Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление каталитическое окиси углерода

    Установлено, что поверхности этих активных окисей восстанавливаются окисью углерода. Поэтому возможно, что катализ осуществляется с попеременным восстановлением и окислением поверхности. Этот механизм был предложен Бентоном [161] для окисления на двуокиси марганца. Как скорость восстановления несмешапнога катализатора, так и скорость каталитического окисления на нем пропорциональны давлению окиси углерода. С точки зрения более поздних данных этот механизм, по-видимому, маловероятен при использовании О было показано [162], что скорость восстановления поверхности в 10 раз меньше скорости каталитического окисления. Трудно понять, как добавка кислорода может изменять скорость восстановления поверхности, в особенности если было установлено, что окись углерода, содержащаяся в воздухе, извлекает с поверхности [163] относительно небольшое количество О . Другие механизмы включают реакцию между газами, хемосорбирован-ными на поверхностях окисей, или реакцию между окисью углерода из газовой фазы и кислородом, в той или иной форме хемосорбированным на поверхности. Стоун [164] подверг анализу результаты исследований, проведенных многими учеными, включая ученых бристольской школы, и показал, что имеется качественная связь между активностями различных окисей и их полупроводниковыми свойствами. Наиболее активны окиси р-тииа, дающие измеримые скорости окисления при низких температурах, в некоторых случаях ниже 50°. К их числу относятся двуокись марганца и некоторые из окисей, используемых в гопкалитах. Следующими па активности являются окиси п-типа — окись железа, окись цинка и двуокись титана, действующие в интервале 150—400°, но некоторые собственные полупроводники, вроде окисей меди и хрома, также [c.329]


    Для приготовления катализаторов широко применяют метод пропитки носителя каталитически активным веществом с последующим прокаливанием. Пропитку осуществляют погружением носителя в концентрированный раствор соответствующей соли. Например, тугоплавкий носитель, такой, как каолин, боксит или окись алюминия, погружают в концентрированный раствор нитрата никеля. После пропитки катализатор нагревают в токе азота до удаления окислов азота и образования на носителе окиси никеля. В случае необходимости катализатор подвергают действию водорода для восстановления окиси никеля до металла. Полученный катализатор, содержащий 5—15 вес.% никеля, может быть использован для превращения углеводородных газов с водяным паром в окислы углерода и водород. Если для пропитки солями никеля в качестве носителя используют кизельгур (диатомит), то при достаточной концентрации раствора соли катализатор содержит 65 вес. % никеля и 35 вес. % кизельгура после восстановления получается активный катализатор гидрирования. [c.11]

    Каталитические свойства этих металлов связаны с их адсорбционными характеристиками. Выдающаяся активность рутения в реакции образования метана объясняется меньшим сродством окиси углерода к этому металлу, чем к другим элементам семейства платины. Так, хемосорбированную на рутении окись углерода можно полностью удалить восстановлением или эвакуацией при 150° С в ее присутствии адсорбция водорода увеличивается метан с заметной скоростью образуется уже при температуре около 100° С. Напротив, на платине окись углерода адсорбируется предпочтительно из смеси с водородом и ее не удается полностью удалить указанными способами при 150° С. Промежуточное положение занимают родий и иридий, в отношении которых имеются некоторые доказательства взаимодействия окиси углерода с водородом незначительное количество метана в присутствии этих контактов обнаружено при 200° С. [c.124]

    Подробно рассмотрено [56] использование процесса для удаления окислов азота из газов путем каталитического восстановления до азота. Для этой реакции восстановления применяется описанный выше катализатор. В качестве восстановителя могут применяться такие газы, как водород, окись углерода и метан (или другие газообразные углеводороды). Процесс можно осуществлять при атмосферном или повышенном давлении рабочие температуры охватывают интервал от комнатной до 540° С. Типичная схема установки для проведения процесса под атмосферным давлением изображена на рис. 13.14. Для систем, работающих под повышенным давлением, используют каталитические элементы типа сменного патрона, подобные показанному на рис. 13.15. Газ поступает в реактор через боковой патрубок и по кольцевому зазору, окружающему главный корпус, движется вверх. Вверху направление [c.345]


