Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость мономеров, определение

    В этом случае очень важно обеспечить получение сополимера заданного состава с равномерным распределением звеньев сомономера по всей длине макромолекулы. Контроль состава сополимера целесообразно осуществлять путем газохроматографического определения содержания мономеров в газовой фазе реактора, которое хорощо коррелирует с содержанием сомономеров в жидкой фазе (при поддержании постоянными температуры и давления), а следовательно, и с составом сополимера [14, 74]. Содержание а-олефина в реакционной среде (жидкой фазе) в зависимости от содержания его в газовой фазе, а также состав сополимера можно рассчитать, пользуясь данными по растворимости мономеров в углеводородном растворителе и константами сополимеризации. [c.125]


    Медведев и Хомиковский с сотр. на основании собственных экспериментальных результатов, а также опубликованных в литературе данных о роли коллоидной растворимости в процессах ЭП и образовании ПМЧ предложили первую классификацию процессов ЭП в зависимости от природы изученных к тому времени мономеров. Эта классификация была основана на данных о различной растворимости мономеров в воде, а также на прямых определениях начальных скоростей полимеризации в водных растворах и в растворах эмульгаторов и на их количественном сопоставлении. Она относилась к топохимии образования ПМЧ и некоторым особенностям, связанным с растворимостью полимера в своем мономере. В частности, было принято, что ЭП нерастворимого в собственном юлимере винилиденхлорида протекает на поверхности ПМЧ или близи их поверхности [И, 12]. [c.11]

    Эти величины, соответствующие концентрациям в растворе, являются приближенными из-за дополнительных погрешностей, связанных с определением растворимостей мономеров. Проведенные авторами опыты показали в противоположность данным других исследователей что отношение растворимостей этилена и пропилена изменяется с температурой. [c.111]

    Принцип метода. Определение основано на различной растворимости мономера и полимера е-капролактама в 15%-ном растворе серной кислоты. Осажденный полимер отфильтровывают, а в фильтрате определяют содержание мономера. В фильтрате проводят кислотный гидролиз е-капролактама (мономера) до образования е-аминокапроновой кислоты с последующим ее определением методом потенциометрического фор.мольного титрования (см. стр. 52). [c.61]

    Более сложной является количественная интерпретация кинетики эмульсионной полимеризации, когда топохимия процесса не ограничивается только латексными частицами. Известно, что частичная растворимость мономера в воде приводит к образованию значительной доли полимера в водной фазе и отклонению от рассмотренной выше теории эмульсионной полимеризации. Однако и в этом случае исследование кинетики эмульсионной полимеризации в присутствии слабых ингибиторов позволяет получить некоторые, представляющие определенный интерес, качественные данные. Было показано [911, что кинетика процесса в сильной степени зависит от растворимости ингибитора в водной и мономерной фазах. [c.221]

    В ряде работ показано, что на первой стадии полимеризации таких мономеров на границе раздела фаз вода — воздух резко падает поверхностное натяжение (с 70 до 28 мН/м), а на второй стадии поверхностное натяжение растет, что характерно для получения латексных систем с ненасыщенными адсорбционными слоями. При этом предполагают, что образующиеся дифильные макромолекулы при достижении определенной их концентрации в водной фазе выпадают и агрегируются в частицы, в которых происходит дальнейшая полимеризация растворимого в них мономера [4]. [c.389]


    Гликолевый альдегид представляет собой кристаллическое вещество сладкого вкуса, легко растворимое в воде. В свежеприготовленных водных растворах он существует в виде димерного соединения, цикло-ацеталя (формула II), но затем, как показывают криоскопические определения молекулярного веса, постепенно превращается в мономер (формула I)  [c.316]

