Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсированная система, условие

    Чем больше отклонения от идеального поведения в рассматриваемой системе, тем больше отличаются парциальные давления паров компонентов от величин, вытекаюш их из закона Рауля, и тем больше возможное отличие величины 71/72 от единицы. В неидеальной системе условие а = 1 может выполняться только при определенной концентрации жидкой фазы. При этом составы жидкости и пара становятся одинаковыми, как это видно из уравнения (IV-96), т. е. жидкая смесь, для которой а = 1, испаряется, а паровая — конденсируется без изменения состава. Таким образом, при а = 1 в системе образуется азеотропная смесь. В зависимости от характера отклонений от идеального поведения различают положительные и отрицательные азеотропы. [c.138]


    Как отмечалось выше, нефтепродукты в реальных условиях хранения, транспортирования и применения практически всегда содержат растворенную или свободную воду, которая может конденсироваться на металлических поверхностях. Поэтому эффективность ингибиторов коррозии и защитных присадок во многом будет зависеть от их способности проявлять свое ингибирующее действие в системе нефтепродукт + вода + металл. [c.291]

    Интерес к изучению состава твердых парафинов, смазочных масел, газойлей и тяжелых керосинов привел к необходимости разработки различных систем ввода, а также других приспособлений, необходимых для получения масс-спектров при повышенных температурах. Одной из проблем, с которой приходится при этом сталкиваться, является требование, чтобы образец полностью испарялся в системе ввода. Это означает, что нельзя допустить образования холодного пятна , на котором часть образца могла бы конденсироваться и, следовательно, теряться .При исследовании средних дистиллятов и парафинов низкого молекулярного веса это условие может быть легко выполнено, однако для полного испарения парафинов высокого молекулярного веса ы смазочных масел требуются температуры около 370°. В таких случаях довольно существенным является однородность тем- [c.351]

    Применение бензинов с высоким содержанием низкокипящих фракций, кроме образования паровых пробок, сопровождается обледенением карбюратора и увеличением потерь бензина при хранении и транспортировании [4]. Обледенение карбюратора происходит из-за резкого снижения температуры во впускной системе за счет испарения низкокипящих фракций бензина. Тепло, необходимое для испарения бензина (теплота испарения), отнимается от воздуха, в котором происходит испарение, и от металлических деталей карбюратора и всей впускной системы. Чем больше в бензине низкокипящих фракций, тем ниже температура топливовоздушной смеси. При определенных условиях влага, присутствующая в воздухе, вымерзает и конденсируется на холодных деталях, образуя корочки льда. При повышенной влажности воздуха дроссельная заслонка может примерзнуть к диффузору и двигатель остановится. / [c.20]

    Выражение для константы равновесия, относящееся к определенным условиям проведения реакции, дает сведения об отношении концентраций продуктов к концентрациям реагентов в состоянии, когда прямая и обратная реакции взаимо скомпенсированы. На константу равновесия не влияют изменения концентраций реагентов и продуктов. Однако если имеется возможность непрерывно выводить продукты из реакционной смеси, то тем самым реагирующая система может постоянно удерживаться в неравновесном, несбалансированном состоянии. В этих условиях возникает необходимость во все новых количествах реагентов и происходит непрерывное образование все новых количеств продуктов. Такой способ проведения реакции осуществим, если один из продуктов реакции может выделяться из реакционной системы в виде газа, конденсироваться или вымораживаться из газовой фазы в виде жидкости или твердого вещества, вымываться из газовой смеси потоком жидкости, в которой он обладает повышенной растворимостью, либо осаждаться из газа или раствора. [c.189]


    При низких температурах водяные пары могут конденсироваться в технологических системах, создавая условия для образования гидратов — твердых кристаллических веществ, которые закупоривают рабочие пространства трубопроводов и аппаратов, нарушая нормальные условия эксплуатации объектов транспортирования и переработки газа. Температура, при которой водяные пары, содержащиеся в газе, конденсируются называется точкой росы газа ио воде при данном давлении. [c.286]

    Рассмотрим теплообменные поверхности, для которых выполняются условия Лв>1 и Дв>1. Практической реализацией таких поверхностей является наружное обтекание пучка стержней с внутренним тепловыделением или системы жидкий металл — газ, конденсирующаяся (кипящая) жидкость — газ, жидкость высокого давления — газ низкого давления. В этом случае можно положить Лн= =Дн=0. Тогда (4.13) упрощается и принимает вид (при г=н) [c.67]