    Каталитическое восстаиовление. В промышленности большее распространение получило каталитическое восстаиовление молекулярным водородом в присутствии специальных катализаторов. Этот способ дает возможность получать чистые, не загрязненные химическими восстановителями продукты, легко выделяемые из реакционной смесн. Каталитические процессы восстановления протекают в большинстве случаев легко и однозначно, однако, иногда нх не удается осуществить из-за отравления катализатора. Вещества, замедляющие реакцию, например, сероводород, окись углерода, галогенопроизводные и др., являются каталитическими ядами. [c.241]

    Одним из наиболее эффективных методов обезвреживания нитрозных газов является каталитическое их восстановление до безвредного элементарного азота. Катализаторами служат платина, палладий, рутений, а также более дешевые, но менее эффективные — никель, хром, медь. В качестве восстановителей применяют метан, водород, окись углерода, природный и нефтяной газы и др. Реакция восстановления происходит по следующим схемам при применении метана [c.88]

    Каталитические способы восстановления дают возможность получать чистые, не загрязненные восстановителем химические продукты, легко выделяемые из реакционной смеси. Используемые для гидрирования катализаторы не входят в стехиометри-ческое и суммарное уравнение реакции, хотя и вступают во взаимодействие с веществом. Они могут быть как положительные— ускоряющие, так и отрицательные — замедляющие реакцию, — например, сероводород, окись углерода и мыщьяк в процессах каталитического восстановления водородом являются [c.102]

    Для очистки конвертированного газа от СО2 и СО применяются как физические, так и химические методы. Физические методы очистки от двуокиси углерода основаны на повышенной растворимости ее в жидкостях или на конденсации СО2 при умеренном охлаждении. Окись углерода удаляется физическим методом при глубоком охлаждении газа и промывке его жидким азотом. Большинство химических методов очистки конвертированного газа от СО2 и СО основано на абсорбции этих примесей растворами химических реагентов, а в случае тонкой очистки — на каталитическом восстановлении их водородом до метана. [c.153]

    Одним из способов очистки газообразного водорода от кислорода является каталитическое восстановление О2 до воды на металлических катализаторах, например на платине, никеле или палладии [6, 49, 50]. Кислород может быть также адсорбирован активированным углем или силикагелем [16], водяные пары удалены вымораживанием, поглощением окисью алюминия или силикагелем, а также химическим методом (МаОН, КОН). Азот вымораживают или адсорбируют на активированном угле или силикагеле. Метан, аргон, азот и окись углерода удаляют обычно адсорбцией при температуре 80—100 К. Примесь СО2 удаляют из водорода путем вымораживания или промывкой щелочью. [c.28]

    Чтобы выяснить влияние природы топлива на реакции взаимодействия углерода с кислородом, очевидно, необходимо знать прежде всего, какое количество газа (окиси углерода) будет получаться у различных топлив при одних и тех же условиях определения, а также какие при этом будут максимальные температуры в окислительной зоне. Для этого в лаборатории газификации был разработан способ определения газификационных свойств топлива по максимальному содержанию в газе окиси углерода при воздействии кислорода на топливо в условиях, близких к процессу газификации. Имелось в виду, что при взаимодействии углерода с кислородом на направление химического взаимодействия реагирующих компонентов могут влиять такие факторы, как каталитическое действие золы и минеральных включений топлива, качество кокса, поступающего в зону газификации, степень измельчения взятой пробы и т. п. Результаты определений были рассчитаны на то, чтобы составить суждение не только о способности топлива в большей или меньшей степени газифицироваться в окись углерода в сравнении с другим топливом, но и о развивающихся при этом температурах в окислительной зоне. Одновременно учитывалось поведение золы, способной в отдельных случаях влиять на процесс газификации, что невозможно узнать при определении реакционной способности путель восстановления углекислоты коксом. В этом случае необходим подвод тепла для эндотермических реакций извне и постоянная температура в печи для каждого отдельно исследуемого топлива. [c.169]

    Обычный процесс, в котором цикл превращения водяного газа используется для попеременного окисления и восстановления закиси — окиси железа (магнетита), теперь заменен каталитическим процессом конверсии окиси углерода. В обоих случаях углекислый газ можно удалить поглощением под давлением в водяных скрубберах, а остающуюся окись углерода — промывкой аммиачным раствором закиси меди, каталитическим гидрированием в сравнительно малоактивный метан или селективным низкотемпературным сожжением до углекислого газа. При окислении и восстановлений магнетита имеют место следующие приближенные [c.237]


