Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние молекул растворенного вещества на структуру воды

    Совместное влияние формы молекулы и ее полярности помогает объяснить многие из свойств воды, рассмотренные выше. Например, поскольку разноименные заряды притягиваются, противоположные концы соседних молекул слипаются друг с другом. Это приводит к высокой температуре кипения воды. (Для разделения молекул жидкости и образования пара необходимо затратить много тепловой энергии.) Высокое поверхностное натяжение и понижение плотности при кристаллизации льда также может быть объяснено формой молекул воды и их электрической полярностью. В добавление к этому из-за своей полярности молекула воды притягивается к молекулам других полярных веществ. Следовательно, вода способна растворять соединения самой разнообразной структуры. [c.44]


    В соответствии с выражением (3.25), внутренний объем гидратированной молекулы мочевины непосредственно связан с числом молекул воды в ближнем окружении (л ). Обнаруженные в работе [123] корреляции значений с объемными и "зарядовыми" эффектами в растворах [уравнения (3.35) и (3.42)] позволяют сделать два весьма важных вывода. Во-первых, мочевина относится к веществам, молекулы которых гидратированы преимущественно внутри полости растворителя без существенных стерических искажений его структуры. Во-вторых, эффект электрострикции ("полярные влияния") в растворах мочевины распространяется дальше первого гидратного слоя. Последнее заключение подтверждается приведенными в разделе 3.2.3 [c.166]

    В предыдущем разделе главы мы рассматривали связь между размерами молекул и их влиянием на структуру воды при растворении, проводя аналогию между структурой растворов и структурами клатратов. Из рассмотренного там материала вытекало, что растворимость веществ в значительной степени должна зависеть от размера их молекул, который определяет возможность проникновения молекул растворяющегося вещества в свободные пустоты, образующиеся в мерцающих кластерных структурах воды. Действительно, сопоставление размеров молекул веществ с размерами додекаэдрических и гексаэдрических пустот клатратных структур в растворе показывает, что молекулы менее 5,2 А обла- [c.23]

    Накопление гидроксильных групп у концевых углеродных атомов углеводородных цепей обусловливает падение энергии адсорбции прежде всего за счет увеличения растворимости этих соединений. Естественно, что при длине углеводородного радикала органического компонента, соизмеримой с полостями клатратных структур воды, влияние гидроксильной группы на растворимость вещества оказывается небольшим. В этом случае ОН-группа вызывает перераспределение электронной плотности в молекуле, что обусловливает величину — Д/ он- Избирательная адсорбция компонента 2 из раствора возможна, если [c.118]

    На основании данных по инфракрасным спектрам растворов электролитов, полученных при исследовании изменений структуры воды, обусловленных растворенными веществами, показано, что растворенные ионы вызывают изменения в спектрах, аналогичные изменениям при образовании водородных связей [66, 67]. Поскольку на полосы поглощения света влияет взаимодействие между растворенным веществом и растворителем, при помощи соответствующих предположений (см. разд. 5.2.4.5) можно вычислить числа гидратации ионов. В завиоимости от размера и плотности поверхностного заряда ионов молекулы оказывают на спектры два вида воздействий. Небольшие ионы или ионы с высокой плотностью заряда (например, Ь1+, Р , М 2+, Ьа +) сильно ориентируют вокруг себя молекулы воды, разрывая некоторые водородные связи, т. е. они разрыхляют структуру воды и затрудняют образование ионных пар. Крупные ионы с невысокой плотностью заряда (например, Сб+, органические ионы) повышают число водородных связей, т. е. они упрочняют структуру воды и про-мотируют образование ионных пар. Различие в выводах, полученных по данным спектроскопических и других методов измерений, можно объяснить тем, что последние отражают как межионные взаимодействия, так и влияние ионов на молекулы растворителя, тогда как инфракрасные спектры от ражают лишь взаимодействие ион — растворитель. [c.91]