    Идеальный хладагент пе должен обладать токсическими и коррозионными свойствами. Его физические свойства, в частности сжимаемость (р7Г-свойства), должны соответствовать требованиям системы, а скрытая теплота испарения должна быть достаточно высокой. Многие материалы отвечают этим требованиям, однако практически выбирается то вещество, которое имеет необходимые физические свойства и способно испаряться и конденсироваться прй значительных давлениях в условиях необходимого температурного режима. [c.183]

    Поскольку концентрация на границе раздела неконденсирующегося газа отличается от состава пара в объеме, соответствующие эвтектические составы различны. Следовательно, диаграмму температура — состав бинарной системы, использованную выше, нельзя применить для описания процесса конденсации в данном случае. Пути конденсации теперь задаются с помощью треугольной диаграммы (рис. 7). Три компонента системы изображены тремя углами треугольной диаграммы I и 2 — конденсирующийся газ 3 — неконденсирующийся газ. Линия ЗЕ является эвтектической, точка Е соответствует эвтектическому составу в отсутствие неконденсирующегося газа. Установлено, что для большого числа систем эвтектическая линия ЗЕ близка к прямой [7]. Условия на границе раздела должны соответствовать линии ЗЕ, когда оба пара конденсируются. Любая другая точка границы раздела на диаграмме будет соответствовать случаю, когда конденсируется только один из трех комионентов. [c.358]

    Концентрирование водорода представляет собой по существу задачу отделения водорода от метана, поскольку другие углеводороды конденсируются при более высокой температуре, чем метан. Равновесие системы водород — метан определяет режимные условия по температуре, необходимые для получения водорода требуемой степени чистоты. На рис. 15 [2] показана зависимость концентрации получаемого водорода от температуры при различном давлении. Конденсацию метана ведут нри 2—6 МПа. Как видно из рисунка, водород с концентрацией 95% Hg можно получить при давлении [c.43]

    Технические условия. Для предотвращения аварий, вызываемых короблением, уменьшения влияния выделяющегося в поршневом двигателе внутреннего сгорания тепла на центровку подшипников, ход поршней и т. д. важно поддерживать температуру двигателя на каком-то определенном уровне. Кроме того, температура должна быть достаточно высокой, чтобы водяные пары в газах, проникающих из цилиндров в картер, не конденсировались, а удалялись через суфлер. В то же время температура не должна быть весьма большой, чтобы смазочное масло не портилось вследствие окисления или в результате крекинга. Для минимизации размеров радиатора желательно, чтобы система охлаждения работала при максимальной возможной температуре, чем обеспечивалась бы практически максимально достижимая разность температур между охлаждающей двигатель жидкостью и охлаждающим радиатор воздухом. С другой стороны, чтобы свести к минимуму потери при испарении охлаждающей жидкости, следует поддерживать температуру системы нил<е точки кипения охлаждающей жидкости. Поэтому в системе должно поддерживаться некоторое давление, не превышающее, однако, значений, допустимых из условий надежности работы простых соединительных резиновых шлангов. Опыт показывает, что оптимальной с точки зрения указанных требований является температура в интервале 82—93° С. [c.217]

    Масса огнеупорной кладки современной коксовой батареи составляет до 20 тыс.т. Содержание влаги в кирпиче может составлять до 1,5%, а влажность высохших материальных швов находится на уровне 20—30%, поэтому в процессе сушки из кладки батареи удаляется более 700 т влаги. Ее полное удаление достигается при нагреве массива до ПО—125°С. Огромный массив кладки невозможно нагреть одновременно одинаково и равномерно, и влага, удаляющаяся из более нагретых участков печного массива, может конденсироваться на более холодных участках. Нагрев ведут таким образом, чтобы температура теплоносителя на выходе из системы была выше температуры точки росы. Это можно осуществить только соблюдая условие очень высокого коэффициента избытка воздуха порядка 25—30. После того, как влага удалена, начинается собственно разогрев кладки. Сушка и разогрев следуют один за другим и имеют одинаковую схему движения теплоносителя. Практически установлено, что сушка должна длиться 9—10 дней и суточный подъем температуры огнеупорной кладки не должен превышать 9—10°С. [c.126]