    В первом опыте окись углерода вообще отсутствовала. Восстановление протекало гладко, было достигнуто теоретически рассчитанное падение давления и в продуктах реакции был обнаружен бутиловый спирт. Этот эксперимент показывает, что восстановленный кобальтовый металлический катализатор является достаточно активным для проведения обычных гетерогенных каталитических реакций. [c.153]

    Джонс и Тейлор [34] нашли, что поверхность СиО и меди может быть соответствующим образом активирована для того, чтобы могло произойти каталитическое окисление окиси углерода в ее смеси с кислородом даже при комнатной температуре. Окись углерода образует на поверхности окиси меди ядра металлической меди. Если окись углерода содержит кислород, то он мешает восстановлению, окисляя ядра меди по мере их образования. Если, однако, эти ядра приобрели достаточную стабильность до прибавления кислорода к окиси углерода, то последняя реагирует с кислородом по механизму контактного катализа. Окись меди в смеси с двуокисью марганца является высокоактивным катализатором, который будет рассмотрен ниже в разделе Гопкалиты . [c.296]

    Это объяснение механизма реакции находится в соответствии с объяснением влияния этилена при каталитическом гидрировании окиси углерода [3], согласно которому этилен образует хемосорбированный слой на поверхности кобальтового катализатора, а окись углерода адсорбируется во втором слое (повышение давления благоприятно влияет на процесс). Механизм образования сорбированных слоев и действие водорода, приводящее к восстановлению поверхности катализатора, показаны на следующей схеме  [c.180]

    Окись никеля оказалась более эффективным катализатором для гидрогенизации фенола в циклогексанол, а также ацетона в изопропиловый спирт. Исследования гидрогенизации кетонов в спирты доказали, что один и тот же катализатор пригоден как для дегидрогенизации спиртов в кетоны, так и для восстановления кетонов в спирты, что указывает на обратимость каталитической реакции. Таким катализатором является железо [39]. Эта обратимость была исследована также для гидрогенизации ацетона над окисью меди и цинковой пылью как катализаторами. Нагреванием метилового спирта с избытком водорода при высоких давлении и температуре над восстановленным никелем было установлено [38, 52], что вместо метана и воды получается двуокись углерода, так как водяной пар о.числяет метан, это указывает, что реакция обратима  [c.596]

    Окись платины платиновая чернь, полученная восстановлением окиси платины с помощью окиси углерода, оказывается высокодисперсной, что влияет на каталитическое окисление окиси углерода небольшое количество железа в окиси платины ускоряет ее восстановление [c.183]

    Приготовленный описанным способом катализатор содержит окись никеля, которая должна быть восстановлена, так как каталитический процесс конверсии метана идет только на металлическом никеле. Восстановление катализатора производится в контактном аппарате при высокой температуре водородом или смесью водорода и окиси углерода. В производственных условиях перед восстановлением катализаторную массу нагревают до 900—950 °С топочными газами. [c.30]

    Стехиометрическим и гетерогенным каталитическим реакциям СО2 посвящены обзоры [594—596]. Найдены такие реакции, как восстановление до метана и метанола, до формиатов и ок-салатов, а также циклоолигомеризация, в которой оба атома углерода СО2 сохраняются в продукте (лактоне). [c.206]

    Если окисью углерода обрабатывать окись кобальта, то температуру приходится поднимать до 240°. Но при столь высокой температуре под каталитическим воздействием металлического кобальта (образующегося восстановлением окислов) окись углерода начинает интенсивно распадаться на углекислоту и сажистый углерод. Температура в 200—220° практически также высока и не гарантирует от термического распада окиси углерода вследствие неизбежных местных перегревов. Распад окиси углерода можно предотвратить, во-первых, повышением температуры восстановления окиси кобальта с 350° до 550—600°. во-вторых, понижением температуры реакции образования кар-бошл а до 150—155° и, в-третьих, повышением скороони циркуляции окиси углерода через реактор. При десятикратном повышении скорости циркуляции количе)ство образующегося карбо нила кобальта увеличивается в 4—5 раз [27, 28]. [c.137]