    Структура воды также обычно изменяется под влиянием растворенных неэлектролитов (см. разд. 1.4.1). Молекулы растворенного вещества могут образовать ковалентные или водородные связи с молекулами воды таким образом, с одной стороны, их размер увеличивается, но, с другой, они изменяют структуру воды или статистическое распределение (равновесия) различных структурных единиц воды в окрестности. Но, даже не образуя химических связей, они изменяют структуру воды вокруг себя, так как в некоторых случаях они оказывают структурообразующее влияние, приводящее к появлению и расширению упорядоченных областей (см. эффект образования айсбергов , разд. 1.4.1) только за счет их размера и некоторых ближних взаимодействий (главным образом за счет диполь-дипольных и дисперсионных сил). Однако в растворах неэлектролитов не появляются относительно дальнодействующие кулоновские силы, поэтому явление гидратации не столь важно, как в растворах электролитов. [c.518]

    Меньшее внимание в литературе уделено тому, что наряду с изменением структуры воды в присутствии электролита меняются все ее свойства [10, гл. 1]. Ионы в растворе влияют на диэлектрическую проницаемость воды [22, 23] и па спектроскопические характеристики водных растворов. В частности, электронные спектры поглощения растворов некоторых веществ меняются под влиянием индифферентных веществ, т. е. веществ, не вступающих в химическое взаимодействие с компонентами раствора [24—32]. Наблюдаемые изменения (при сохранении вида спектра) состоят в сдвигах полос поглощения и уменьшении или увеличении их интенсивности и объясняются изменением гидратного состояния поглощающих частиц [24— 26]. Это основывается на учете противоположного влияния катионов и анионов на молекулы воды ближайшего окружения и энергию водородной связи поглощающих излучение частиц с молекулами растворителя [26, 31, 33]. [c.26]

    Как и при интерпретации влияния солей на водные растворы, основное внимание следует обращать на изменение свободной энергии системы при добавлении неполярных веществ к водным растворам интерпретация этого явления непосредственно с точки зрения структурной модели может оказаться ошибочной. Так, структурная модель дает приемлемое объяснение солюбилизации гидрофобных соединений под действием спиртов алкилзамещенных аминов и мочевин. Если одно растворенное вещество увеличивает структурированность раствора, можно было бы ожидать, что оно должно облегчать введение молекул другого подобного вещества. С другой стороны, структурирующая способность вещества совершенно необязательна для того, чтобы оно было в состоянии солюбилизировать гидрофобные соединения в воде. Уже отмечалось, что один из возможных механизмов денатурации белков и нуклеиновых кислот под действием мочевины заключается в стабилизации гидрофобных боковых цепей аминокислот и оснований нуклеиновых кислот при увеличении их контакта с растворителем, что проявляется в увеличении растворимости и уменьшении коэффициента активности этих групп в присутствии мочевины [31, 32, 35]. Спирты, ацетон и подобные им вещества разрушают гидрофобные связи и способствуют денатурации аналогичным образом. Однако мочевина, вероятно, не обладает структурирующим действием, по крайней мере в том смысле, как это понимается для неполярных молекул мочевина очень слабо влияет на большинство свойств воды и либо практически не изменяет структуру воды, либо, из данных по поглощению ультразвука, несколько ее разрушает [85]. Данные по энтальпии и теплоемкости растворов веществ с гидрофобными группами, а также исследования спектра ультразвуковой релаксации полиэтиленгликоля в воде и растворах мочевины указывают на то, что энергетически более благоприятное взаимодействие гидрофобных групп с мочевиной, чем с водой, связано с уменьшением структурированности воды вокруг гидрофобных групп [85, 86]. Таким образом, разрушение гидрофобных связей под действием мочевины или спирта нельзя объяснить одним и тем же механизмом с точки зрения структуры растворителя, хотя по свободной энергии эффекты соединений этих двух типов одинаковы. Возможно, что мочевина создает более благоприятное окружение для гидрофобных групп, находящихся в пустотах струк- [c.328]

    Вопрос влияния электрического тока на состояние структуры плотной части ДЭС является еще менее проработанным. В монографиях [139-141] значительное внимание уделяется структуре межфазной границы, природе и роли поверхностных сил, а также анализу поверхностных явлений. Обсуждаются, в частности, дисперсионные силы, определяющие поведение молекул в межфазных областях, и электрические силы, действующие в этих областях на ионы. Изменение структуры, вязкости и плотности воды, а также диэлектрической проницаемости происходит в тонких граничных слоях толщиной порядка 1 нм. Скачок потенциала в такой области, являющейся аналогом плотного слоя Гельмгольца в ДЭС на границе металл/раствор, может зависеть не только от характера распределения фиксированных ионов, но и от ориентации молекул полярного растворителя (воды) [141]. Особым является случай перекрывания поверхностных сил в тонких порах мембраны. Возникновение расклинивающего давления, выталкивание молекул растворенного вещества (появление "нерастворяющего объема" [139]) и другие эффекты, проявляющиеся в [c.134]