    КИХ фракциях. Например, при выработке масла МС-8 П масляная фракция с вязкостью 7,8-8,8 мм2/с при 50°С из-за нечеткой ректификации в вакуумной колонне АВТ содержит не менее 5% компонентов, выкипающих до 300°С /см.табл. 2/. При температуре верха отпарных колонн 2бО-270°С часть легкокипящих компонентов сырья выносится с парами при удалении остатков фенола из рафината и экстракта водяным паром. При смешении паров с экстрактным раствором легкое масло конденсируется и циркулирует в системе регенерации это приводит к изменению величины потоков, увеличивает энергозатраты на многократное перекачивание, частичное испарение и конденсацию и нарушает режим установки. Содержание масла в феноле достигает 15%, при этом нарушается режим экстракции, ухудшается качество и снижается отбор рафината. Неполная конденсация паров легкого масла экстрактным раствором увеличивает давление в отпарных колоннах, нарушает нормальный переток рафинатного и экстрактного растворов в колонны и ухудшает условия отпарки фенола. Повышение расхода водяного пара не приводит к положительным результатам, так как при этом увеличивается отгон легких фракций и повышается давление в колоннах. [c.64]

    Как и все научные истины, закон постоянства состава отражает предельное, идеальное положение вещей. Реальные твердые вещества, как и газообразные и жидкие вещества, в обычных условиях находятся в состоянии некоторой диссоциации и в той или иной мере взаимодействуют с окружающей средой, испаряются и одновременно конденсируются или растворяются и осаждаются, сорбируют различные вещества из окружающей среды и вместе с тем десорбируют их. В результате, если вещество находится в замкнутом объеме, при постоянных условиях, его состав колеблется возле некоторого среднего значения, в проточных же системах медленно либо быстро изменяется. [c.12]

    Иногда говорят, что область слева от изотермы Г=Г р (рис. 51, с. 186) соответствует парообразному состоянию, а справа от нее — газообразному. Однако в таком делении нет настоятельной необходимости и вряд ли оно целесообразно. По существу термины пар и газ можно считать синонимами. Пар, в отличие от газа, конденсируется при изотермическом сжатии, но это вовсе не означает, что между их свойствами существует коренное различие. Такое искусственное разграничение не по свойствам системы, а по ее поведению в определенных условиях имеет еще один недостаток. Поясним его на примере. Вряд ли целесообразно двуокись углерода при Г < (Гкр)со, называть углекислым паром, а перегретый выше (Гкр)н о водяной пар — водяным газом. Термин перегретый пар, относящийся к области под кривой Р —ф(Г), не может вызвать подобных недоразумений, так как он свидетельствует о возможности конденсации пара путем изобарного охлаждения. [c.198]

    Подъемники, при помощи которых в системе циркулирует катализатор, могут быть ковшевого (механический транспорт) или пневматического типа. Ковшевые подъемники (элеваторы) применялись на старых установках и отличались большей сложностью в конструктивном отношении по сравнению с пневматическими. Надо учесть, что работа на установке характеризуется необычно большой высотой подъема, превышающей 60 м., и тяжелыми температурными условиями (выше 480°). Кожух элеватора должен быть герметичным, так как там поддерживается атмосфера инертного газа. Кожух покрыт изнутри слоем изоляции. В подъемниках ковшевого типа промежутки между ковшами берутся минимальными для того, чтобы поток катализатора приближался к непрерывному. Наиболее изнашиваемые детали выполняются из специальных (легированных) сталей. Подъемники имеют отдушины в атмосферу, что исключает попадание воздуха в реактор или углеводородов в регенератор. Большие количества водяного пара в подъемниках недопустимы, так как, кроме отравления катализатора, пар будет еще просачиваться через внутреннюю изоляцию и конденсироваться на внутренней поверхности кожуха подъемника. На некоторых установках имеется только один подъемник каждый ковш здесь разделен на секции для отработанного и регенерированного катализатора. [c.229]