    Адсорбционные свойства древесного и костяного угля известны давно. Ловиц (1785) применял уголь для обесцвечивания растворов винной кислоты. Фигье (1811) обнаружил, что костяной уголь тоже обладает заметной обесцве-чивающей способностью. Адсорбционные и каталитические свойства активных углей растительного и животного происхождения, приготовленных различными способами, изменяются в зависимости от размера пор и содержания посторонних веществ. Структура и примеси посторонних веществ влияют на применение углистых материалов в каталитических реакциях. Некоторые активированные угли могут служить адсорбентами для газов и жидкостей и в известной степени катализаторами. Например, в присутствии кислорода некоторые виды угля легко окисляют сероводород другие окисляют окись углерода. Многие угли пригодны для хлорирования, восстановления, дегидрогенизации и полимеризации. Аналогично поведение геля кремневой кислоты и цеолитов. Проницаемость и пропитываемость являются другими факторами, с которыми следует считаться при применении углистых материалов как носителей для катализаторов. Отверстия пор или капилляров неактивированного угля закрыты пленками, состоящими из ориентированных, насыщенных атомов. Обычно такие пленки образуются в результате адсорбции смолистых веществ во время процесса коксования. У активированного угля полости образуются системами атомов, в которых на один ненасыщенный активный углеродный атом приходится двенадцать неактивных углеродных атомов [342]. Различные виды углей имеют поры различного размера. Например  [c.480]

    Часть регенерированного катализатора при 600—650 °С из установки каталитического крекинга подается в реактор установки деметаллизации. С целью удаления кислорода реактор продувают горячим инертным газом, а затем водородом — для восстановления окислов металлов. Предварительно водород очищают от следов кислорода, двуокиси углерода и осушают. Восстановленный катализатор охлаждают циркулирующим водородом. После установления в реакторе температуры 175—200 °С в него подают окись углерода, предварительно очищенную от следов кислорода и влаги. Карбонилы металлов, образующиеся в реакторе, выносятся потоком оеагирующего газа в разложитель. Здесь при 400 °С карбонилы разлагаются на металл, который откладывается на насадке, [c.253]

    Обычно нри оксореакции протекает частичное гидрирование олефина. При 1-олефинах и обычной температуре оксореакции пнтенсивность этой реакции весьма мала, но значительно увеличивается при 190—20( Для некоторых олефинов реакция гидрирования может стать преобладающей. Хорошо известно, что окись углерода и сера являются энергичными каталитическими ядами, подавляющими реакцию гидрирования на твердых кобальтовых катализаторах. Однако реакции как гидрирования, так и гидрокарбонилирования протекают в Присутствии этих каталитических ядов [1 ]. Сущность этого явления была объяснена, исходя из теории гомогенного катализа [G8], в ходе исследования восстановления масляного альдегида при 185° и 140—210 ати. Полученные данные кратко рассмотрены ниже. В тех случаях, когда парциальное давление окиси углерода недостаточно для образования илп поддержания требуемой концентрации карбонила кобальта, гидрирование в присутствии окиси уг.т1ерода не протекает (табл. 1). [c.263]

    Отравляющее действие окиси углерода на различные металлические катализаторы известно давно [123]. Де Гемптин [86] нашел, что палладий, обработанный окисью углерода, не адсорбировал водорода. Пааль и Хартманн [215], исследуя каталитическую гидрогенизацию, наблюдали уменьшение активности палладиевого катализатора, вызываемое окисью углерода. Томас [283] установил, что отравляющее действие окиси углерода значительно больше, чем отравляющее действие азота. Тейлор и Бёрнс [276] охарактеризовали прочность, с которой окись углерода, как типичная блокирующая пленка, удерживается платиновой чернью при условии, что количество окиси углерода, образующей эту пленку, относительно незначительно. Исследования [41, 43] показали, что платина, прочно удерживающая окись углерода, оказывается мало активным катализатором для восстановления окиси углерода в метан, тогда как реакция восстановления происходит легко с палладием, с которого окись углерода легко удаляется водородом при обыкновенной температуре. [c.398]

    Рейерсон и Томас [337] пропитывали сухой силикагель раствором нитрата меди, выпаривали массу досуха и затем для получения металла восстанавливали в струе водорода. Рейерсон получил при восстановлении адсорбированным водородом равномерное покрьп ие силикагеля платиной, палладием, серебром и другими металлами силикагель полностью эвакуумировали при температуре —80° и водород вновь адсорбировался на носителе. До обработки раствором, например нитрата серебра, адсорбируется хорошо заметное количество водорода с повышением температуры металлическое серебро равномерно осаждается по всему гелю [298]. В одном из патентов [374] предлагается чрезвычайно пористые гели (двуокись кремния, окись вольфрама, окись алюминия) пропитывать каталитически активным металлом или его соединением для этого вначале гель обрабатывают газообразным, способным восстанавливать соединением (двуокись серы, окись углерода, сероводород), а затем раствором соответствующего соединения металла (платины, серебра, меди, палладия, железа). [c.484]

