулы требуется затрата энергии. Образование химической связи уменьшает энергию системы, так как связывающая пара электронов притягивается одновременно как ядром атома лития, так и ядром атома фтора. Однако нельзя сказать, что электроны обобщены равномерно. В конце концов атомы лития и фтора притягивают электроны с разной силой. Это видно по энергиям ионизации этих двух атомов  [c.431]

    Важные величины энергий разрыва и образования химических связей также могут быть найдены из термохимических данных. Правда, действительные значения энергий связей из термохимических данных можно получить только для двухатомных молекул для многоатомных молекул термохимия может дать только величины средних энергий связей. Однако и они часто оказываются полезными при решении многих вопросов. [c.8]


    Согласно этому механизму, присоединение электронов металла к хемосорбированной молекуле происходит без образования химической связи (окисление). Если разложение КгО должно протекать в условиях, наиболее благоприятных в отношении активации, то в качестве катализатора следует взять металл, обладающий средним по величине значением работы выхода. Согласно данным Гиншельвуда и Причарда [69], энергия активации на золоте (Ф = 4,71 в) равна 29,0 ккал, а на платине (Ф = 5,36 в) 32,5 ккал. Относительное увеличение энергии активации при переходе от золота к платине (12,1%) почти соответствует изменению работы выхода (13,8%). [c.374]

    Если атом имеет три неспаренных р-электрона, каждый из которых может принимать участие в образовании химических связей, то связи будут направлены приблизительно под прямыми углами одна к другой. Это обусловлено тем, что именно таким образом расположены оси р-функций. Значит, наряду с длиной и энергией связи параметрами, определяющими форму молекулы, являются также углы между связями. [c.48]

    Первым этапом явилась теория переходного состояния. Если имеется система из трех атомов или трех других свободных частиц X, У и 2 (рис. 1), ее потенциальная энергия складывается из энергии электростатического взаимодействия и энергии электронов. В последней важную роль играют обменные силы, обусловленные квантовомеханическим взаимодействием при образовании химических связей. Потенциальная энергия всей системы зависит от расстояний Г] и Гг и от угла 0, но при фиксированном значении 0 остаются только две переменные. В этом случае потенциальная энергия системы может быть изображена в трехмерном пространстве в виде поверхности. На плоскости эту поверхность представляют как функцию Г] и гг линиями, соединяющими точки с равной потенциальной энергией (рис. 2). Отрезки Г1,о и га.о соответствуют расстояниям между частицами в молекулах и 2Х, а верхняя правая часть рисунка — свободным частицам или атомам X, V и 2. При Г] < Г1,о и Г2 < Га,о потенциальная энергия системы резко возрастает из-за сил отталкивания, а в противном случае — вследствие затраты энергии на разрыв связей в молекулах или 2Х. [c.13]

    Используем соотношение (3-3) при рассмотрении образования химической связи между двумя атомами фтора. До реакции — назовем это состоянием 1 — были два далеко отстоящих друг от друга атома фтора каждый атом обладал средней кинетической энергией Тр и средней потенциальной энергией 1 р. Таких атомов два, поэтому в состоянии 1 кинетическая и потенциальная энергии составляют Тх = 2Тр и VI == 2Ур соответственно. В результате реакции (3-1) возникает устойчивая молекула фтора Рг — состояние 2. Кинетическая и потенциальная энергии после реакции определяются соответствующими значениями для этой молекулы так, что = Гр и = [c.76]

    Решающее влияние на характер протекания хроматографического процесса оказывает взаимодействие между отдельными частицами разделяемых веществ и фазами, с которыми эти частицы входят в соприкосновение. Силы, которые действуют между частицами (атомы, молекулы, ионы), можно разделить на две группы. Действие сил, принадлежащих к первой группе, приводит обычно к образованию химической связи. Энергия химической связи велика и достигает десятков килограмм-калории на моль. В отличие от химического физическое взаимодействие обусловлено действием слабых сил. Энергия связи, образующейся в результате действия таких сил, имеет порядок десятых килограмм-калорий на моль. Эти силы называются силами Ван-дер-Ваальса. Промежуточным типом связи является водородная связь, энергия которой сравнительно велика (порядка нескольких килограмм-калорий на моль). Поведение молекул при физическом взаимодействии определяется их строением, т. е. характером химических связей между отдельными атомами и группами. Поскольку подробное рассмотрение сущности взаимодействия между частицами не является целью этой книги, мы остановимся лишь на основных моментах этого вопроса. [c.64]

