Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа ассоциации растворителя влияние

    Однако когда часть растворенного электролита, находящаяся в виде ионных пар, мала, что имеет место для растворителей с высокой диэлектрической проницаемостью, константы, подсчитанные по этим уравнениям, не точны. Это является следствием эффектов, которые не учитываются уравнениями, но оказывают влияние того же порядка, которое вызывает ассоциация. Вследствие влияния таких эффектов, а также ассоциации ионов [c.129]


    В заключение следует подчеркнуть, что зависимость силы солей от свойств растворителей находится в соответствии с выведенными уравнениями для диссоциации солей и для ассоциации ионов солей и что нет принципиального различия во влиянии растворителей па константы диссоциации солей и на константы ассоциации ионов солей. [c.325]

    Процесс соответствующих взаимодействий, имитирующих те, которые доминируют в биохимических процессах и относящихся к нековалентным, получил название "молекулярное узнавание". Молекулярное узнавание можно определить как процесс, включающий в себя как связывание, так и выбор молекулы - "гостя" данной молекулой -"хозяином". Просто связывание молекул не является молекулярным узнаванием. Согласно Лену [4], "узнавание - это связывание с целью". Данное поведение характерно для многих биохимических процессов, таких как ферментативные реакции, связывание "рецептор-субстрат", сборка белковых молекул, иммунное взаимодействие антиген-антитело, транспорт через мембрану и т.д. Одним из критериев молекулярного узнавания является то, что константа ассоциации между "хозяином" и "гостем" является значительно более высокой по сравнению с константами образования комплексов между другими молекулами, присутствующими в системе. В связи с этим особое значение приобретает исследование энергетики межмолекулярных взаимодействий биомолекул. Энергетические параметры позволяют судить о силе взаимодействия, наличии или отсутствии ассоциации между молекулами, а также выявить и описать влияние растворителя на процесс молекулярного узнавания. [c.185]

    Ассоциация ионов. Влияние растворителя на кислотно-основные процессы в амфотерной среде, характеризуемой средними и высокими значениями диэлектрической проницаемости, часто успешно интерпретируется с помощью представлений об изменениях диэлектрической проницаемости (электростатические эффекты) и основности (неэлектростатические эффекты). Когда диэлектрическая проницаемость понижается, то увеличивается степень ассоциации вследствие образования ионных пар (Бьеррум [71]) и более высоких ассоциатов — тройников и дипольных агрегатов [22, 72]. Устойчивость продуктов ассоциации выражается с помощью константы равновесия, которую можно найти путем измерения электропроводности или термодинамическими методами. Величина константы образования ионных пар при данном значении диэлектрической проницаемости оценивается с помощью уравнения, предложенного Денисоном и Рамзи [73, 74].  [c.182]


    В свое время образование непроводящих частиц в растворах сильных электролитов Семенченко, Бьеррум, Фуосс и Краус объясняли возникновением ионных ассоциатов за счет кулоновского взаимодействия. При этом предполагалось, что между ассоциированными ионами могут быть различные расстояния и что они не отделены от свободных ионов потенциальными барьерами. Поэтому строгая применимость закона действия масс ко многим сильным электролитам и возможность ассоциации в растворителях с любыми (в том числе и высокими) диэлектрическими проницаемостями не может быть следствием только кулоновского взаимодействия ионов. Кулоновское взаимодействие не может объяснить индивидуальное влияние растворителей с близкими диэлектрическими проницаемостями, но различной природы, на ассоциацию ионов, а также различие в константах ассоциации ряда солей четвертичных аммониевых оснований в растворителях с близкими диэлектрическими проницаемостями (дихлорэтан, хлористый этилиден и о-дихлорбензол). [c.349]

    Теоретически влияние растворителей в этом случае может быть оценено по уравнениям, выведенным для характеристики влияния растворителей на константы ассоциации солей [уравнения (VHI, 17) и (VHI, 21)], так как и в этом случае в растворе нет свободных молекул и продуктов присоединения, а присутствуют только ионные ассоциаты. Можно ожн- [c.387]