    Восстановление углекислого газа в окись углерода и воду скорость реакции пропорциональна упругости 5Тлекислого газа, но увеличение скорости реакции с увеличением давления водорода меньше, чем то, которое соответствует прямой пропорциональности каталитическую реакцию с водяным газом рассматривают как передачу кислорода углекислоты водороду под действием железа, дающего с кислородом промежуточный продукт [c.143]

    Обратимые яды (кислород, водяной пар, окись углерода в случае металлических катализаторов VIII группы и пр.), вызывающие временное снижение каталитической активности, которая восстанавливается после удаления этих примесей из газовой фазы или путем несложной обработки (восстановление, повышение температуры, окисление и т. п.). Те же вещества в зависимости от природы катализатора могут быть и необратимыми ядами (например, кислород в случае металлических катализаторов, образующих невосстанавливаемые водородом окислы). [c.541]

    Другая возможность состоит в том, что хемисорбированная окись углерода реагирует с кислородом поверхности, входящим в решетку. Тогда при десорбции углекислого газа поверхность остается в частично восстановленном состоянии. Кислород из газовой фазы поглощается и восстанавливает поверхность до начального состояния. При таком механизме поверхность твердого вещества активно участвует в реакции окисления. На новерхности непрерывно происходят окислительно-восстановительные циклы, и возможно, что вся она является каталитически активной. Окисление на окиси ванадия, вероятно, является одним из наглядных примеров механизма такого типа, как было показано Ньюджесом и Хиллом [59]. [c.322]

    Порфирины, содержащие железо и медь. Простетические группы, содержащие окисное железо, представлены в энзимах — каталазе и пероксидазе, — катализирующих реакции перекиси водорода. Цитохромоксидаза, промотирующая вторичное окисление восстановленных (т. е. содержащих закисное железо) цитохромов молекулярным кислородом, также является соединением окисного железа, а энзимы, вызывающие прямое аэробное окисление фенолов, содержат медь в качестве основного компонента. Все эти производные порфирина, в отличие от гемоглобина, но подобно цитохрому (ст р. 290), действуют посредство1м химических процессов, включающих обратимое окисление и восстановление атома металла, как постулировано Габером и Виль-штеттером (стр. 293). Следует указать, что следы таких соединений, как окись углерода, цианистый водород, фториды и азиды, которые могут давать прочные, не ионизирующиеся связи с атомом металла, способны подавлять каталитическую активность. В образующихся устойчивых комплексах нет неспаренных электронов 2. [c.307]

    Как было отмечено выше, изонитрилы также могут выступать в качестве окислительных субстратов нитрогеназы [140—142]. Они восстанавливаются в углеводороды, содержащие атом углерода изонитрильной группы, и первичные амины, образующиеся из фрагмента R—N. Изонитрилы, так же как и азот, присоединяются к атомам переходных металлов концом молекулы. При восстановлении связанного метилизонитрила в качестве основного продукта шестиэлектронной реакции образуется метан, тогда как при восстановлении некоординированной молекулы изонитрила процесс идет в основном до диметиламина — продукта пятиэлектронной реакции. Такое сочетание свойств делает изонитрилы превосходным субстратом при изучении как биологических нитрогеназ, так и модельных систем. При использовании в качестве катализатора комплекса молибден — цистеин состава 1 1 основными продуктами восстановления изонитрила борогидридом натрия являются этилен и этан [137]. Как и в случае ацетиленовых субстратов, экспериментальные данные согласуются с каталитической активностью мономерных молибденовых комплексов. Восстановление слабо ингибируется молекулярным азотом и более эффективно подавляется окисью углерода. Опыты с N2 показали, что азот как ингибитор этой реакции восстанавливается до аммиака и что молекулы N2 и RN связываются одними и теми же центрами, по-видимому, атомами молибдена. Кроме того, азот и окись углерода — конкурентные ингибиторы восстановления изонитрилов нитрогеназой, что убедительно показывает наличие у молибдена свойств, необходимых для связывания и восстановления субстратов. На рис. 49 [c.318]