    На трансляционное движение в водных растворах влияет давление. С ростом давления энергия активации молекул и ионов растворенных веществ возрастает вследствие упрочнения их связи с молекулами воды. Энергия же активации молекул воды в чистой воде или в водном растворе, где в ближайшем окружении молекул воды молекулы и ионы растворенных веществ отсутствуют, уменьшается вследствие разрушения под влиянием давления тетраэдрической структуры воды. [c.5]

    Влияние температуры на разделение водных растворов проявляется особенно сложно в мембране, когда молекулы растворенного вещества и воды сами могут проявлять изменяющееся сродство к воде, вследствие чего ступенчатое увеличение кинетической энергии может привести к отклонению в поведении воды при растворении определенных веществ и не вызывать отклонения при растворении других веществ. Увеличение давления обычно приводит к увеличению скорости проникания данного вещества через мембрану. Это влияние давления может быть нивелировано за счет мембранной структуры при различных взаимодействиях между мембраной и проникающими веществами (и между самими проникающими веществами), концентрации раствора и зарядных характеристик мембран и растворенного вещества. Кроме того, повышение давления сверх некоторого значения приводит к сжатию самой мембраны, в результате чего уменьшаются свободный объем (пористость) и проницаемость. С повышением давления изменяется не только средняя пористость мембраны, но также может уменьшаться пористость по толщине мембраны со стороны высокого давления. Например, при давлении раствора 68,95 МПа наблюдалось 20-кратное изменение проницаемости мембраны при этом 50% падения давления приходилось на последние слои мембраны, составляющие 20% от ее толщины [137]. При поддерживании высокого давления происходит изменение свободного объема в поверхностном случае, в то время как нагревание вызывает сжатие во всех трех изм >ениях. Оба эффекта действуют синергетично, что приводит к уменьшению пористости. [c.76]

    Отличие Ка в растворе электролита отражает изменение замещения молекул воды в полостях иа молекулы газа при наличии ноля иоиов. В присутствии электролита молекулы воды и заменяющие их молекулы газа уже не эквивалентны. Из-за того, что полярные молекулы воды в полостях ориентируются в поле ионов, они находятся в энергетически более выгодном состоянии, чем в чистой воде. В то же время состояние молекул газа в полостях в первом приближении не меняется в присутствии электролита. Поэтому Ка и равновесие (4) ири переходе от воды к раствору смещается в сторону исходных веществ, т. е. растворимость газа в этом случае должна уменьшаться. Таким образом, высаливание газа рассматривается как целиком структурный эффект. В приведенной схеме (вероятно, справедливой не только для газов, а также для других молекул с неноляриыми группами) оно является следствием влияния электролита иа стабилизацию структуры воды неполярными молекулами (при более детальном рассмотрении процесса требуется учесть также изменение состояния выталкиваемых молекул воды в льдоподобной структуре. Нарушения льдоподобной сетки в растворах должны вести к усилению рассмотренной зависимости, а связывание ионами вытесненных молекул воды к противоположному изменению). [c.72]

    Биполярные соединения, например низшие гомологи аминокислот, вследствие образования своей системы Н-связей разрушают структуру воды [42], а высшие гомологи оказывают противоположное влияние, так как роль большого углеводородного радикала в этом случае оказывается значительнее, чем роль функциональных групп молекулы [43]. В. М. Вдовенко, Ю. В. Гуриков и Е. К. Легин [41], рассматривая существующее равновесие между плотной и ажурной структурами воды, показали, что при растворении в воде неэлектролита равновесие между этими структурами смещается в сторону той, которая лучше растворяет молекулы неэлектролита. Величина свободной энергии гидратации при этом определяется двумя главными факторами затратами энергии на образование полости, необходимой для внедрения молекулы (эти затраты тем больше, чем больше размеры молекулы растворенного вещества и доля плотной структуры иоды в растворе) уменьшением свободной энергии в результате образования водородных связей между растворенными молекулами и окружающими их молекулами воды. Поскольку в плотной структуре больше ненасыщенных водородных связей, чем в ажурной, то уменьшение свободной энергии при образовании Н-связей с молекулами растворенного вещества в этой структуре тоже больше. Значительное число работ посвящено упрочнению структуры воды при растворении углеводородов [4, 44—47]. [c.17]