    Влияние специфической сольватации па положение равновесия между ионами и ионными парами пока количественно учесть невозможно. Однако, если рассматривать растворитель в качестве изотропного бесструктурного диэлектрика, то можно получить выражение для константы диссоциации ионных пар Кц или константы ассоциации ионов в ионную пару К . Если доминирующим в ионной паре является кулоновское взаимодействие, то обычно для расчета этих констант используют [4] уравнение [c.250]

    Константы ассоциации вычислены для большого числа донорно-акцепторных комплексов, а во многих случаях определены также соответствующие теплоты и энтропии образования, В этом разделе на типичных примерах будет показано влияние изменений растворителя и структур доноров и акцепторов на значения констант равновесия. Используемые ниже символы Кс и KN относятся к комплексам состава 1 1. [c.104]

    Из работ, касающихся изучения влияния растворителя на положение полосы валентных колебаний группы ОН, известно, что растворители могут оказывать сильное действие [44]. Этот вывод следует также из различия в величинах констант ассоциации спиртов в различных растворителях [125, 126]. [c.303]

    Влияние состава растворителя может быть суммировано следующим образом в большинстве случаев константа ассоциации тем больше, чем выше поверхностное натяжение растворителя, но не всегда коррелирует с pH, диэлектрической постоянной и показателем преломления. Допуская идеальное поведение, соотношение между константой ассоциации и стандартной свободной энергией можно выразить (см. 1П-28) как [c.185]

    Влияние растворителя на равновесие ионных пар представляет кинетический интерес, так как применение электростатической теории солевого эффекта к кинетическим данным требует поправки на степень образования ионных пар. Знание констант равновесия образования ионных пар в различных растворителях позволяют вводить поправки на ассоциацию ионов в кинетические значения. [c.287]

    Весьма высокое значение криосконической константы камфоры позволяет с успехом использовать последнюю в микрометоде по Расту [23]. Определение молекулярного веса микрометодом было использовано некоторыми исследователями при изучении церезинов и основных составляющих битумов [24—26]. Существенное влияние на степень ассоциации веществ в растворе, помимо температуры, оказывает полярность растворителей. Поэтому иногда использовали для криоскопических измерений нитробензол [22], стеариновую кислоту [27], фенол и другие полярные растворители. [c.500]

    Еще более значительно влияние гидратации на экстракционное равновесие при извлечении кислот в тех случаях, когда распределение воды отклоняется от уравнения (1.121). В таких системах коэффициент активности соли, согласно уравнению (1.136), быстро уменьшается с ростом ее концентрации и активности воды, а коэффициент активности растворителя при этом несколько увеличивается в соответствии с уравнением (1.139). Наибольшие отклонения от идеальности из-за гидратации наблюдаются при экстракции серной кислоты. Первоначально, обнаружив резкое уменьшение коэффициента активности сульфата ТОА с ростом его концентрации, Аллен [143] объяснил это явление сильной ассоциацией сульфата в органической фазе, однако криоскопические измерения не подтвердили этого предположения [145]. Лишь учет влияния гидратации сульфата ТОА на его коэффициенты активности позволил описать равновесие при экстракции серной кислоты [177]. В безводных растворах сульфат ТОА неассоциирован, поэтому изменение коэффициентов активности происходит только из-за гидратации значения их даны в табл. П.21. Расчет констант экстракции серной кислоты бензольными растворами ТОА приведен в табл. П.25, из которой видно, что константы экстракции почти постоянны при различных концентрациях сульфата ТОА. [c.115]


    Теоретически влияние растворителей в этом случае может быть оценено по уравнениям, выведенным для характеристики влияния растворителей на константы ассоциации солей [уравнения (VII,17) и (VII,21)1, так как и в этом случае в растворе нет свободных молекул и продуктов присоединения, а присутствуют только ионные ассоциаты. Можно ожидать, что по порядку величин константы ассоциации кислот будут близки к константам ассоциации солей. В действительности константы кислот несколько ниже, чем солей с неорганическими катионами или солей четвертичных аммониевых оснований, но близки к константам солей moho-, [c.342]