    Как показал рентгеноструктурный анализ, катализаторы, приготовленные на основе окиси железа, содержат а-модификацию РсаОз — кристаллическую окись железа ромбоэдрической структуры. Активной же частью катализатора в процессе конверсии окиси углерода является магнетит Рвз04, состоящий из кристаллов кубической системы. Для превращения а-Ре Оз в активный магнетит катализатор восстанавливают газовой смесью, содержащей водород и окись углерода. Согласно исследованиям А. М. Алексеева, И. П. Кириллова, восстановление железохромового катализатора сопровождается экзотермическими реакциями, а присутствие окиси углерода в газовой смеси может вызывать восстановление РегОд до металлического железа. При этом не только снижается активность катализатора, но и создаются условия для протекания весьма быстрой экзотермической реакции окисления железа водяным паром, которая может вызвать резкий подъем температуры и перегрев катализатора. В результате этого возможно необратимое снижение каталитической активности, а в отдельных случаях даже спекание катализатора и его механическое разрушение, приводящее к увеличению гидравлического сопротивления при прохождении реакционной смеси через катализатор. Для уменьшения количества тепла, выделяющегося при восстановлении катализатора конверсии окиси углерода, было предложено применять в качестве восстановителя газовую смесь с низким содержанием СО. [c.31]

    Катализаторы и их роль в процессе синтеза аммиака. В качестве катализаторов при синтезе аммиака из элементов испытаны железо, марганец, осмий, вольфрам и др. Но многие из них в заводской практике оказались мало пригодными. Удовлетворяющим предъявляемым требованиям катализатором оказалось металлическое железо, промотированное окислами калия и алюминия, длительно сохраняющее активность. Железный катализатор может быть получен следующим образом. Расплавленную массу железа с соответствующими добавками окисляют в токе кислорода. Затем полученную массу дробят, просеивают, отбирают зерна с диаметром 4—6 и 8—10 мм, загружают в контактный аппарат и восстанавливают азотно-водородной смесью. Восстановленный катализатор обладает достаточно развитой по-верхносрью. Его качество зависит от чистоты исходного сырья. С введением в катализатор окиси кальция повышается его термостойкость, важное свойство при синтезе аммиака. Активность железного катализатора ограничивается пределом от 450 до 575—600° С. При более высокой температуре он быстро теряет активность. В значительной степени железный катализатор чувствителен к ядам, содержащимся в газовой смеси. Даже ничтожно малые количества их, отравляя катализатор, резко снижают выход аммиака. К каталитическим ядам относятся сероводород и другие сернистые соединения, отравляющие его необратимо, а также кислород и кислородсодержащие соединения — окись углерода, водяные пары и т. п., отравляющие обратимо. Особенно резко снижается активность катализатора при низких температурах. [c.87]

    В литературе давно обсуждается вопрос о необходимости наличия следов кислорода при каталитическом гидрировании [21—23]. Для решения этого вопроса была проведена целая серия опытов, в которых катализаторы из благородного металла восстанавливались раствором двухвалентного ванадия. В проведенных для сравнения опытах восстановление осуществляли, используя обыкновенный электролитический водород, очищенный водород, содержавший менее 4- 10" % кислорода [24], и водород, полученный по реакции СО - - НгО СО2 + Нг. Окись углерода получали дегидратацией муравьиной кислоты фосфорной кислотой. Отсутствие кислорода в очищенном водороде устанавливалось по фосфоресценции образца трипафлавина, нанесенного на силикагель иод количественно восстанавливался в иодистый водород очищенным водородом на катализаторах палладий — поливиниловый спирт и палладий — поливиниловый спирт — ванадий . Если в системе содержатся измеримые количества кислорода, то восстановление не может быть количественным. [c.383]

    Количество металлического железа на каталитической поверхности восстановленных и карбидированных железных катализаторов оценивали посредством хемосорбции окиси углерода (см. стр. 54, 58, 408, 409). Зависимость хемосорбции окиси углерода при —195° на катализаторах № 910 и 423 от содержания карбидного углерода показана на рис, 125. В случае восстановленного чистого РдО отношение хемосорбированиая окись углерода монослой азота резко уменьшается с ростом содержания уг,перода и приближается к весьма низким значениям при содержании в образце около 4% углерода. Для промотированного катализатора № 423 первоначальное отношение было ниже чем для катализатора № 910, благодаря накоплению промоторов на поверхности, однако в данном случае это отношение падало медленнее с увеличением содержания карбида. Для катализаторов, карбидированных окисью углерода, количество хемосорбированной окиси углерода падало практически до нуля, когда содержание углерода в образце достигало 9,5%, в то-время как для образцов, карбидированных бутаном, это наблюдалось при содержании углерода 7,8%. Таким образом, наличие карбида понижает хемосорбцию окиси углерода. Однако в случае промотированных катализаторов хемосорбция СО не приближается к нулю до тех пор, пока образец [c.419]