    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]

    Учитывая это обстоятельство, а также тот факт, что орбитальные энергии остовных АО при вхождении атома в молекулу понижаются, некоторые авторы делают неправильный вывод, будто никаких связывающих МО в молекуле нет вообще, а экзоэффект образования химической связи обусловлен понижением энергий орбиталей атомных остовов. Однако при этом забывают, что полная энергия многоэлектронной системы 01 не равна сумме орбитальных энергий (см. последний раздел главы I) и по одному лишь изменению величин е судить о том, как изменится полная энергия системы нельзя (ср. с рассмотренной в главе II ситуацией, относящейся к теоретической интерпретации Периодической системы атомов). Только в простейшем варианте метода МО — методе Хюк-келя — <01 = где — заселенность -й МО. [c.201]

    ГИЯ отталкивания а я Ь — постоянные п = = 3 ч- 4 т = 9 ч- 10. Кривая 1 проходит через область с пониженной потенциальной энергией АН . Это область физической адсорбции. Кривая 2 характеризует изменение потенциальной энергии при адсорбции молекулы Аа на поверхности Р, сопровождающейся диссоциацией на атомы А и А". Кривая 2 имеет более глубокий минимум, чем кривая 1, и отвечает образованию химической связи, хемосорбции. Согласно рис. 202 хемосорбция сопровождается выделением теплоты АН . Однако возможно протекание хемосорбции с поглощением теплоты. Пересечение кривых 1 и 2 показывает переход от адсорбции молекулярной (физической) к адсорбции химической. Образующаяся при этом суммарная кривая (жирная кривая) имеет максимум, соответствующий энергии активации хемосорбции Хемосорбция может также протекать с энергией активации, близкой к нулю. Такое положение реализуется, если потенциальная кривая физической адсорбции будет, например, соответствовать кривой 3. [c.642]

    Тот факт, что атомные орбитали в квантовой теории имеют определенную геометрическую форму, весьма важен, так как позволяет судить о стереохимии молекулы. 5- и р-Орбитали так мало отличаются по энергии, что при образовании химической связи они могут взаимодействовать в атоме друг с другом, образуя несколько смешанных орбиталей. Такая орбиталь описывается волновой функцией, являющейся линейной комбинацией - и р-орбиталей, и называется гибридной. Гибридные орбитали более вытянуты в направлении связи и способствуют образованию более прочной связи. Кроме 5- и р-орбиталей в образовании гибридных орбиталей могут участвовать -орбитали. [c.22]

    Характеристика элементов. Бром и иод имеют менее выраженный неметаллический характер, чем хлор. По мере перехода вниз но подгруппе в образовании химических связей все большую роль начинают играть внз тренние с1- и даже [-орбитали. Это сказывается на устойчивости электронов и выражается в отсутствии степени окисления + 7 как у Вг, так и у I. Самое близкое сходство в свойствах проявляют элементы подгруппы УПА в степени окисления —1. В этом состоянии брому и иоду соответствуют ионы Вг и 1 , а также простая ковалентная связь с неметаллами. Молекулы брома и иода двухатомны в любом агрегатном состоянии. Межъядерное расстояние в молекулах Вгг и Ь увеличено по сравнению с хлором. Это обусловливает уменьшение степени перекрывания связующих электронных облаков и, как следствие, уменьщение энергии диссоциации молекул. По этой же причине увеличивается степень поляризуемости молекул. Силы сцепления между молекулами в конденсированной фазе являются ван-дер-ваальсовыми. Они возрастают пропорционально увеличению массы молекул и размеров атомов. Поэтому у галогенов существует та же закономерность в изменении [c.361]