    В апротонных органических растворителях основность обычно возрастает от первичных к вторичным и далее к третичным аминам [488, 497—499], хотя среда оказывает заметное влияние на константу ассоциации протона. Можно напомнить, что добавление спирта, например к неполярному растворителю, влияет на основность первичных и втор11чных аминов, но практически не оказывает действия на третпчные [5001. На основе данных ио спектрофотометрип рассчитана основность нормальных первичных и третичных аминов с И углеродными атомами в цеии при 25 °С в бензоле и хлороформе и первичных, вторичных и третичных октиламинов в различных растворителях [501 ]. [c.56]

    Однако когда часть растворенного электролита, находящаяся в виде ионных пар, мала, что имеет место для растворителей с высокой диэлектрической проницаемостью, константы, подсчитанные по этим уравнениям, не точны. Это является следствием эффектов, которые не учитываются уравнениями, но оказывают влияние того же порядка, которое вызывает ассоциация. Вследствие влияния таких эффектов, а также ассоциации ионов обычное уравнение Онзагера для электропроводности не передает истинной картины зависимости электропроводности от концентрации. Фуосс и Онзагер более подробно рассмотрели зависимость электропроводности от концентрации для неассоциированных электролитов, а Фуосс использовал результаты этого исследования для рассмотрения электропроводности слабоассоциированных электролитов. [c.156]

    Систематические исследования влияния изменений характера или концентрации солевого фона на константы устойчивости производятся обычно для нахождения отношения активностей (см. раздел II, 1, А). Изменения термодинамических функций можно рассмотреть с точки зрения конкурируюхцих реакций комплексообразования [240] или изменения коэффициентов активности, входяш их в уравнения (5), (6), (31)— (33). Устойчивости комплексов ионов металлов изучались в смесях водных и неводных ( смешанных ) растворителей главным образом по двум причинам. Во-первых, изменение констант ассоциации в зависимости от диэлектрической проницаемости среды рассматривали как способ проверки представлений Бьеррума—Фуосса об ионных нарах [62]. Во-вторых, многие органические лиганды и их комплексы настолько плохо растворимы в воде, что соответствующие равновесия можно изучать только в смешанных растворителях. [c.69]

    Использование смешанных растворителей приводит к появлению двух общих проблем. Если происходит селективная сольватация [11, 181а], то константы ассоциации, полученные в двух разных средах, относятся к разным реакциям. Вероятно, если молярная доля воды больше, чем примерно 0,8, селективной сольватации комплексов металлов не происходит, так как вальденовское произведение предельной электропроводности и вязкости постоянно для ряда систем с большим содержанием воды [75, 148, 149]. В неводных средах ионы металлов и их комплексы не гидратируются и, вероятно, даже не сольватируются, и многие реакции ассоциации были изучены в безводных средах [86, 152, 199, 224, 257, 301]. Стандартное состояние для стехиометрических констант ассоциации выбирается для каждой конкретной среды (растворенные вещества плюс растворители). Предпринимались попытки элиминировать зависимость от концентрации электролита (вторичный эффект среды по Оуэну [123]), с тем чтобы относить стандартное состояние только к смеси растворителей [62, 75, 148, 149], но эти попытки вызывают возражения, изложенные в разделе II, 1, А. За исключением, возможно, амминов металлов, константы ассоциации большого числа разнообразных комплексов металлов, содержащих неорганические [284] и органические [283] лиганды, возрастают при уменьшении диэлектрической проницаемости среды. Это изменение происходит в направлении, ожидаемом на основании электростатических соображений, но влияние органических растворителей (первичный эффект среды по Оуэну [123]) на константы ассоциации не проанализировано. [c.69]