    Нами показано, что восстановление окисью углерода неорганических ионов и хицонов в присутствии. ацидокомплексов металлов платиновой группы осуществляется череа стадию образования нестойких карбонильных соединений. При взаимодействии окиси углерода с солями Pt (II) образуются галоидкарбонилы линейного и мостикового строения, причем только первые ответственны за катализ. Твердые металлы платиновой группы также способны осуществлять достаточно интенсивное окисление СО в Oj за счет кислорода воды. Из предложенных моделей адсорбционной связи наиболее вероятными пред- ставляются мостиковая и линейная . Как следует из доклада 2, первая форма устойчивее второй. Оказалось, что степень конверсии окиси углерода пропорциональна концентрации линейных структур. Напротив, концентрация мостиковой формы не влияет на глубину превращения и, следовательно, она является нереакционноспособной. Исходя из обнаруженных закономерностей, легко объяснить крайне малую каталитическую активность металлического палладия, отличающегося тем, что почти вся адсорбированная на нем окись углерода находится в инертной мостиковой форме. Эта же причина определяет больший выход углекислоты на родии по сравнению с выходом на платине. Оптимальными каталитическими свойствами должны, таким образом, обладать сплавы с наибольшей концентрацией линейных ст]>уктур. Сравнение констант комплексообразования окиси углерода и родия (II) с аналогичными данными для этилена и родия показывает, что первые на два порядка выше вторых. Это подтверждает правильность вывода доклада 2 о большей устойчивости поверхностных карбонилов. Таким образом, в механизме гомогенной и гетерогенной активации СО имеется много общего. Можно считать, что в обоих случаях элементарный акт протекает через образование линейной связи М — СО. [c.92]

    Первой из этой группы обнаружена и исследована реакция гидрополимеризации олефинов под действием малых количеств окиси углерода (СО-гидроиолимеризация), идущая на бифункциональном катализаторе кобальт— алюмосиликат при 190—200°С и атмосферном давлении [1]. В этих условиях этилен или его ближайшие гомологи в смеси с водородом только гидрируются однако в присутствии окиси углерода (больше 0,01%) происходит также гидрополимеризация олефина в высшие углеводороды. В присутствии 5% СО соотношение выходов продуктов реакций гидрополимеризации и гидрирования уже составляет 4 1. В отсутствие водорода реакция гидрополимеризации не идет, что указывает на то, что истинным инициатором реакции является не сама окись углерода, а поверхностные образования, возникающие при ее неполном каталитическом восстановлении, типа оксиметиленовых и метиленовых радикалов, и другие подобные им активные формы. [c.85]

    Гидрогенизационно дегидрогенизационные катализаторы (никель, платина, окись молибдена и окись вольфрама), когда они базируются на кремний-алюминиевых катализаторах крекинга, поразительно эффективны в изомеризации парафиновых углеводородов при 300—450° С под давлением водорода около 21 — 35 кПсм . Изомеризация узко фракционна и сопровождается очень небольшим крекингом жидкие продукты восстановления получаются в весьма существенных количествах [441—444, 432]. Реакции этого типа часто встречаются в процессах каталитического риформинга. В качестве побочной реакции в большой степени проходит гидрокрекинг продуктов изомеризации образуются молекулы более мелкие, чем исходный углеводород. С увеличением содержания углерода в к-парафине уменьшается температура процесса, необходимая для получения той же самой степени превращения. Например, чтобы получить 50%-ное превращение, требуются следующие температуры  [c.119]

    В случае арилзамещенных окисей этиленов при восстановлении происходит присоединение водорода к атому углерода, связанному с наибольшим числом арильных групп. Так, окись стирола как при каталитическом, так и при химическом восстановлении дает р-фенилэтиловый спирт (I) [241 ]. Другие арилзамещенные окиси ведут себя подобным же образом [242—244[. Окись индена при каталитическом восстановлении или при действии натрия в жидком аммиаке дает 2-инданол (II) [245[  [c.33]