    В растворах гомогенно-каталитические реакции протекают обычно по механизму молекулярных реакций с образованием сложных, активных комплексов или промежуточных соединений с участием катализатора, который снижает энергию активации реакции. Это объясняется тем, что в сложном активном комплексе с участием катализатора уменьшается энергия связей и облегчается их разрыв. Особенно выгодным является образование циклических активных комплексов, так как чередование рвущихся и возникающих химических связей, а также перемещение электронов, образующих химическую связь, по циклическому активному комплексу (миграция связей в молекуле) способствует снижению энергии активации при разрыве химических связей. Кроме того, энтропия активации при образовании в растворе сложных активных комплексов может увеличиться за счет освобождения некоторого числа молекул растворителя, связанных с молекулами исходных веществ и с катализатором. [c.414]

    Энергия химической связи. Вычислим энергию химической связи Н—С1 ( нс1 = — А//ц-с1 ) в молекуле хлорида водорода по известной энтальпии образования ЛЯ°нс1 = —92,8 кДж/моль и энергии диссоциации молекул На (АЯд ,, =435,0 кДж/моль) и I2 (Afi° = = 242,6 кДж/моль) на атомы. [c.119]

    Химические процессы протекают с выделением или поглощением тепла, которое называется теплотой реакции. Всякая химическая реакция сводится к разрушению определенного числа химических связей между атомами в молекуле и образованию новых связей. Если энергия, выделяющаяся при образовании новых связей, больше энергии, затрачиваемой на разрушение связей в исходных молекулах, то реакция сопровождается выделением тепла (экзотермический процесс) если же энергия, выделившаяся при образовании новых связей, меньше энергии разрыва связей, то реакция сопровождается поглощением тепла из окружающей среды (эндотермический процесс). Поэтому при химических превращениях изменяется внутренняя энергия реагирующих молекул. [c.5]

    Радиационное разложение определяется как вынужденный разрыв химической связи под действием облучения, сопровождающийся образованием молекул меньшего (по сравнению с исходным) молекулярного веса. Может оказаться, что при поглощении энергии облучения произойдет разрыв многих связей, но часть из них быстро восстановится, так что эти разрывы не удастся наблюдать. В полиэтилене, например, энергия С — С-связи значительно меньше, чем энергия С — Н-связи. Поэтому происходит преимущественный разрыв С — Н-связей. Вероятно, при разрыве С — С-связи два образовавшихся длинных фрагмента цепи жестко связаны в твердой матрице и имеют возможность воссоединиться. При облучении газообразных углеводородов (этан, пропан, бутан) а-частицами от родонового источника соотношение количеств образовавшихся водорода и метана для всех указанных газов одинаково и равно 5 1. Теоретического обоснования столь точного выполнения указанного соотношения не имеется . При облучении неопентана отношение СН4 Нг равно единице. В неопентане на 4С — С-связи приходится 12СН-связей. Эти сведения приводятся для того, чтобы акцентировать внимание на возможности разрыва С — С-связи при облучении. Разумеется, выделение низкомолекулярных углеводородов из полиэтилена низкой плотности, полипропилена и других полимеров во время облучения свидетельствует о необратимом разрыве С — С-связей. В этих случаях образуются фрагменты, достаточно подвижные, чтобы выйти из матрицы. [c.435]

    Объединение атомов в молекулу происходит за счет образования химических связей. Этот процесс сопровождается понижением энергии системы, причем избыток энергии выделяется в виде теплоты. Чем прочнее химическая связь, тем больше энергии нужно затратить для ее разрыва, поэтому энергия разрыва связи служит мерой ее прочности. Энергия разрыва связи всегда положительна в противном случае химическая связь самопроизвольно разрывалась бы с выделением энергии, iз эпюго следует, что при образовании химической связи энергия всегда выделяется за счет уменьшения потенциальной энергии системы взаимодействующих электронов и ядер. Поэтому потенциальная энергия образующейся частицы (молекулы, кристалла) всегда меньше, чем суммарная потенциальная энергия исходных свободных атомов. Таким образом, условием образования химической связи является уменьшение потенциальной энергии системы взаимодействующих атомов. [c.98]