    Основными причинами отклонения растворов от стандартного состояния, выбранного для рассмотрения адсорбционного равновесия, являются усиление взаимодействия (притяжения или отталкивания) молекул растворенного вещества между собой с ростом концентрации раствора и влияние концентрации растворенного вещества на структуру, которой обладает чистый растворитель в виде однокомпонентной жидкости. Поскольку в этой книге рассматривается лишь адсорбция органических веществ углеродными материалами из водных растворов, следует учитывать изменения структуры воды, вызванные повышением концентрации раствора. Рост концентрации раствора может сопровождаться ассоциацией молекул растворенного вещества. В этом случае неизбежно наблюдается уменьшение связи с водой части молекул, входящих в ассоциаты, т. е. уменьшение гидратации молекул. [c.131]

    Растворы ПАВ в неполярных жидкостях существенно отличаются от аналогичных растворов в воде [70]. У первых взаимодействие их молекул возникает прежде всего за счет связей полярных групп. Влияние структуры растворителя, играющей решающую роль во взаимодействиях водных растворов, в этом случае второстепенно. Как показано ниже, энергия связи молекул ПАВ в неполярных жидкостях выше, чем в воде. Тем не менее она невелика, что обусловливает лабильность ассоциатов этих молекул. С увеличением концентрации или уменьшением температуры такие ассоциаты могут принимать различные формы. На рис. И схематически представлены виды ассоциатов и их превращения с изменением температуры и концентрации. Для исследования начальных процессов ассоциации был разработан вариант метода ИК-спектроскопии, где количество молекул растворенного вещества, с которым взаимодействует луч света, не зависит от концентрации раствора с (т. е. величина ей, где й — толщина кюветы, постоянна) [72, 73]. Эта методика позволяет идентифицировать и количественно определять содержание индивидуальных молекул, их ДИ-, тритетраме-ров и мицелл в неполярных жидкостях. [c.173]

    Обнаружен ионный обмен между катионами твердой фазы и полиэлектролита, а также анионный обмен между анионами сорбента и полимера. Влияние конформации молекул сорбента на величину адсорбции с переходом глобулярного типа надмолекулярной структуры полимера в фибриллярный выражается в увеличении адсорбции. Адсорбция ПАВ частицами дисперсной фазы из разбавленных растворов, где вероятность столкновения молекул растворенного вещества мала, отличается от адсорбции из концентрированных растворов. В обоих случаях общим служит наличие индукционного периода адсорбции из растворов. Установлено, что чем гидрофильнее сорбент, тем больше этот период. Это обусловлено тем, что адсорбционное взаимодействие в системе твердая фаза — вода — ПАВ начинается после завершения смачивания водой поверхности частиц твердой фазы и формирования гидратного слоя. Таким образом, адсорбционные взаимодействие в данном рассматриваемом случае осуществляется через молекулы воды [19]. По-видимому, этот механизм адсорбции является общим, так как обнаруживается увеличение адсорбции полярных молекул из неполярной среды с ростом количества предсорбированной [c.199]

    Одно замечание общего характера следует сделать относительно воды, являющейся очень распространенным растворителем, особенно в живых системах. При комнатных температурах вода довольно близка к своей точке замерзания. В концентрированных водных растворах, особенно в коллоидальных растворах и в растворах анизотропных молекул в воде (лиотропные жидкие кристаллы), влияние растворенного вещества на структуру воды может оказаться таким, что она приблизится к структуре льда. В воде могут появиться кристаллики (кластеры), имеющие структуру льда. Количество этих кристалликов, или кластеров, увеличивается с увеличением концентрации растворенного вещества и приближает структуру воды в растворе к структуре льда. Вязкость воды увеличивается, у раствора появляется пластичность, и он постепенно приобретает свойства твердого тела. Постепенное появление свойств твердого тела у раствора по мере увеличения его концентрации иллюстрируется рис. 2.21, на котором приведена найденная экспериментально зависимость величины мёссбауэровского поглощения (присущего твердому состоянию вещества и отсутствующего в жидкостях) от концентрации растворенного в воде вещества (см. также раздел 3.6). [c.35]