    Равновесие в гетерогенных системах зависит от давления, температуры и концентрации. Эти параметры можно изменять (в известных пределах) без нарушения равновесия. Например, если при постоянной температуре сжимать насыщенный пар (увеличивать давление), то пар частично конденсируется, но система все равно останется двухфазной — пар и жидкость. Охлаждение насыщенного раствора соли приведет к дополнительному выпадению кристаллов, но двухфазность системы сохранится. Число условий (температура, давление, концентрация), которые можно менять произвольно (в известных пределах), не изменяя числа и вида фаз системы, получило название числа степеней свободы. Соотношение между числом фаз, компонентов и степеней свободы в равновесной гетерогенной системе было получено Гиббсом (1876 г.), это соотношение называется правилом фаз  [c.52]

    Содержание в нефтяных и природных газах водяных паров регламентируется, так как они могут конденсироваться в технологических системах, в результате чего будут создаваться условия для образования гидратов (твердых кристаллических веществ), которые закупоривают рабочие пространства трубопроводов и аппаратов и нарушают нормальные условия эксплуатации объектов добычи, транспортировки и переработки газа. Кроме того, при наличии в газе паров воды и сернистых соединений (Н23 и др.) могут создаваться условия для возникновения коррозии металлов, а следовательно, наличие водяных паров может приводить к преждевременному износу и разрушению оборудования, трубопроводов и аппаратуры ГПЗ и других объектов. [c.115]

    Подогреватели ПНД и ПВД находятся под действием питательной воды котлов и отборного пара паровых турбин, который, конденсируясь, образует дренажи с различным содержанием Игольной кислоты - диоксида углерода. Содержание его в различных частях трубчатой системы ПНД и ПВД может достигать в зависимости от степени конденсации греющего пара нескольких миллиграмм на 1 кг сконденсированного пара. Особенно велика концентрация его в дренажах ПНД и ПВД при недостаточных отсосах неконденсирующихся газов (СО2 и О2) из паровых полостей этих видов оборудования. В этих случаях наблюдается интенсивная коррозия, особенно ПВД, трубчатая система которых изготовлена из стали перлитного класса. Температура среды в зависимости от параметра пара объекта может достигать 300 °С. При этих условиях протекает коррозия с водородной деполяризацией, которая сопровождается наводораживанием металла. Коррозия носит в основном равномерный характер с образованием трещин и появлением хрупких разрушений [12]. [c.79]

    При обработке питательной воды аммиаком могут создаваться условия для возникновения коррозии конденсаторных трубок со стороны конденсирующегося пара в присутствии наряду с аммиаком кислорода, поступающего с присосом воздуха в вакуумные системы. Установлено, что подобная коррозия и ее локализация существенно зависят от конструктивных особенностей конденса- [c.196]

    Рис. 82—86 подтверждают коррозийную агрессивность. газов, прорывающихся из камеры сгорания в картер двигателя, еслп из-за недостаточной эффективности системы вентиля- ции картера газы задерживаются и конденсируются в двигателе. На рис. Увиден сильно корродированный поршень, снятый с двигателя после пробега 4800 км грузовым автомобилем, используемым для перевозки угля в городских условиях, при которых значительную часть времени двигатель работал На холостом ходу. На рис. 83 показаны поврежденные коррозией бобышки этого же поршня. [c.372]

    В эксплуатационном цикле печи нагрев проводится при подъеме температуры до 300—350 °С со скоростью 30—50 °С в час и далее — со скоростью 50—100 °С в час. При достижении температуры на выходе из змеевиков 760 °С в условиях, когда система получения пара высокого давления в закалочно-испарительном аппарате задействована, начинают подавать сырье в печь. Пуск печи осуществляется за 20—40 мин. При более низких температурах подачи сырья материал труб змеевика становится менее пластичным, что понижает надежность его эксплуатации при более высоких температурах пуска, как и при более длительном пуске, в продуктах разложения сырья образуется большое количество высокомолекулярных соединений. Последние интенсивно конденсируются и полимеризуются на чистых и холодных (330 °С) трубках ЗИА, что снижает длительность пробега печного блока. [c.170]