    Механизм образования химической связи удобнее всего рассмотреть на примере образования молекулы водорода из атомов. Формула электронной конфигурации ато1 водорода — 15, т. е. у него имеется только один неспарен ный электрон. В соответствии с законами квантовой механики атом водорода, содержащий неспаренный электрон, находится в неустойчивом состоянии, поскольку обладает избытком потенциальной энергии. Такой атом будет притягивать к себе другой атом водорода при условии, если спин его электрона имеет противоположное направление. Взаимное притяжение атомов приводит к тому, что их атомные орбитали перекроются, при этом оба электрона станут в равной мере принадлежать обоим атомам, т. е. образуется пара электронов с противоположно направленными спинами, которая осуществляет химическую связь. Электронное облако, образуемое этой парой электронов, охватывает, связывает воедино ядра обоих взаимодействующих атомов. Такая связывающая два одинаковых атома двухэлектронная связь называется ковалентной. [c.69]

    Говоря о строении какой-то системы, обычно имеют в виду некоторую относительно устойчивую пространственную ее конфигура-цию, т. е. взаимное расположение образующих ее частиц, обусловленное существующими между ними связями вследствие присущих этим частицам сил взаимодействия . Однако даже в химических микросистемах говорить о жесткой пространственной структуре не приходится. Уже в атомах мы сталкиваемся с делокализацией электронов, В простых молекулах наряду с делокализацией электронов, приводящей к образованию химических связей, имеет место и делокализация атомных ядер в результате колебаний, в сложных молекулах к этому добавляется взаимное вращение одних частей молекулы относительно других, приводящее к образованию множества конформаций. Последнее особенно явно представлено в молекулах полимеров, с чем связаны многие их фундаментальные свойства. Чем сложнее система (чем больше число образующих ее частиц), тем больше многообразие возможных состояний, в которых она может находиться при нозбужденин, т. е. при получении энергии. Наиболее упорядоченную структуру система имеет в основном состоянии, т. е. в состоянии с минимально возможной энергией. Чем выше энергия возбуждения, представляющая собой энергию относительного движения составляющих систему частиц, тем больше относительные перемещения этих частиц (если движение можно рассматривать классически) или их делокализация (если. движение имеет квантовый характер). Возбужденные молекулы подвержены разного рода колебаниям и внутренним вращениям одних фрагментов относительно других, а при достаточно высоких энергиях химические связи разрываются, и система приобретает качественно иной структурный облик. Роль вышеуказанных структуроопределяющих факторов неизмеримо возрастает для макроскопических систем. [c.122]

    Энергия химических связей. Теоретический расчет знергии химических связей является весьма сложной задачей и в настоящее время выполнен только для молекулы водорода. Тем не менее, на основании высказанных выше соображений и формул можно качественно связать значения энергии химических связей с валентностью и объемом взаимодействующих атомов. Поскольку энергия химической связи выделяется за счет уменьшения концентрации неразличимых электронов, то согласно формуле (53), эта величина должна зависеть от начального и конечного значения объема, приходящегося на один неразличимый электрон. Начальный объем совпадает, очевидно, с элементарным объемом, т. е. с объемом одного атома данного эле1 1снга. Конечный объем определяется валентностью рассматриваемого элемента и при образовании кова-лентшт связи равен двум элементарным объемам. При образовании металлической связи конечный объем равен восьми или четырем элементарным объемам. Таким образом, суммарная энергия ковалентных связей в кристаллах четырехвалентных элементов равна [c.70]

    Описывая сдвиги частот, факторы Р1 характеризуют способность связей Х Н к динамическому взаимодействию со связями Н...У. Р. и факторы, как было сказано, характеризуют локальные свойства активных центров Х Н и Уу в молекулах. Из правила факторов следует, что взаимодействие этих центров, приводящее к образованию водородной связи, лишь в малой мере затрагивает строение молекулы в целом. Поэтому Р. и Ej факторы не коррелируют с дипольными моментами, поляризуемостями, потенциалами ионизации и другими молекулярными параметрами. Р. и Ej факторы не имеют простой общей связи с другими химическими реакциями, более глубоко меняющими электронное состояние молекул КХН и УКг, чем реакция (111.22). Вместе с тем, правило факторов не является специфической особенностью Н-связей. Аналогичныеэмпирические соот-отяошения справедливы и для некоторых других типов слабых химических взаимодействий между молекулами (см. гл. IV). Средняя энергия дипольных взаимодействий и энергия лондоновских взаимодействий в сущности тоже следует правилу факторов. В этом отношении водородная связь и ряд других типов химических связей имеют общие черты с вандерваальсовыми взаимодействиями. [c.73]