    Жидкие растворы относятся к числу наиболее сложных химических (взаимодействующих) систем. Их сложность обусловлена высокой лабильностью, подвижностью структуры растворов. Эти структуры многообразны и подвержены легкому изменению под влиянием таких факторов, как температура, давление, концентрация и природа растворенных веществ, варьирование структуры молекул самих рас.творителей. Хорошо известно, что традиционный растворитель вода, построенный из относительно простых молекул, обладает необычайно сложной структурой, отдельные элементы которой до настоящего времени остаются неизученными и неясными, несмотря на громадное число работ, посвященных воде и водным растворам. [c.3]

    Углеводородный хвост водорастворимого ПАВ трудно совмещается с окружающей водной средой. Однако причина этого— не отталкивание между ним и молекулами воды. Силы вандерваальсова притяжения между углеводородной цепью и молекулами воды даже несколько превосходят силы притяжения между отдельными углеводородными цепями, но суще-, ственно уступают силам притяжения между молекулами воды. Жидкая вода имеет трехмерную структуру, в которой ее молекулы соединены водородными связями, непрерывно разрывающимися и образующимися вновь. Углеводородные цепи растворенного ПАВ нарушают взаимодействие между ближайшими молекулами воды, изменяя ее структуру. В большинстве случаев раствор стремится сохранить структуру воды, вследствие чего молекулы ПАВ вынуждены занимать такое положение, в котором их цепи были бы, по крайней мере частично, удалены из объема раствора. Наиболее очевидный путь к достижению этой цели состоит в накоплении молекул ПАВ на границе между водным раствором и воздухом, а также на поверхностях раздела с частицами масла и твердых веществ, если они присутствуют в системе. Такая адсорбция ПАВ на пограничных поверхностях оказывает очень большое влияние на свойства последних и особенно на межфазные натяжения, которые сильно понижаются. Например, поверхностное натяжение 10" М раствора ПАВ при 20 °С составляет около 0,3—0,4 мН/см, тогда как для чистой воды эта величина равна 0,73 мН/см. При увеличении концентрации ПАВ в воде наступает момент, когда его молекулы должны изыскивать другой способ удаления своих углеводородных хвостов из объема раствора. Поэтому они начинают соединяться в агрегаты более или менее правильной сферической формы, в которых их гидрофобные участки ориентированы внутрь, а полярные головные группы — наружу. Такие агрегаты называются мицеллами, а концентрация, при которой начинается их образование, — критической концентрацией мицеллообразования (ККМ). При концентрациях ниже ККМ термодинамические свойства растворов ПАВ близки к тем, которыми должны обладать разбавленные растворы, содержа-щие неассодиированные молекулы. Однако при брлее высоких [c.510]

    Чтобы ввести необходимую терминологию, следует коснуться особенностей некоторых моделей, подробно обсуждаемых ниже. Следуя Энгелю и Герцу [267], рассмотрим неполярный неэлектролит в водном растворе. Множество экспериментальных данных указывает на усиление упорядоченности окружающей структуры растворителя вокруг молекул растворенного вещества и ограничение либрационно-го движения молекул воды вблизи неполярных молекул. Влияние растворенного вещества часто называют структурированием, гидрофобной гидратацией, гидратацией второго рода, а также в связи с некоторыми предположениями о природе индуцированных структурных изменений этот эффект называют также образованием айсбергов, В настоящей книге использован термин "гидрофобная гидратация". Если молекулами неэлектролита постепенно сообщать некоторый заряд, [c.217]