    Во всех перечисленных случаях хроматографическому исследованию подвергают пробы, которые берут из реактора через определенные промежутки времени. Образующийся в реакционной смеси полимер не является препятствием для газохроматографического метода. Периодический отбор проб из реактора осуществляется шприцем с длинной иглой. Небольшой объем пробы (1,5—2 мкл) хроматографируют. На хроматограмме кроме пика мономера возможно появление пиков других веществ, образовавшихся при протекании процессов, сопутствующих полимеризации. По изменению состава можно оценить чистоту гомополимера. Для упрощения количественных расчетов применяют метод внутреннего стандарта. Внутренний стандарт — вещество, которое заранее в известной концентрации вводят в реакционную смесь оно не влияет на процесс полимеризации, растворимо в реакционной смеси и хорошо отделяется от всех компонентов при хроматографировании. [c.244]

    При эмульсионной полимеризации мономера, частично растворимого в воде, реакция осуществляется и в растворе, и в мицеллах. Образующийся в результате полимеризации в растворе полимер или макрорадикал при определенном значении степени полимеризации выпадает в осадок, захватывая часть эмульгатора. Вследствие снижения концентрации эмульгатора уменьшается число частиц. Вместе с тем, в выпадающих, в осадок полимерных частицах, содержащих непрореагировавший ВА, может продолжаться полимеризация. Одновременно эмульсионная полимеризация протекает и в мицеллах, также превращающихся в полимерно-мономерные частицы, поверхность которых защищена молекулами эмульгатора. Таким образом, полимеризационный процесс складывается из полимеризации в растворе, эмульсионной полимеризации с участием исходных мицелл, содержащих мономер, и эмульсионной полимеризации в частицах полимера, выпавшего в осадок (рис. 1.6). [c.24]

    Основными допущениями теории не предусматривается также диффузионный контроль скорости полимеризации мономеров с существенно меньшей растворимостью в воде, чем стирол, например винилстеарата [4]1 и винилферроцена [5]. Таким образом, модель [I, 2] эмульсионной полимеризации применима к мономерам со строго определенной растворимостью в воде, близкой к растворимости стирола. [c.86]

    Вероятно, это представление может отражать в общих чертах картину образования частиц при полимеризации мономера с определенной степенью растворимости в воде в очень разбавленных системах. Однако по ряду причин оно не может быть распространено 1на все случаи образования полимерных КОЛЛоиДов. Так, захвату олигомерных радикалов частицами должен сопутствовать обрыв цепи в водной фазе. Конкуренция между этими двумя процессами будет зависеть от растворимости радикалов в воде и концентрации их в системе. Обрыв олигомерных радикалов в водном растворе приводит к образованию собственных поверхностноактивных веществ, поведение которых будет различным в зависимости от их молекулярной массы и поверхностной активности. Эта картина, естественно, усложняется в присутствии капель мономера, поддерживающих его постоянную концентрацию во вновь образующихся частицах. Кроме того, при рассмотрении механизма образования частиц в полимерных коллоидах нельзя пренебрегать реальными размерами частиц и расстояниями между ними, играющими важную роль для их устойчивости. [c.97]

    Если принять, что мономер не растворяется в воде, а инициатор — в органической фазе, то в истинном водном растворе не может происходить никакой полимеризации. Первая задача эмульгатора состоит в солюбилизации части мономера в области неполярных частей мицелл, которые являются агрегатами молекул эмульгатора, существующими при концентрации последнего выше определенной критической величины, и которые сообщают раствору характерные коллоидные свойства [80—86]. Остаток мономера присутствует в виде суспензии мелких капелек. По поводу точной формы мицелл существует много противоречивых мнений, но в данном случае это не имеет большого значения определенно известно, что в мицеллах молекулы эмульгатора стремятся расположиться таким образом, чтобы их гидрофобные углеводородные концы были направлены внутрь частицы. Если в систему вводится мономер, то мицеллы расширяются, и посторонние молекулы солюбилизируются в углеводородных областях. Таким образом растворимость органического вещества сильно повышается. Важная особенность состоит в том, что сильное набухание внешних областей в воде благоприятствует диффузии водорастворимого инициатора в области, расположенные в непосредственной близости от мономера. Харкинс с сотрудниками [87—89] провели широкие рентгенографические исследования по определению размеров мицелл в различных условиях и на отдельных стадиях реакции эта работа очень важна для понимания механизма полимеризации. В идеальных условиях инициирование происходит только [c.165]