    В том случае, когда п-электроны участвуют в образовании химических связей, их энергия значительно понижается и полосы я -переходов смещаются в сторону коротких длин волн. Так, например, происходит при образовании диполь-дипольных или водородных связей с молекулами полярных растворителей. При протонировании или комплексообразовании переходы п практически исчезают, так как электроны на п-орбиталях нельзя считать неподеленными, поскольку они участвуют в обра зовании новых молекулярных орбиталей. [c.71]

    В реальных условиях адсорбция, как правило, протекает не на чистом металле, а на металлической поверхности со следами воды и пленками оксидов. Проведено [76] исследование поверхностной активности органических спиртов различной длины цепи на чугуне, а также иа восстановленном и окисленном железе. Результаты опытов показали, что тепловые эффекты на чугуне меньше, чем на железе. Это указывает на малое сродство полярных групп (ОН-групп) к чугуну, который имеет низкую поверхностную энергию. Если в молекуле адсорбата содержится химически активная группа с повышенной полярностью, то его теплота адсорбции растет. Так, более высокая теплота адсорбции стеариновой кислоты на железе по сравнению со спиртам и объясняется интенсивным взаимодействием между карбоксильной группой и поверхностью вплоть до образования химической связи [77]. В связи с этим на свежеобнаженных (ювенильных) поверхностях метала должна происходить преимушественная адсорбция неполярных углеводородов. Адсорбция же полярных соединений значительно возрастает на окисленных участках. С этих позиций оказывается воз.можным дополаить объяснения Г. В. Виноградова [78] и других исследователей о влиянии кислорода на процессы граничного трения с.мазочное действие жирных кислот и других полярных соединений повышается за счет растворенного кислорода. При этом предполагается, что присутствие кислорода способствует интенсивному окислению поверхности трения и следовательно, повышению адсорбции полярных ингредиентов, содержащихся в смазочном материале. Однако этим не ограничивается влияние кислорода. В атмосфере кислорода наряду с окислением поверхности происходит также окисление компонентов смазочного материала, в результате их поверхностная активность повышается. [c.77]

    Известно, что стенки реакционного сосуда способны захватывать свободные атомы и радикалы, что приводит к обрыву цепей объемных реакций. Явление обрыва цепей на стенках было установлено и в основном исследовано советскими учеными. Было выяснено, что интенсивность обрыва цепей очень сильно зависит от материала и даже от состояния стенки. Вероятность е захвата свободного атома или радикала стенкой варьирует для разных радикалов и различных твердых поверхностей от О до 1, На опыте наблюдали значения от 10 до 1. Величина е растет с температурой, причем энергия активации этого процесса составляет обычно от 4 до 12 ккал/ моль. Таким образом, процесс захвата является, по-видимому, процессом химическим, приводящим к образованию химической связи между радикалом и частицами стенки. Во многих случаях наблюдается не сорбция, но настоящая реакция между радикалом и стенкой (посинение МоОз под действием атомов Н и О, снятие металлических зеркал алкильными радикалами и т. п.). Таким образом, есть основание высказать гипотезу, согласно которой при сорбции свободных атомов и радикалов образуются химические валентные или координационные связи с молекулами адсорбента [164]. В дальнейшем для простоты будем говорить об одновалентных связях и одновалентных радикалах. В этих случаях акт адсорбции радикалов, связанный с разрьввом одной из валентностей стенки, неизбежно приводит к одновременному рождению на поверхности новой свободной валентности, которая может мигрировать вдоль поверхности, а иногда и внутрь объема стенки. Это положение можно проиллюстрировать при помощи схемы [c.110]

    Как показывает опыт, каждая определенная химическая связь между атомами имеет более или менее постоянную величину энергии вне зависимости от того, в какое химическое соединение эти атомы входят. Кроме того, атомные связи обладают приблияуенпым свойством аддитивности, т. о. энергии образования молекулы из свободных атомов в газообразном состоянии приблизительно равна сумме энергии связи отдельных ес частиц. [c.111]