    Большое влияние на степень ассоциации оказывает природа растворителя, его термодинамическое качество по отношению к данному полимеру. Более прочные и долго живущие ассоциаты образуются в присутствии термодинамически плохих растворителей, когда контакты полимер — полимер становятся более вероятными, чем контакты полимер — растворитель. Но ассоциация возможна и в среде хороших растворителей, т. е. когда второй вириальный коэффициент положителен. Влияние природы растворителя можно проиллюстрировать следующими п ймерами. Так, Кратох-вил [52] показал, что степень ассоциации поливинилхлорида,в тетрагидрофуране и циклогексаноне примерно 0%, в бутилацетате — 15—20%, в амилацетате — 40%, в дихлорбензоле — 50%. Элиас приводит значения констант ассоциации полипропилена в бензоле— 82000, в толуоле — 10 600, в четыреххлористом углероде — 800 и в трихлорэтилене — 230 условных единиц [53]. Таким образом, по мере ухудшения качества растворителя степень ассоциации возрастает и в среде очень плохих растворителей образуются уже гетерофазные необратимые агрегаты. [c.436]

    ЧТО взаимодействие происходит и между молекулами салмого основания [9]. Тот факт, что изменения в растворимостях и коэффициентах активности существенны уже при относительно низких концентрациях (в наиболее благоприятных случаях 0,1 моль/л), указывает на то, что они вызваны скорее прямым взаимодействием между молекулами, чем иеспецифическим влиянием на растворитель. Важные доказательства этого были получены при наблюдении сдвигов в спектрах ЯМР протонов кольца оснований при возрастающих концентрациях последних [10]. Константы ассоциации, вычисленные из данных но растворимости и коэффициентов активности (типа приведенных на рис. 1), успешно объясняют зависимость положения сдвигов в спектрах ЯМР от концентрации. Эти константы не очень велики ( -5 л/моль для взаимодействия аденин — цитозин и 1 л/моль для тимин — урацил), но они указывают на то, что молекулы оснований взаимодействуют между собой существенно сильнее, чем с молекулами воды, присутствующими в большом избытке (55 моль/л). ]г[еблагоприятное изменение энтропии ассоциации отдельных молекул в разбавленном растворе значительно меньше для оснований, которые связаны с ковалентным остовом цепи нуклеиновой кислоты. Поэтому почти несомненно, что механизм, который ответствен за взаимодействие отдельных молекул основания, является главным фактором, обеспечивающим устойчивость простой или двойной спирали полинуклеотида в водном растворе. Так как детали механизма этого взаимодействия окончательно не установлены, его принято характеризовать неопределенным термином стекинг . [c.306]

    В табл. rV-24 приводятся значения InATa ряда кислот в некоторых растворителях. Данные для таблицы почерпнуты в основном из [73, 242, 344, 329, 351, 230, 229, 39], либо из литературы, указанной в этих источниках. Таблица содержит лишь небольшую часть опубликованных данных по константам ассоциации кислот, необходимую для иллюстрации излагаемых далее положений о соотносительности влияния основности и полярности среды на силу кислот. [c.125]

    Следует отметить, что с точки зрения изложенных вьш1е теоретических положений о влиянии растворителя на силу кислот представляются непонятными данные по ITa кислот в N-метилацетамиде, растворителе с исключительно высокой ДП (е = 186) и достаточно высокодонорном (данные по DN N-метилацетамида в литературе отсутствует, но заключение о его донорности можно вьшести из сопоставления DN ацетамида и диметилацетамида). Следовало ожидать, что в таком донорном и исключительно высокополярном растворителе кислоты должны быть ассоциированы весьма слабо. Однако, как установлено [263], значения Ка (303,15 К) уксусной, моно- и дихлоруксусной, а также трифторуксусной кислот составляют, соответственно, 1,4 -10 , 9,3 10 , 7,9 10 , 35,5. Интересно и то, что изменение температуры на 20 градусов практически не изменяет константу ассоциации. Связаны ли эти аномалии с необычайно высокой ДП растворителя — можно будет судить лишь после того, как исследования в подобных растаорителях будут с -цест-венно расширены. [c.126]