    От указанных недостатков в значительной мере свободны более современные методы. Можно, например, с помощью снектро-фотометрии изучать изменение интенсивности полосы двойной связи мономера в инфракрасной области. Можно измерять высокочастотные диэлектрические потери в системе мономер—полимер, почти линейно зависящие от глубины полимеризации. Рациональный способ измерения кинетики заключается в калориметрическом определении количества выделяющегося при полимеризации тепла, для чего могут быть построены точные и автоматические приборы. Наконец, и методу дилатометрии придано сейчас новое, гораздо более совершенное техническое воплощение. Вместо измерения объема жидкости в сосуде с капилляром измеряют плотность в маленькой капле жидкости. Для этого капля размером в 1—2 мм подвешивается в градиенте плотности. Средой для капли, состоящей из органического растворителя, мономера и инициатора, служит водный раствор соли. Важно, чтобы растворимость всех компонентов капли в среде была ничтожно мала. В этом случае о ходе полимеризации можно просто судить но изменению плотности капли, т. е. по ее передвижению в трубке с градиентом плотности. Последний может создаваться либо с помощью градиента концентрации соли, либо с помощью градиента температуры. Чувствительность этого метода исключительно высока. Так, для 1%-го раствора мономера данная методика позволяет регистрировать глубину полимеризации до 0.1%. Благодаря работе с ничтожными количествами веществ легко обеспечить хороший отвод теплоты реакции. [c.224]

    Совместная полимеризация различных мономеров представляет собой весьма важный прием для создания полимеров с модифицированными свойствами. В полимере смешанного состава способны проявляться особенности, присущие обоим типам соответствующих гомополимеров, благодаря чему введение в определенную цепь звеньев иной природы позволяет влиять па растворимость, температуру размягчения, эластичность полимера, а иногда существенно повышать его термическую устойчивость. Конечно, и гомонолимеры могут рассматриваться как сополимеры, если в макромолекуле возникают звенья различной изомерной [c.259]

    Хотя все приведенные выше выводы, сделанные на основании опытов по определению скорости появления и углубления окраски и изменения растворимости продуктов термообработки сополимеров акрилонитрила с различными мономерами, носят лишь качественный характер, тем не менее они дают вполне отчетливые доказательства того, что нерастворимость продуктов термообработки связана с образованием поперечных связей в результате передачи реакции роста цепи сопряжения. [c.79]

    Однако на пути стереоспецифической полимеризации пропилена с помощью растворимых каталитических систем имеются серьезные осложнения. Дело в том, что, как следует из существа стереоспецифической полимеризации, для реализации процесса стереорегулирования необходима определенная связь мономера с каталитическим комплексом. Образованный комплекс — катализатор - мономер — должен иметь определенную, строго соблюдаемую пространственную конфигурацию. К образованию таких комплексов оказываются способны мономеры, содержащие полярные группы, а также диеновые углеводороды, у которых имеется вторая двойная связь, играющая в данном случае роль полярного заместителя. При полимеризации же пропилена с растворимыми катализаторами в обычных условиях не удается осуществить требуемое комплексообразование. [c.168]

    Совершенно очевидно, что оценивать эксплуатационные качества топлив по суммарному количеству кислородных соединений недостаточно. Важно еще представлять себе соотношение мономеров и полимеров, а также насколько быстро изменяется содержание последних. По-видимому, возможно затормозить процесс окислительного уплотнения, ограничив его образованием кислородных соединений, растворимых в топливе. Для осуществления такого направленного окисления можно было бы использовать не только определенный углеводородный состав топлив, но и стабилизирующие присадки, тормозящие процесс окислительного уплотнения. [c.258]

    При определении примесей в чистых веществах, так же как и в системе жидкость—жидкость, во многих случаях удобно использовать само вещество в качестве фазы. В этих условиях хорошо определяются компоненты, имеющие нри температуре опыта малый аб солютный коэффициент распределения в системе жидкость—пар, т. е. легколетучие плохо растворимые компоненты. Таким образом можно идентифицировать легколетучие компоненты, присутствующие в различных растворителях, мономерах, воде. Система вода—пар является идеальной при использовапии пламенно-ионизационного детектора для определения веществ с температурой кипения приблизительно до 150° С. [c.54]