    На верху колонны Т-101 температура поддерживается в пределах от 130 до 160 С. При этих условиях через верх колонны удаляются пары воды и незначительная часть ксилолов. Все это конденсируется и охлаждается в воздушных конденсаторах, холодильниках Е-102/1,2 и с температурой не более 60 С поступают в емкость орошения Д-101, где происходит отстой жидкого продукта на 2 слоя — водный и ксилольный. Обезвоженный ксилольный слой накапливается за перегородкой, откуда по уровню насосом Р-102/А,В,С подается на орошение верха Т-101. Расход орошения зависит от заданной температуры верха. Отстоявшаяся в емкости вода по уровню сбрасывается в промканализацию. Для поддержания необходимой кислотности в системе орошения из-за накопления ионов хлора, в Д-101 или в линию орошения колонны подается раствор аммиачной воды с концентрацией 0,3-1%. Расход ее производится в зависимости от pH дренируемой из емкости воды, которая должна иметь этот показатель в пределах 7-8,5. [c.154]

    Теория Семенова хорошо описывает Т. с. в жидких ВВ при перемешивании, а также в др. конденсиров. системах при слабом теплообмене с окружающей средой. Еслн теплообмен осуществляется лишь посредством теплопроводности, критич. условие Т.е. определяется т. наз. критерием Франк-Каменецкого  [c.427]

    В условиях дорожных испытаний, проводившихся восьмичасовыми этапами, отбирали пробы выхлопных газов, пропуская через специальную конденсирующую систему 19, 8 выхлопных газов. Конденсирующая система состояла из устройства для отдельных углеродистых частиц и воды и трех ступеней охланедения ири 0°, —25° и —65°. После отбора пробы конденсирующую систему направляли в лабораторию, где под вакуумом разделяли конденсат и анализировали полученные фракции масс-снектро-метром. В воде, содержащейся в выхлопных газах, количественно определяли альдегиды и кетоны. Метод определения основан на получении производных 2,4-динитрофенилгидразина и соответствующих альдегидов и кетонов и хроматографическом разделении их на индивидуальные соединения. Полученные низкомолекулярные соединения идентифицировали путем определения точек плавления и инфракрасных спектров поглощения. Высокомолекулярные соединения хроматографически разделяли на группы алифатических и ароматическйх альдегидов и кетонов. Кроме того, в воде определяли содержание органических кислот и нитратов. Кроме воды и газа, в конденсате были найдены высокомолекулярные органические соединения, состоявшие из несгоревшего топлива, полициклических ароматических соединений (присутствие 3,4-бензпирена не обнаружено) и окисленных углеводородов (альдегиды, кетоны, небольшое количество органических кислот). [c.205]

    В присутствии межфазных катализаторов ускоряется также образование бисульфитных производных ароматических альдегидов [1729]. Более необычным является опубликованный недавно трехфазный метод, который осуществляется в условиях кислотного катализа на полистиролсульфокислотной смоле растворенные в бензоле ароматические кетоны конденсируются с формальдегидом (водным), давая 4-арил-1,3-диоксаны с почти количественным выходом [1652]. При комнатной температуре и перемешивании в течение 30 мин был осуществлен синтез гли-цидных нитрилов О с выходом 55—80% из ароматических или алифатических альдегидов и кетонов и хлорацетонитрила в стандартной системе концентрированный раствор гидроксида натрия/катализатор [448, 1492, 1759]. При этом несимметрична [c.233]

    Однако при сгорании любые сернистые соединения, в том числе и неактивные, образуют 02 и SOg. В условиях, при которых из продуктов сгорания начинает конденсироваться вода, S Og и SOg соединяются с ней, образуя соответственно сернистую и серную кислоты. Кислоты, образующиеся в выпускноГ системе двигателя в период прогрева, вызывают коррозию её деталей. При работе прогретого двигателя наблюдается газовая коррозия цилиндра, поршня и выпускных клапанов серным ангидридом. [c.49]

    Необходимым условием хорошей работы масляного насоса является правильная сборка поглоти-тельной системы, устанавливаемой между насосом и вакуумируемым прибором. Она должна, во- первых, обеспечивать надежную защиту насоса от любых паров, легко конденсирующихся газовиагрес- [c.42]

    Паровое отопление основано на том, что сухой или влажный насыщенный водяной пар, конденсируясь в нагревательных приборах, выделяет скрытую теплоту парообразования и передает ее в помещение через стенки прибора, а конденсат стекает по коиденсатопроводу обратно в котел для повторного превращения в нар. Паровое отопление имеет ряд серьезных недостатков высокая труднорегулируемая температура теплоносителя (всегда выше 100 и до 150 С) может служить инициатором воспламенения горючих веществ, угрожает ожогами, пригоранием пыли и создает дискомфортные условия. Эта система отопления использовалась на старых заводах до 1960 г. и теперь пе применяется. [c.85]