    Изучение колебательных спектров водных растворов спиртов и других неэлектролитов, пр01веденное Кочневым [8д], привело к аналогичным выводам. Присутствие молекул неэлектролита приведет к разрыву некоторого числа водородных связей между молекулами воды. Это число зависит от размера молекулы неэлектролита и от степени разветвленно-сти ее неполярных групп. Оставшиеся неразорванными водородные связи в результате упрочняются. Однако считают, что это упрочнение происходит не вследствие образования комплексов молекул воды под действием водородных связей, а главным образом вследствие вандерваальсовых взаимодействий между водой и неполярной частью растворенного неэлектролита. Далее предполагается, что взаимодействие между водой и неполярными группами растворенного вещества становится возможным вследствие существования определенных структурных зон или соответствующих им неполярных групп молекул, форма и размер которых облегчают вандерваальсовы взаимодействия. Контакт с группами ОН в воде осуществляемся наилучшим образом тогда, когда радиусы вандерваальсова взаимодействия для неполярной группы и для структурных зон воды равны между собой. При этом условии водородные связи групп ОН становятся линейными. Согласно этой картине, стабилизирующее действие неэлектролитов на структуру воды связано главным образом с зависимостью взаимодействий между молекулами от их ориентации. При повышении температуры водородные связи постепенно деформируются, что приводит к повышению координационного числа и одновременному уменьшению числа структурных зон. В результате этого ослабляется влияние растворенных электролитов на структуру. [c.77]

    Молекулы растворенного вещества изменяют коэффи аент самодиффузии воды, и в принципе при этом играют роль все три рассмотренных в предыдущем разделе эффекта. Относительная роль каждого из них зависит от условий, главным образом от размеров, заряда и гидратации ионов. Так, Уонг [134] наблюдал, что в разбавленных растворах Na l коэффициент самодиффузии воды вначале уменьшается с возрастанием концентрации. Это он объяснил тем, что эффекты препятствий и гидратации, обусловленные сильно гидратированным ионом Na+, превышают противоположное влияние эффекта разрушения структуры. В разбавленных растворах KI, однако, коэффициент самодиффузии воды увеличивается с ростом концентрации, что частично, по-видимому, обусловлено сильным эффектом разрущения структуры в непосредственном окружении большого 1 -иона, превышающим эффекты препятствий и гидратаций. [c.275]

    Адсорбция органических молекул из водйых растворов зависит от разности энергий адсорбционного взаимодействия молекул компонентов раствора с атомами поверхности адсорбента и энергий взаимодействия органической молекулы с молекулами воды, образующими благодаря системе водородных связей упорядоченную ближнюю структуру жидкости. Это взаимодействие определяет растворимость органического вещества и энергию, дре-пятствук щую переходу органической молекулы из водного окружения на поверхность границы фаз. Поэтому целесообразно кратко рассмотреть современные, представления о влиянии на структуру жидкой воды молекул органических веществ и о связи этой структуры X растворимостью органических соединений. [c.8]

    Влияние неорганических солей на растворимость органических соединений в воде также определяется действием этих солей на упрочнение или разрушение кластерной структуры воды. Так, в растворах солей, ионы которых разрушают структуру воды, например в растворах нитратов, растворимость анилина уменьшается относительно мало (в растворе 1,44 моль/кг KNO i она составляет 70 % от растворимости анилина в воде), тогда как в растворах солей, ионы которых усиливают структуру воды (504 , СОз , Мд ), растворимость анилина с ростом концентрации соли быстро падает. Уже в растворе 0,45 моль/л К2504 она составляет всего 55,5 % от растворимости в воде. На растворимости веществ, в молекулах которых образуются внутримолекулярные водородные связи, присутствие минеральных солей в растворе почти не сказывается. [c.13]

    Активность растворов слабых электролитов может, быть прёд-етавлена произведением концентрации на коэффициент активности С1с. При степени ионизации, равной нулю, в разбавленных раство ах, т. е. при С С, взаимодействие между молекулами растворенного вещества практически отсутствует и влияние их на структуру воды невелико. Если в таких растворах не возникает ассоциация молекул, то активность их приблизительно совпадает с концентрацией, т. е. /с 1- При частичной же ионизации молекул коэффициент активности учитывает содержание неионизированных молекул в растворе  [c.15]

    При моделировании разбавленных водных растворов дипептида аланина Карплас методами молекулярной динамики оценил влияние растворенного вещества на динамические свойства воды и показал, что это влияние ограничивается первым сольватационным слоем (2). Структуры воды вблизи полярных и неполярных групп полимеров становятся различными при образовании таких же водородных связей, как в объемной воде. При этом в первом случае число соседних молекул снижается, а во втором их число равно нулю и вода приобретает повышенную подвижность. [c.9]