    Джордан и Биллингем [2, с.120] сообщили о новом методе кинетической маскировки при определении кальция в присутствии магния. Они наблюдали, что при титровании 0,01-м. раствора ионов магния 0,2-м. раствором оксалата аммония получается квазиизотермическая кривая термометрического титрования (рис. 7, кривая 1) и в течение часа не образуется осадка, тогда как при титровании 0,01-м. раствора ионов кальция тем же титрантом на кривой получается заметный изгиб (рис. 7, кривая 2) и немедленно образуется осадок. Аномальное поведение магния, опровергающее тот факт, что осаждение оксалата магния является процессом экзотермическим, говорит за то, что кинетика промежуточной реакции превращения растворимого мономера оксалата магния в нерастворимый 4Mg 204 2H20 очень низка. Наблюдение привело к разработке метода определения кальция в присутствии магния (вплоть до двух- [c.18]

    Чувствительность растворного метода зависит от давления паров мономера, т. е. относительной летучести мономера, его растворимости в растворителе и концентрации полимера в растворе. Таким образом менее летучие мономеры, такие, как, например, стироот, нельзя определить с той же чувствительностью, что и более летучие типа винилхлорида. Чтобы увеличить равновесную концентрацию мономера в газовой фазе, можно уменьшить растворимость мономера, изменяя состав фазы растворителя. Для этой цели используют растворители, смешивающиеся с применяемым для растворения полимера растворителем и кипящие при температуре не ниже 100 °С. Так, по данным работы [287], из нескольких испытанных растворителей, наиболее эффективной добавкой оказалась вода, добавление которой к раствору полимера дает резкое увеличение чувствительности метода (табл. IV. 5). Поскольку при парофазном анализе для определения остаточных мономеров используют ДИП, то применение воды для уменьшения растворимости мономера имеет и то преимущество, что ДИП ее не чувствует и таким образом не вносится дополнительных осложнений в анализ. [c.266]

    Реакция с применением инициаторов (перекисные соединения, азодинитрилы и др.), способных к разложению с образованием свободных радикалов, имеет характер цепной полимеризации. Основными элементарными процессами цепной полимеризации, как известно, являются инициирование, рост цепей и их обрыв, в частности, при взаимодействии двух растущих полимерных радикалов (рекомбинация). Эти процессы протекают при полимеризации в массе и при водно-эмульсионной полимеризации. В последнем случае, при наличии в растворе эмульгирующих веществ (мыла, соли сульфокислот), образуются так называемые мицеллы, состоящие из молекул эмульгаторов, ориентированных определенным образом. При эмульгировании мономеры частично растворяются в воде, и, кроме того, в мицеллах содержится определенное количество растворенных в них мономеров. По современным представлениям, эти мицеллы могут служить местом возникновения полимерно-мономерных частиц, состоящих из полимера, растворенного или набухшего в мономерах. Обладая развитой поверхностью, эти частицы могут играть существенную роль в дальнейшем развитии процесса. Капельки эмульгированных мономеров (размером обычно несколько микрон) являются своеобразными резервуарами, из которых молекулы полимеризующихся веществ поступают в водный раствор, диффундируя затем в мицеллы эмульгаторов или в полимерно-мономерные частицы, если они к этому времени уже образовались. Характер процесса в значительной степени зависит от растворимости мономеров в воде. По мере увеличения растворимости в присутствии водорастворимого инициатора соответственно возрастает возможность протекания реакции непосредственно в водном растворе. Таким образом, при водно-эмульсионной полимеризации существует многофазная система, содержащая водный раствор эмульгаторов, инициаторов, а также полимерно-мономерные частицы. По мере протекания реакции эти частицы превращаются в полимерные образования, обладающие большей или меньшей агрегативной устойчивостью. [c.24]