    Михаэлис и Грэник [78] наблюдали, что водные растворы хингидрона окращены в темный цвет, и что окраска ослаблялась в спиртовых растворах. Это указывало на необходимость исследования влияния растворителей. С этой целью было проведено изучение смеси мономерного гидрохинона и бензохинона, в молярном отнощении 1 1, в 21 различном растворителе и смесях, чтобы определить влияние растворителей на молярный коэффициент экстинкции и константу ассоциации. [c.184]

    Анализируя данные по термодинамическим параметрам реакций комплексообразования эфира 18-краун-б (табл. 4.8) и р-ЦД (см. ниже табл. 4.17) с аминокислотами в воде, можно сделать следующие сравнительные выводы о взаимодействии указанных макроциклов с АК в воде. Константы равновесия реакций комплексообразования 18-краун-б с АК меньше соответствующих констант для систем р-ЦД + АК, однако 18-краун-б имеет более сильную комплексообразующую способность к АК по сравнению с р-ЦД. Ассоциация 18-краун-б со всеми АК в воде происходит по единому механизму за счет образования трех водородных связей посредством КНз-группы АК и через три электростатических взаимодействия Г Г. .. О. р-ЦД селективно ассоциирует с изученными АК и образует комплексы только с ароматическими АК за счет специфических взаимодействий, а процесс комплексообразования в большей мере, чем в случае с 18-краун-б, управляется влиянием среды. Это подтверждается существованием зависимости энтальпии комплексообразования (Д(.// ) 18-краун-б и р-ЦД от энтальпии гидратации (Д ,у ,Л) аминокислот (рис. 4.14), из которой выпадают только значения для комплексов Ь-Шз-р-ЦД, Ь-01п-18Кб, Ь-Р11е-18К6, что свидетельствует об ином механизме молекулярного узнавания этих АК указанными макроциклами. Как видно из рис. 4.14, зависимость А,Н А,,у гН) для Р-ЦД сильнее выражена, чем для 18-краун-б, что говорит о большем влиянии растворителя на процесс ассоциации АК с р- [c.227]

    В этом уравнении А — константа, характеризующая данный растворитель при данной температуре (в случае водных растворов при 25 °С Л = 0,51-2,303 л -моль ), а ко — константа скорости реакции при бесконечном разбавлении, определяемая путем экстраполяции. Уравнение (5.99) впервые было предложено Бренстедом [256], Бьеррумом [257] и Христиансеном [258], которые для решевия проблемы влияния нейтральных солей на скорости реакций в распворах воспользовались теорией Дебая — Хюккеля [259]. Уравнение (5.99) предсказывает линейную зависимость пк от у/. Поскольку уравнение Дебая—Хюккеля применимо только к разбавленным растворам, в которых ассоциацией ионов можно пренебречь, то и уравнение (5.99) оказывается справедливым только для растворов с концентрацией 1—1-электролита не выше 10 моль-л . В разбавленных растворах уравнение (5.99) хорошо описывает зависимость пк от I. [c.296]

    Растворитель может оказывать очень сильное влияние на константы скорости реакций между ионами и органическими молекулами, будь то нуклеофилы или основания. Например,, при переходе от воды к ацетону константа скорости второго порядка реакции между хлорид-ионом и метилиодидом возрастает приблизительно в 10 раз. Другой пример — рацемизация оптически активного 2-метил-З-фенилпропионитрила под действием метоксид-иона. Скорость этой реакции в диметилсульфоксиде в 10 раз больше, чем в метаноле [8]. Эти эффекты ускорения могут быть отчасти обусловлены влиянием диэлектрической проницаемости среды, однако в основном они определяются специфическим действием растворителя. Как указывалось выше, наибольшие различия замечены между протонными и апротонными растворителями. Переход от протонного растворителя к апротонному может приводить к последствиям двоякого рода с одной стороны, к смещению равновесия между ионными парами и свободными ионами, а с другой — к изменению специфической сольватации ионов, которая обычно является более сильной в среде протонного растворителя. Важнуку роль процесса ассоциации ионов в определении кажущейся нуклеофильности можно проиллюстрировать на примере галогенидов лития и тетра- -бутиламмония. В реакции с -бутил-п-бромбензолсульфонатом в ацетоновом растворе эти соли соотносятся по реакционной способности следующим образом (все соли берутся в концентрации 0,04 моль/л)  [c.49]