    В случае гидрофобных ионов, рассмотренных выше, опытные данные более противоречивы. Хотя структурно-упорядочивающие свойства растворенных в воде неполярных групп или молекул были надежно установлены при помощи таких параметров, как вязкость и моляльные доли, они (эти свойства) не были обнаружены во многих спектральных исследованиях. Как отмечено выше, для исследованной области концентрации конкурирующее действие ионов, оказывающих различное влияние на структуру воды, может привести к понижению структурного порядка в растворе. Однако следует обсудить и другие объяснения, поскольку известно, что в растворах крупных гидрофобных ионов происходит общее возрастание степени упорядочения структуры. Одной из возможных причин может служить слабая чувствительность использованных методов по отношению к любому увеличению степени упорядочения структуры воды. Другая альтернативная причина заключается в том, что область более упорядоченной структуры вокруг гидрофобных ионов может отличаться от аналогичной структуры льда, т. е. может содержать нететраэдрические водородные связи [10]. Во всяком случае, поведение указанных ионов интенсивно исследуется и вполне возможно, что будущие работы, выполненные с помощью рентгеновской и инфракрасной спектроскопии, ЯМР и других методов, разрешат противоречия, связанные с гидратацией и структурными эффектами гидрофобных растворенных веществ. [c.65]

    Специфические свойства воды как растворителя частично обусловлены влиянием растворенного вещества на структуру растворителя. Выше уже обсуждалась тенденция к образованию айсбергов при введении неполярных веществ в воду, что приводит не только к выделению тепла, но и к большому отрицательному изменению энтропии (раздел А-6). Эти эффекты нередко проявляются в уменьшении растворяющей способности воды с повышением температуры, например при растворении полиметакри-ловой кислоты [131]. Иногда водные растворы полимеров осаждаются при нагревании. Это наблюдалось для сополимеров винилового спирта и ацетатов [132], метилцеллюлозы [133, 134] и других водорастворимых полимеров. Однако растворяющая способность воды не всегда снижается при повып1ении температуры. Например, при исследовании полиакриламида Зильберберг и др. [131] обнаружили, что вода становится термодинамически лучшим растворителем по мере повышения температуры. Во всяком случае следует помнить, что взаимодействие молекул воды с макромолеку-лярным растворенным веществом сильно локализовано на отдельных участках, и поэтому следует ожидать, что параметр взаимодействия между растворителем и растворенным веществом может изменяться в широких пределах в зависимости от состава системы. Приведем наглядный пример найлон имеет чрезвычайно большое сродство к воде при очень малой ее концентрации [135]. Однако растворимость воды в этом полимере довольно ограничена, а растворимость найлона в воде слишком мала, чтобы ее можно было обнаружить. Очевидно, что в таких случаях следует рассматривать отдельно взаимодействие воды с сильно полярными амидными группами и с неполярными участками полимерного растворенного вещества. [c.70]

    В СВЯЗИ С большим практическим значением уксуснокислых эфиров целлюлозы было проведено колоссальное число работ, посвященных разработке оптимальных условий ацетилирования целлюлозы. Результаты этих работ сводятся к тому, что реакционная способность целлюлозы является функцией доступности гидроксильных групп в условиях этерификации. Эти вопросы подробно были рассмотрены Хойзером [130] и Хэппи [105]. При ацетилировании целлюлозы основной фактор, опре-деляюп1,ий реакционную способность,— влажность материала. Вода пе участвует в процессе ацетилирования, более того, ее присутствие является нежелательным, и условия этерификации выбираются такими, чтобы удалять ее из реакционной системы по мере ее образования. Влага влияет на морфологию целлюлозного материала (как на тонкую структуру, так и на макроструктуру), способствуя увеличению доступности гидроксильных групп для молекул реагентов. Вода не оказывает влияния на кристаллические участки, в то время как при действии других реагентов, например этиламина, изменяются как аморфные, так и кристаллические области целлюлозы. Как указывалось выше, межмолеку-лярные водородные связи между гидроксильными группами соединяют макромолекулы в элементы тонкой структуры. Вода, этиламин, алифатические диамины и другие соединения (вещества, вызывающие набухание) обладают энергией, необходимой для разрыва водородных связей, но недостаточной, однако, для перевода макромолекул целлюлозы в раствор. При действии этих веществ происходит перестройка межмолеку-лярных связей. Дальнейшие изменения зависят от суммарной энергии водородных связей и от последующих обработок материала. [c.53]