    Эмульсионная полимеризация хлористого винила принципиальным образом отличается от полимеризации в суспензии или массе и приводит к получению продуктов со специфичными свойствами. В частности, образуется полимер с иной природой конечных групп, с заметно большим молекулярным весом и, что не менее существенно, с гораздо большей разветвленпостью макромолекул. Использование специальных способов регулирования молекулярного веса ПВХ (введение в реакционную массу определенных количеств органических растворителей, снижающих растворимость мономера в воде) или остановка полимеризационного процесса (добавление в определенный момент известных ингибиторов — стирола или его производных, терпенов, иода, гидрохинона, фенола и пр.) способствуют появлению конечных групп, изменяющих традиционное химическое строение ПВХ. Это, естественно, обусловливает возможность изменения стабильности и других эксплуатационных свойств полимера. [c.22]

    Эластин — это нерастворимый, похожий на резину белок эластических волокон соединительной ткани. Он способен к обратимому растяжению в длину в несколько раз. Особенно богаты эластином связки и дуга аорты. Как и в коллагене, в эластине содержится много пролина и глицина, но нет гидроксилизина и мало гидроксипролина. В аминокислотном составе преобладают неполярные аминокислоты, последовательность которых в эластине имеет определенную периодичность. Так, часто повторяется последовательность про-гли-вал-гли-вал. Эластин синтезируется в виде растворимого предшественника, который далее переходит в нерастворимую форму в результате образования различного рода поперечных сшивок. Одна из них характерна только для эластина. Это десмозин, образованный из боковых цепей четырех остатков лизина. Поперечные связи в эластине обеспечивают способность эластиновых волокон после растяжения восстанавливать исходную форму и размер. Эластин синтезируется как растворимый мономер (ММ 70 ООО Да) — тропоэластин. После секреции действует лизилоксидаза, благодаря которой образуется структура десмозина. В отличие от коллагена синтезируется только один генетический тип эластина. [c.465]

    В воду, а углеводородные цепи выносятся из водной фазы. Между молекулами, находящимися в растворе и образующими монослой на границе раздела фаз, существует динамическое равновесие. Поверхностное натяжение воды на такой границе раздела фаз уменьшается, поскольку силы притяжения между молекулами воды ослабевают из-за присутствия углеводородных цепей. Если увеличить количество добавленного в водную фазу сурфактанта, то концентрация растворимых мономеров будет возрастать до определенного предела, называемого критической концентрацией, после чего молекулы сурфактанта начнут ассоциировать друг с другом, образуя мицеллы. Мицеллы являются стабильными коллоидными агрегатами, которые образуются амфифилами при концентрациях, превышающих определенную узкую область концентраций, называемую критической концентрацией мицеллообразова-ния (ККМ). Амфифилы характеризуются различными значениями ККМ. [c.88]

    Методом привитой сополимеризации получен сополимер метилметакрилата и акриловой кислоты. Основная депь полимера представляет собой линейный полимер акриловой кислоты, в котором часть карбоксильных групп была замещеьа перекисными группами. Такой полимер вводили в метилметакрилат, количество иолимера составляло 0,12—0,3/и от веса мономера. Полученный новый сополимер имел вязкость раствора, в 2,5—4,5 раза превышающую вязкость раствора нолиметилметакрилата, полученного в присутствии перекиси бензоила в тех же температурных условиях. Фракционированием был извлечен линейный полимер, количество которого составило 25% от веса всего полимера. Остальная часть полимера обладала плохой растворимостью и настолько высокой разветвленностью, что отношение величин молекулярного веса его, определенных осмометрическим и вискозиметрическим методами, составляло 3,45—4,8. [c.190]

    Все синтезированные полимеры представляют собой порошки желто-коричневого цвета. Согласно данным РСА, полимеры имеют аморфную структуру. На свойства полимеров определенное влияние оказывает природа исходного мономера. Так, наличие в полимерной цепи гексафторизопропилиденовых группировок значительно улучшает растворимость полимера в органических растворителях полимеры на основе дихлорангидрида 4,4 -дикарбоксидифенил-2,2 -гексафторпропана растворимы даже в ацетоне и ТГФ, тогда как полимеры, содержащие кардовую фталидную группировку или -и-фениленовые группы в макромолекулярной цепи, растворимы лишь в растворителях амидного типа при нагревании. Согласно данным термомеханического анализа, температуры размягчения полученных полимеров составляют 230-290 °С. Полимеры достаточно термостабильны разлагаются выше 300 °С. [c.194]