    Как будет показано ниже, в вихревой трубе происходит организованное течение газа в высоконапряженном поле центробежных сил со сложной структурой при непрерывном изменении всех характеризующих газ параметров. Безусловно, при влажном газе, при наличии конденсирующих компонентов, а также жидкой или твердой дисперсной фаз процессы, протекающие в вихревой трубе, должны еще больше усложняться. При этом следует ожидать значительной интенсификации процессов конденсации и сепарации. При движении парогазовых смесей в каналах сопловых вводов (пар одного компонента) условием конденсации является пересыщение пара и, чем быстрее идет расширение смеси, тем к большему пересыщению приходит система, что приводит к конденсации. Как следует из данных А. Стодола, исследовавшего конденсацию водяного пара в сопле, в этих условиях возможна и гомогенная конденсация даже при наличии некоторой доли дисперсной фазы (данные представлены в монографии Л. Е. Стернина [6]). При медленном расширении пара в сопле пересыщение может и не происходить, так как пар успевает конденсироваться на посторонних частицах. Из этого следует, что для начала конденсации важную роль играет промежуток времени, в течение которого создается пересыщение. В монографии отмечается и такой факт, что при наличии в потоке газа даже небольшого количества другого вещества с более высокой температурой и давлением насыщения в первую очередь происходит гомогенная конденсация этого вещества с образованием большого количества зародышей, на которых в дальнейшем конденсируется основной компонент. Пересыщение пара при этом может и отсутствовать. О том, что конденсация в соплах возможна, можно сделать вывод, если сопоставить уравнение Клаузиуса-Клайперона (1.2) и уравнение изменения давления при адиабатическом расширении в сопле совершенного газа  [c.10]

    После конвертора окиси углерода парогазовая смесь с температурой 430 °С поступает в котел-утилизатор и водоподогреватель 10, где охлаждается до 115 °С. Конверсия и утилизация тепла производятся двумя потоками. После котлов оба потока объединяются и поступают в скруббер 11, где охлаждаются водой до 30—40 °С. При этом непрореагировавший водяпой пар, содержавшийся в газе, конденсируется. Тепло конденсации водяных паров не используется. Объясняется это тем, что давление в системе близко к атмосферному, а парциальное давление водяных паров в газе ниже атмосферного, и температура конденсации не превышает 70 °С. В таких условиях использовать тепло конденсации водяных паров в процессе регенерации поглотителя для очистки от СО невозможно. Именно поэтому при работе под давлением, близком к атмосферному, применяют очистку водным раствором моноэтаноламина в абсорберах 12. Полученный водород сжимается компрессором до 5 МПа и подается потребителю. Отсутствие в схеме низкотемпературной конверсии СО и метанирования приводит к повышенному содержанию в водороде окислов углерода. [c.133]

    Во-вторых, избыток спирта начинает испаряться, и содержание его в паровой фазе повышается. Одновременно в паровой фазе нефтяной системы возможны процессы частичной конденсации паров, что приводит к появлению микрокапель жидкости. В условиях эксперимента это приводит к сорбции поверхностно-активных молекул спирта на поверхности микрокапель, что оказывает влияние на фазовое равновесие жидкость-пар. Так, понижение поверхностного натяжения микрокапель за счет сорбции молекул спирта приводит к уменьшению радиуса термодинамически стабильных микрокапель, а следовательно, к повышению давления насыщенного пара и торможению процесса испарения. Понижение радиуса микрокапель конденсирующегося пара может происходить в системе при избытке спирта также и вследствие процесса диссоциации взаимодействующих молекул. [c.113]

    Этот показатель определяет условия транспорта углеводородного газа в однофазном состоянии. Наличие конденсирующихся углеводородов в транспортируемом газе может приводить, ири определенных термодинамических условиях (Р, г) в системе, к выделению конденсата, что снижает пропускную способность магистральных газопроводов, увеличивает потребную мопщость компрессорных агрегатов, так как с повышением плотности кон-денсатного газа возрастает необходимая мощность центробежных нагнетателей. [c.284]