    В рабочий язык химии прочно вощли льюисовы представления и элек-тронно-точечные структурные формулы. Если известна льюисова структура молекулы, можно кое-что сказать об устойчивости, порядке, энергиях и длинах связей этой молекулы. А если воспользоваться методом ОВЭП, часто удается предсказать и геометрическое строение молекулы. В данной главе будет показано, что можно продвинуться еще дальще в определении электронного строения молекул, исходя из рассмотрения пространственной направленности и энергии валентных атомных орбиталей, принимающих участие в образовании химической связи. Этот более глубокий метод анализа известен под названием теории молекулярных орбиталей. [c.509]

    Может возникнуть вопрос, насколько правомерно составлять волновую функцию электрона, находящегося в молекуле, из волновых функций электронов в свободных атомах. Такое приближение не является слишком грубым по двум причинам. Во-первых, состояние электронов в молекулах не очень сильно отличается от их состояния в атомах, об этом свидетельствует сравнительно небольшое изменение энергии электронов при образовании химической связи. Так, полная энергия электронов для двух свободных атомов водорода равна —2-13,6 =—27,2 эВ, а изменение энергии при образовании молекулы Нг (энергия связи) составляет 4,5 эВ. Подобное соотношение характерно и для других молекул. Оно обусловлено тем, что образование связи сравнительнс мало влияет на движение электронов вблизи ядер атомов, где взаимодействие электронов и ядер велико. Во-вторых, изменение электронных облаков при переходе от атомов к молекуле в некоторой мере учитывается выбором с помощью вариационного метода определенных значений коэффициентов с. [c.100]

    Поскольку, в химических реакциях происходит разрыв одних связей и образование других, можно было бы предположить, что энергия активации равна энергии разрыва химической связи. Однако измерение энергии активации показывает, что она всегда меньше энергии связей. Для создания возможности протекания реакции нет необходимости полностью разрывать связи атомов в молекуле, нужно только их несколько ослабить. Такое расшатывание связей происходит при образован1ш неустойчивого промежуточного соединения — активированного комплекса. [c.220]

    В СОСТОЯНИЯХ, когда эта способность развита в сильной степени, атом водорода может настолько интенсивно взаимодействовать с электронами другого атома, что между ними устанавлн-иается довольно прочная связь (с энергией связи 5—7 ккал/моль н больше), которая может хорошо проявляться в спектрах. Однако она все же много слабее обычной химической связи (энергия которой составляет примерно 30—100 ккал/моль). Водородная связь возникает в результате междипольиого взаимодействия двух сильно полярных связей, принадлежащих различным молекулам (или одной и той же молекуле), но она в значительной степени усиливается вследствие взаимной поляризации связей, обусловленной указанными особенностями водородного атома. С другой стороны, деформация молекул, вызываемая образованием водородной связи, в соответствующих случаях способствует образованию донорно-акцепторных связей. [c.83]

    Из всего многообразия встречаюн1нхся в природе видов энергии особо следует выделить химическую энергию, обусловленную движением электронов на электронных орбитах атомов и молекул вещества. Эта энергия при определенных условиях может высвобождаться, т. е. превращаться в другие виды эггергии, что сопровождается образованием химических связей атомов или более прочных связей, если в преврпиюиии участвовали молекулы. С величиной химической энергии можно связать направление химических реакций. Следует отметить, что стабильными являются такие состояния веществ, при [c.8]


Смотреть страницы где упоминается термин Образование химической связи в молекулах. Энергия связи: [c.283]    [c.314]    [c.61]    [c.64]    [c.115]    [c.136]    [c.350]    [c.93]    [c.28]   
Смотреть главы в:

Физическая и коллоидная химия Учебное пособие для вузов -> Образование химической связи в молекулах. Энергия связи




ПОИСК





Смотрите так же термины и статьи:

Молекула образования

Молекулы связь

Образование связи в молекулах

Связь связь с энергией

Связь химическая энергия

Связь энергия Энергия связи

Химическая связь

Химическая связь образование

Химическая связь связь

Химическая энергия

Химический связь Связь химическая

Энергия молекул

Энергия образования

Энергия образования химических связе

Энергия связи

Энергия химически связей

Энергия химическои связи



© 2025 chem21.info Реклама на сайте