    Макромолекулу можно в определенной степени уподобить миниатюрной осмотической системе, в которой мембрана заменена ковалентными связями между звеньями. Такая примитивная модель очень удобна для наглядного количественного описания некоторых кооперативных процессов, протекающих на молекулярном уровне и описываемых количественно со скей-линговых позиций. Вкратце подобное количественное описание мы рассмотрим в гл. IV, а пока выясним, что можно извлечь из примитивной осмотической модели. Допустим, что внутри замкнутой на себя мембраны, проницаемой для молекул растворителя, но непроницаемой для свободных, т. е. не связанных ковалентно, мономерных звеньев, находятся мономеры двух сортов, А и В, обладающие различной растворимостью. Утрируя эту ситуацию, допустим, что мономер А растворим хорошо, а [c.56]

    Полимеризация стирола в присутствхш растворителя, в котором растворимы и моно- и полпстиролы, позволяет хорошо регулировать температуру реакции. Полимеризация в растворе происходит медленнее, чем полимеризация в блоке, и продукты получаются более низкого молекулярного веса. Для получения лучшего продукта необходимо изменять начальную концентрацию мономера и температуру. Полученные этим методом полимерц уже находятся в растворе, что удобно для изготовления лаков. Для других целей полимер высаживают из раствора, например в этилбензоле, прибавлением растворителя, и котором полистирол не растворяется, а именно петролейного эфира или метилового спирта [73]. Если такой осадитель содержится в исходной поли-меризуемой смеси, то можно легко регулировать молекулярный вес продуктов. Например, в смеси стирола с метиловым спиртом и бензолом полистирол осаждается, когда цопь достигнет определенной величины, в то время как более короткие молекулы полимера остаются в растворе. Величина осаждающихся частиц полимера зависит от содержания метилового спирта [74]. [c.186]

    Остаточные мономеры и низкомолекулярные неполимеризующиеся примеси, попадающие в полимерные материалы из исходного сырья и употребляемых в их производстве растворителей, крайне неблагоприятно действуют на эксплуатационные качества самих полимеров. Источником примесей органических растворителей в полимерных пленках могут оказаться также лакокрасочные материалы, используемые для нанесения украшений и надписей. Иногда летучие примеси попадают в пластмассы вместе с добавляемыми к ним пластификаторами. Наконец, в некоторых медицинских полимерных упаковочных материалах и изделиях содержатся остаточные количества окиси этилена, применяемой для их стерилизации. Большинство содержащихся в полимерных материалах летучих примесей — вредные и ядовитые вещества, а винилхлорид является канцерогеном, вдыхание которого приводит к раку печени. Содержание этих компонентов подлежит строгому нормированию и контролю, причем особенно жесткие нормы устанавливаются на материалы, предназначаемые для упаковки и хранения пищевых продуктов. В этом случае даже сравнительно малотоксичные летучие примеси, попадая в пищу, могут существенно изменить ее запах и вкус, снизить качество и сделать непригодной к употреблению. Определение следов летучих примесей стало, таким образом, одним из важнейших направлений аналитической химии полимеров. Применение для этой цели парофазного анализа представляется особенно целесообразным прежде всего потому, что вводить в хроматограф полимеры нежелательно и не всегда возможно. Однако парофазный анализ полимеров требует учета специфических свойств анализируемых объектов, подавляющее большинство которых представляет собой твердые материалы, плохо растворимые в обычных растворителях и разлагающиеся при сравнительно низких температурах. Казалось бы, самым простым решением задачи мог быть анализ равновесной газовой фазы над полимером, но диффузия летучих компонентов из твердого полимера к его поверхности затруднена и равновс  [c.138]