    Межмолекулярные взаимодействия в системе вода-аминокислота, как известно, определяют растворимость цвиттерлита и способность вступать в различные биологические превращения [1]. Характер взаимодействия аминокислот с водой определяется строением бокового радикала и размерами молекул [2]. Термохимические исследования растворения биологически активных веществ в воде позволяют получить сведения о термодинамических свойствах растворов аминокислот и влиянии гидрофильной и гидрофобной составляющих гидратации на изменение структуры растворителя. В литературе представлены численные значения теплоты растворения для отдельных аминокислот [3, 4]. В [5] приведены результаты по термохимии растворения цистеина в воде. Настоящая работа является продолжением исследования термодинамических характеристик растворения аминокислот, как объективных показателей взаимодействий, протекающих в растворе. В качестве объекта исследования выбрана малорастворимая (0.179 моль/кг при 473 К) ароматическая аминокислота фенилаланин, для которой [c.97]

    Являясь неполярными, углеводородные жидкости слабо растворяются в воде. Возможность растворения в воде углеводородов, как и других неполярных веществ, определяется числом льдоподобных структур. Чем больше этих структур, тем больше полостей, куда могут внедриться неполярные молекулы, и тем больпзе величина их растворимости. Эти факторы редко учитывают, например, при бурении в интервалах многолетнемерзлых пород, когда при повышении температуры водородные связи молекул замерзшей воды разрываются, уменьшая число льдоподобных образований, и изменяют адгезионные характеристики углеводородных пленок. Больнюе значение при этом имеет соотношение размеров молекул углеводородных жидкостей и пустот в льдоподобных структурах, наличие в воде органических и неорганических веществ, стабилизирующих ее структуру и приводящих к возникновению в системе процессов высаливания и всаливания неполярных молекул. Эти явления, кажущиеся несущественными на первый взгляд, оказывают большое влияние на процессы, происходящие на различных поверхностях раздела в промывочных жидкостях. [c.28]

    Выше отмечалось, что, начиная с Хаггинса, огромную роль в стабилизации пространственной формы белковой цепи стали отводить пептидным водородным связям. Считалось, что именно они формируют вторичные структуры - а-спираль и р-складчатые листы. Но что в таком случае удерживает эти структуры в глобуле и под влиянием каких сил белковая цепь свертывается в нативную конформацию в водной среде, где пептидные водородные связи N-H...O= и электростатические взаимодействия малоэффективны Можно поставить вопрос иначе. Почему внутримолекулярные взаимодействия у природной гетерогенной аминокислотной последовательности превалируют в водном окружении над ее взаимодействиями с молекулами воды Фундаментальное значение в структурной организации белковой глобулы стали отводить так называемым гидрофобным взаимодействиям. Само понятие возникло в начальный период изучения коллоидного состояния высокомолекулярных веществ, в том числе белков. Первая теория явления, правда, не раскрывающая его сути, предложена, в 1916 г. И. Ленгмюром. Ему же принадлежит сам термин и разделение веществ на гидрофобные, гидрофильные и дифиль-ные. Природа гидрофобных взаимодействий была объяснена У. Козманом (1959 г.). Он показал, что низкое сродство углеводородов и углеводородных атомных групп к водному окружению обусловлено не неблагоприятными с энергетической точки зрения межмолекулярными контактами, а понижением энтропии. На энтропийный фактор обращали внимание еще в 1930-е годы для объяснения причин образования мицелл моющих средств в водных коллоидных растворах (Дж. Батлер, Г. Франк, Дж. Эдзал), однако такая трактовка формирования компактных структур не была перенесена на белки. Впервые это сделал Козман, поэтому гидрофобная концепция носит его имя. [c.73]


Смотреть страницы где упоминается термин Влияние молекул растворенного вещества на структуру воды: [c.23]    [c.299]    [c.299]    [c.86]    [c.86]    [c.86]    [c.156]    [c.391]    [c.458]    [c.175]    [c.99]    [c.591]    [c.11]    [c.272]    [c.300]    [c.120]    [c.30]    [c.131]   
Смотреть главы в:

Явления переноса в водных растворах -> Влияние молекул растворенного вещества на структуру воды




ПОИСК





Смотрите так же термины и статьи:

Влияние растворенных веществ на структуру воды

Вода, структура

Растворы в воде

Структура воды



© 2025 chem21.info Реклама на сайте