    Сочетание фракционированной конденсации с низкотемпературной ректификацией. Для фракционировки природного газа, чаще более тощего,, применяется третий тип установок, в которых большие количества метана начала отделяются от этана и вышекипящих простым методом однократного частичного ожижения с расширительным или внешним охлаждением. При нормальном давлении метан и этап далеко отстоят друг от друга по температурам кипения ( — 161,4° и —88,3°), но ири повышенных давлениях и низких температурах разделение их сильно затрудняется вследствие ретроградного увеличения констант равновесия этана и вышекипящих углеводородов в этих условиях. Это приводит к резкому падению относительной летучести метана и малому извлечению этана при однократной конденсации. По такой схеме работает завод в Габе (США, штат Кентукки), выделяющий из тощего природного газа этан, пропан, бутан и более тяжелые углеводороды [20), (рис. IV. 13). Производительность завода по сырью 21 млн. газа в суткн. Природный газ под давлением 40 ата обезвоживается и затем охлаждается до температуры — 65- --75°, при этом конденсируется значительное количество этана и более тяжелых компонентов. Сконденсированная жидкость-отделяется в сепараторе 4, а остаточный газ после теплообмена с входящим сырьем компримируется и возвращается в газопровод. Ожиженные компоненты дважды испаряются в 5 и б ири последовательно снижающемся давлении и затем ректифицируются для выделения фракций этана и вышекипящих углеводородов. Холодные продуктовые потоки доводятся до обычной температуры теплообменом с конденсирующимися хладагентами этано-пропановой каскадной системы, которая покрывает недостачу холода в процессе. [c.174]

    Давление в роторно-дисковом контакторе поддерживали на уровне, обеспечивавшем жидкофазное состояние всех компонентов системы. Сырье вводили в низ экстрактора, рабочая высота которого составляла 1,8 м, что эквивалентно примерно 9 единичным ступеням разделения. Колонна экстрактивной перегонки работала под повышенным давлением температуру в кипятильнике поддерживали в пределах 175— 190°С. Растворитель вместе с ароматическим концентратом подавался вблизи верха колонны при температуре, поддерживавшейся в экстракторе. Поток, отбираемый с верха колонны экстрактивной перегонки, конденсировали и возвращали в качестве циркулирующей промывной среды в экстрактор. Нижний продукт, содержащий растворитель и чистый ароматический углеводород, направляли в регенерационную колонну, работавшую под пониженным давлением при температуре в кипятильнике 165—180°С.. Давление поддерживали на уровне, обеспечивавшем легкую конденсацию отгоняющегося верхнего погона охлаждающей водой. Небольшой поток воды подводили в низ регенерационной колонны для отдувки остаточных углеводородов из растворителя. При заданных условиях в кипятильнике регенерированный растворитель содержал около 0,6% вес. воды. Материальный баланс для этого опыта приводится в табл. 4. Фактическая чистота ароматического экстракта была около 99,99% (по данным газожидкостного хроматографического анализа). Из экстракта, после очистки его отбеливающей глиной, простой ректификацией можно получать бензол, толуол и ксилолы, удовлетворяющие самым жестким требованиям спецификаций на аро-матику для нитрования, установленным стандартами ASTM и Национальной ассоциацией бензольной промышленности (Великобритания). [c.236]

    Экстракции летучих компонентов исследуемого образца газом (воздухом, азотом, гелием и др.) в статич. или динамич. условиях, т.е. дискретными порциями или непрерывным потоком экстрагента соответственно. В простейшем случае прямого статического П. а. исходную концентрацию t летучего компонента в исследуемом образце определяют по его концентрации в равновесной газовой фазе, коэф. распределения К = J q (Q-равновесная концентрация компонента в образце) и соотношению объемов газовой (Кс) и конденсир. (v ) фаз г = при этом С = q-(K + г). Даже когда значения К велики (до 1000), пределы обнаружения при П. а. ниже, чем при непосредств. анализе конденсир. фазы, а строгого соблюдения условия термодинамич. равновесия фаз в гетерог. системах с малыми значениями отношения К/(К + г) не требуется. Для повышения чувствительности анализа проводят предварит, концентрирование компонентов в газовон фазе с помощью газовой экстракции с криогенными или сорбционными ловушками летучих компонентов. Определение микропримесей в газах можно проводить методом П. а. после их концентрирования в жидкостях. [c.447]