    Способность окиси этилена полимеризоваться и сополимеризо-ваться с другими мономерами известна давно, но лишь в последнее время эту реакцию начали использовать в промышленных масштабах. Из окиси этилена в зависимости от степени ее полимеризации получают полимеры с различными характеристиками. Жидкие и воскообразные или полутвердые полимеры могут использоваться в качестве пластификаторов, смазочных агентов, а также веществ, повышающих растворимость некоторых соединений или увеличивающих проникающую способность определенных растворителей, и т. п. Твердые полимеры и сополимеры окиси этилена с другими мономерами, полученные в блоках или из растворов (с молекулярным весом до двух миллионов), имеют весьма ценные физико-механические свойства и пригодны для использования в различных областях промышленности. [c.6]

    Поликонде1 сация мономеров, содержащих более двух функциональных групп, приводит к образованию трехмерной или разветвленной полимерной молекулы. В предельном случае поликонденсат представляет собой, по-видимому, единую бесконечно большую трехмерную молекулу. Образование таких сетчатых частиц внешне выражается в том, что через определенное время после начала поликонденсации, зависящее от природы мономеров и условий реакции, происходит внезапное разделение реакционной смеси на две части нерастворимый гель и растворимый золь, который может быть отделен от геля путем экстракции растворителями. Этот момент называется точкой гелеобразевания, а значение р, отвечающее ей,— критической степенью завершенности реакции ( р). [c.69]

    Исследование кинетики полимеризации алкилзамещенных этилениминов осложнено особенностями растворимости соответствующих полимеров. Так, поли-(2,2-диметил)этиленимин в противоположность ПЭИ нерастворим в воде и растворим в эфире. Это затрудняет применение вискозиметрических методов для изучения кинетики полимеризации. Для определения скоростей реакции авторы использовали отгонку непрореагировавшего мономера из щелочного раствора реакционной смеси. [c.163]

    Самый распространенный класс ПАВ — это анионные ПАВ. Осаждение ПАВ в водных растворах — явление огромного значения для таких областей применения, как моющие средства и добыча нефти. Анионные ПАВ чувствительны к высоковалентным катионам системы последние вызывают их осаждение. В определенных продуктах смешение анионных и неионогенных ПАВ в значительной степени повышает их устойчивость к действию солей. Анионная активность ПАВ примерно пропорциональна концентрации каждого мономера этих веществ. В равновесных условиях осаждение возникает, когда активность аниона ПАВ и активность противоиона выше растворимости продукта ПАВ и соли. Процесс мицеллообразования можно рассматривать в качестве конкурирующего с процессом осаждения каждого мономера и противоиона. Причина повышения устойчивости к действию солей — усиленное мицеллообразование, приводящее к снижению концентрации мономера. Этого можно добиться добавлением неионогенного ПАВ к системе анионного ПАВ. При их смешении обычно наблюдается синергетический эффект мицеллобразования в смеси, и параметр взаимодействия смеси ПАВ будет отрицательным (от -3 до -5). Это следствие того, что гидрофильные группы неионогенного ПАВ могут включаться между гидрофильными группами анионного ПАВ, снижая таким образом электростатическое отталкивание между заряженными анионными группами, и в то же время снижая плотность заряда и электрический потенциал на поверхности мицеллы. [c.210]

    Для определения эффективной степени прививки образцов использовали два метода экстракцию в аппарате Соксдета и экстракцию вымыванием. При вымывании образец привитого сополимера в найлоновом мешочке (найлон с плотным плетением) помещали в широкий сосуд, содержащий низомолекулярпый растворитель для прививаемого мономера. Растворитель меняли несколько раз, а но нерастворивщемуся остатку полимера рассчитывали эффективность прививки. Растворимость каучука в растворителе, выбранном для вымывания, известна, и поэтому увеличение ма сы нерастворимой части объясняют образованием привитого сополимера. Эффективную степень прививки рассчитывали по формуле  [c.177]