    Результаты первых опытов по каталитическому синтезу метана из окнси углерода и водорода были опубликованы в начале 20 века [49]. Спустя несколько лет Баденская фабрика запатентовала процесс [1] каталитической гидрогенизации окиси углерода. Б первой работе [49] в качестве катализаторов использовали восстановленный никель или окись кобальта катализатор Баденской фабрики состоял из подщелоченных окислов кобальта или осмия. В нрисутствии этих катализаторов в опытах, проводившихся прн давлеши , 100—200 ат н температуре 300—400% получался главным образом жидкий продукт, представлявший собой смесь спиртов, альдегидов, кетонов, кислот и других органических соединений. [c.142]

    Адсорбцию СО и восстановление тонких пленок СиО изучал Пальмер [24]. Бессалов и Кобозев исследовали активность порошка окиси меди и осажденного аэрозоля СиО в реакции окисления СО при температурах, лежащих в интервале между 200 и 400° [25]. Этот катализатор был получен путем электрического распыления и осаждения в электростатическом поле. Активность образовавшегося аэрозоля была в 765 раз большей, чем активность соответствующего порошка при 250°. При быстром каталитическом окислении температура была почти на 200° ниже в случае аэрозоля, чем в случае порошка окиси меди. Хотя результаты рентгенографических исследований показали, что структура обоих катализаторов одинакова, аэрозоль меди состоял из более мелких кристалликов, чем порошок. Согласно данным Питерса [35], реакция окисления СО в смесях с воздухом окисью меди не начинается до тех пор, пока температура не поднимется до 200°. Однако в присутствии чистой окиси углерода окись меди может быть восстановлена при начальной температуре 75° [37]. Окись меди менее активна, чем окиси серебра, марганца или кобальта. [c.295]

    Химические промоторы. Эти промоторы изменяют химическую природу поверхности, увеличивая активность или избирательность катализатора. Они также могут способствовать увеличению или сохранению площади поверхности. Например, окись калия лишь незначительно влияет на площадь поверхности и активность дважды промотированного аммиачного катализатора при работе под давлением 30 атм. Однако окись калия заметно увеличивает каталитическую активность при более высоких давлениях (100 атм). Предполагается, что щелочь ускоряет десорбцию аммиака, препятствуя накоплению его в количествах, достаточных для подавления реакции при работе под высоким давлением [3]. При синтезе углеводородов из окиси углерода и водорода на железных катализаторах небольшие добавки карбоната калия вызывают заметные изменения активности катализатора и состава продуктов синтеза. При одинаковой температуре синтеза средний молекулярный вес продуктов повышается с увеличением содержания карбоната калия до 2 частей К2СО3 на 100 частей Ге. Активность катализатора возрастает с увеличением содержания карбоната калия приблизительно до 0,5 части на 100 частей железа, остается постоянной при изменении содержания от 0,5 до 1,0 части КдСОд на 100 частей Ре и уменьшается при большем содержании карбоната калия. В класс химических промоторов можно также включить промоторы, облегчающие предварительную обработку катализаторов. Например, медь добавляют к осажденным кобальтовым или железным катализаторам для повышения скорости восстановления водородом и обуглероживания окисью углерода. Поэтому катализаторы, промотиро-ванные медью, могут быть подвергнуты предварительной обработке при значительно более низких температурах. Введение меди в железные катализаторы в количествах до 20 частей меди на 100 частей железа незначительно влияет на активность катализаторов или на состав продуктов реакции. Однако введение меди в кобальтовый катализатор сокращает срок его службы [4]. [c.34]

    Оксйреакция представляет собой каталитическое присоединение окиси углерода и водорода к олефину с образованием альдегидов, содер кащих па один углеродный атом больше, чем исходный олефин, т. е. в молекулу соединения вводят оксогруппу >С0. Во второй стадии реакции альдегиды обычно восстанавливаются водородом до первичных спиртов. Такой двухступенчатый процесс и известен под названием оксосинтез . Наибо.лее эффективным катализатором для этой реакции является активная форма кобальта, например восстановленная окись, карбонат или ацетат. [c.380]


Смотреть страницы где упоминается термин Восстановление каталитическое окиси углерода: [c.312]    [c.125]    [c.324]    [c.149]    [c.149]    [c.18]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.205 , c.303 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические углерода

Каталитическое восстановление окиси углерода (таблица



© 2025 chem21.info Реклама на сайте