    При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - позитрония е е и мюония 1 е . Эти нестабильные системы, часто наз. водородоподобными атомами, их время жизни в в-ве в большой степени зависит от св-в в-ва, что позволяет использовать водородоподобные атомы ддя изучения структуры конденсир. в-ва и кинетики быстрых хим. р-ций (см. Мезонная химия, Ядерная химия). [c.470]

    Тепловая теорема Нернста (7 32) относится к конденсиро ванным системам следовательно уравнение (7 36) в котором равенство,нулю константы интегрирования получено с помощью выражаемых этой теоремой закономерностей ограничено этим же условием Для реакций в газах / О Кроме того как это было сказано при рассмотрении закона Кирхгофа [см уравне ние (3 12)1 выражение АН при существовании фазовых превра щении и разрывов зависимости теплоемкости от температуры должно быть усложнено [c.133]

    Определение зависимости давления паров от температуры для веществ, являющихся при обычных условиях газами, производится обычно следующим образом. Исходный газ из баллона, где он находится под давлением, подается в прочную, рассчитанную на давление металлическую ампулу, которая помещается в криостат. В нем поддерживается температура ниже темнера- туры конденсации газа. Если о бъектом исследования является смесь газов, то температура в криостате должна быть ниже температуры конденсации всех компонентов. После загрузки нуж- иого количества газа ампула выдерживается в криостате нри определенной температуре, и фиксируется давление. Давление измеряется с помощью манометра, соединенного с ампулой металлическим капилляром. Если давление изменяется в широких пределах, то используют несколько манометров, рассчитанных на различные диапазоны измерений. Наибольшую трудность при использовании описанной техники исследования представляет точное измерение низких температур и сравнительно высоких давлений. Эти вопросы широко освещены в литературе, посвященной технике экспериментальных работ. Отметим лишь, что для получения нрави-чьных результатов нужно, чтобы газ не конденсировался в системе для измерения давления. Для этого она [c.49]

    Реакция. Синтез производного хинолинкарбоновой-4 кислоты из изатина и метилкетона в щелочной среде (синтез хинолина по Пфит-цингеру). При этом происходит раскрытие изатиновой системы с образованием аниона о-аминоарилглиоксалевой кислоты, который (благодаря наличию а-оксогруппы) конденсируется с метилкетоном в условиях основного катализа, давая хинолин (альдольная конденсация, внутримолекулярное образование имина). [c.384]

    Далекая экстраполяция такого рода становится слишком неопределенной, и в общем случае в системе с неконденсирующимися компонентами приходится использовать так называемую несимметричную нормировку коэффициентов активности, которая состоит в следующем. Для каждого из конденсирующихся компонентов сохраняется определение стандартного состояния как состояния чистой жидкости, и остаются справедливыми соотношения (VII.13)—(VII.16). За стандартное состояние каждого неконденси-рующегося компонента принимают гипотетическое состояние чистого компонента, совпадающее с его состоянием в бесконечно разбавленном растворе при давлении и температуре системы коэф фициент активности компонента в условиях предельного разбавле ния принимается за единицу  [c.162]

    Отвод теплоты реакции в основном осуществляется за счет испарения азеотропной смеси ВА и воды, конденсирующейся в обратных холодильниках 5 ч 6 20% теплоты отводится через ру-бащку аппарата. Для облегчения- условий работы системы теп-лосъема ВА и перекись водорода подаются в 3—5 приемов. Температура полимеризации вначале определяется температурой кипения азеотропной смеси ВА —вода (65—68°С), по мере протекания реакции и уменьщения содержания мономера температуры реакционной смеси поднимается до 70—75 °С, при этом она не должна превышать 92 °С. [c.53]


Смотреть страницы где упоминается термин Конденсированная система, условие: [c.168]    [c.179]    [c.314]    [c.10]    [c.21]    [c.7]    [c.30]    [c.161]   
Физическая химия Том 2 (1936) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Конденсированные ВВ

Конденсированные системы

Пар конденсирующийся



© 2025 chem21.info Реклама на сайте