    Методом С. п. получают полимеры иэ плохо растворимых в воде мономеров, вапр. эфиров акриловой н метакриловой к-т, стирола, дивинилбензола, винилацетата, винилхлорида, винилиденхлорида и их смесей с др. мономерами. Процесс осуществляют при обьемном соотношении вода мовомер от 1 до 4 и интенсивном пе мешивании, обмпечивающем требуемое диспергирование мономера в воде, определенный гранулометрич. состав и пористость полимерных зерен. Из полученной суспензии отгоняют остаточный мономер, полимер отделяют от воды, сушат, рассеивают и упаковывают. [c.555]

    В неглубоко замороженных многокомпонентных растворах часть массы низкомолекулярной жидкости остается незакристал-лизованной. При этом молекулы незамерзшего растворителя сохраняют достаточно высокую подвижность в этих микроучастках, т. е. НЖМФ, макроскопически замороженного образца концентрируются растворимые вещестйа, также обладающие определенной молекулярной (мономеры) или сегментальной (полимеры) подвижностью. [c.74]

    По этим данным и по площади поверхности частиц, определенной из электронных микрофотографий, вычислена средняя площадь, занимаемая растворимым компонентом молекулы стабилизатора ( молекулярная площадь ). Корень квадратный из молекулярной площади принят в качестве меры линейного расстояния между точками присоединения растворимых полимерных цепей стабилизатора. Использованный стабилизатор представлял собой привитой сополимер, в котором растворимый компонент, полигидроксистеариновая кислота, присоединена к якорной цепи сополимера метилметакрилата с метакриловой кислотой. Полиме-ризовали метилметакрилат или его смеси с небольшим количеством другого акрилового мономера в среде алифатического углеводорода. Стадию зарождения ( затравку ) проводили, полимеризуя небольшое количество акрилового мономера в растворе привитого сополимера в углеводороде, после чего для обеспечения контролируемого роста частиц медленно прибавляли основное количество мономера, а также стабилизатор дисперсии. Результаты, полученные для дисперсий с различными размерами частиц, приведены в табл. И 1.6. [c.65]

    В то время, как сформулированные выше качественные суждения о ходе процесса весьма убедительны, оснований для их количественной проверки очень мало и необходимы более полные экспериментальные данные для определения используемых в теории параметров. В частности, почти полностью отсутствуюг данные о межфазном натяжении между полимерами и углеводородными разбавителями, не говоря уже о том, как на него влияет присутствие мономера или стабилизаторов. Обнаружена также некоторая зависимость межфазного натяжения от молекулярной массы низших олигомеров [85], однако этот фактор не учитывали в проведенных здесь теоретических рассмотрениях. Кроме того, практически отсутствуют количественные данные о соотношениях растворимости для применяемых пар полимер—разбавитель, или о значениях %, которые могли бы быть использованы в оценках. [c.197]

    Стереоспецифическая полимеризация под влиянием растворимых комплексов редко наблюдается для олефинов, но представляет собой обычное явление для ненасьщенных мономеров с функциональными группами, способными участвовать в комплексообразовании. Это относится к диенам, где в образовании переходного комплекса могут принимать участие обе двойные связи, и к простым виниловым эфирам. Образование координационных связей между катализатором и двумя различными электронодопорными центрами мономера способно придать строго определенную конфигурацию молекуле мономера в переходном состоянии, чем мол - [c.420]

    Полимеризация окиси этилена сопровождается образованием большого количества гомополимера, возможно, в результате реакции переноса цепи на мономер. После удаления полистирола ци-клогексаном и нолиэтиленоксида метанолом были выделены фракции трехблочного и блок-сонолимера с содержанием окиси этилена 41 и 93% (состав определен по результатам элементного анализа), отличающиеся различной степенью растворимости в метаноле. [c.63]


Смотреть страницы где упоминается термин Растворимость мономеров, определение: [c.119]    [c.234]    [c.279]    [c.97]    [c.96]    [c.54]    [c.347]    [c.161]    [c.53]    [c.171]   
Руководство по анализу кремнийорганических соединений (1962) -- [ c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Растворимость определение



© 2024 chem21.info Реклама на сайте