    Константы кц, кц скорости нарастания вязкости, полученные из уравнений (1) и (2), отражают совокупность различных стадий процесса структурирования растворов комплексов, протекающих параллельно и последовательно. Формирование надмолекулярной структуры растворов комплексов при взаимодействии алкоксидов бора и лития включает такие основные стадии, как образование мономерного комплекса, ассоциация его по литий-кисло-родной связи и алкильным фрагментам, ассоциация молекул растворителя под влиянием комплекса. Образование Li[i-С4НдОВ(ОК)з] ионной структуры и ассоциация его по Li. .. О связи происходят, очевидно, спонтанно и очень быстро. Суммарная скорость этих стадий зависит от концентрации исходных алкоксидов бора и лития. Лимитирующими стадиями скорости структурирования являются межмолекулярная ассоциация комплексов по алкильным заместителям, ориентация и упаковка молекул растворителя, которые приводят к повышению вязкости растворов. Поэтому к , полученная из зависимости т) = f( o) и в большей степени отражающая скорость образования комплекса, ассоциированного по Li. .. О связи, намного выше /сп скорости роста вязкости, которую в основном определяют более медленные стадии. Однако скорости медленных и быстрых стадий процесса структурообразования в растворах взаимозависимы. Следовательно, подставив значение dr /dx пз уравнения (2) в уравнение (1),  [c.52]

    В табл. 36 суммированы опубликованные кинетические данные по окислительно-восстановительным реакциям. Сюда не включены результаты нолуколичественных исследований. В немногих случаях указана только одна типичная реакция, и читатель может найти весь материал по аналогичным реакциям в соответствующих обзорах. Указанные в графе таблицы реагенты не обязательно соответствуют тем формам, которые действительно существуют в условиях опыта часто необходимо учитывать возможные влияния pH, ионной ассоциации и сольватации. Если не оговорено особо, растворителем во всех случаях была вода, поскольку обычно катионы существуют в акватированной форме. Константы скорости, приведенные в графе 2, относятся к температуре, указанной в графе 3. Символ 1) после константы скорости указывает, что реакция идет по уравнению яервого порядка (в сек ). Там, где возможно, из приведенных констант [c.157]

    Особый интерес представляют исследования влияния растворителей на экранирование ароматршеских протонов. Известно, что атомы водорода ароматических соединений способны вступать в слабую ассоциацию с протоноакцепторными молекулами [17, 76, 77], причем прочность водородной связи симбатна химической активности атома водорода. Изменение химического сдвига Н под влиянием растворителя можно рассматривать как параметр, пропорциональный прочности водородной связи. Поэтому естественно ожидать корреляции величины этого изменения с константами а, определяющими реакционную способность данного положения в молекуле. Исследуя п-дизамещенные бензолы, Диль показал, что изменение инкремента б при переходе от инертного растворителя (гексана) к ацетону линейно зависит от ам-за-местителей [78]. Важность этой зависимости заключается в том, что она устанавливает непосредственную связь между влиянием заместителя на химическую реакционную способность и его влиянием на способность водородного атома участвовать в ассоциации. [c.415]

    Известно [10], что реакция бимолекулярного замещения с участием нуклеофилов — анионов, к которой относится этот процесс, протекает, как правило, быстрее в диполярных апротонных растворителях, таких как диметилсульфоксид (ДМСО), М,М-диметил-формамид (ДМФА) и гексаметилфосфотриамид (ГМФТА), чем в протонодонорных. Основной причиной уменьшения нуклеофильности аниона в воде и спиртах является образование вокруг него сольватной оболочки, которая тем прочнее, чем лучшим акцептором является анион. Вполне естественным с этой точки зрения является рост реакционной способности галогенид-ионов, участвующих в реакции Финкельштейна в протонодонорных растворителях, при переходе от С1 к Вг и далее к 1 . Ионная ассоциация в этих растворителях помех не создает, поскольку галогениды щелочных солей и тетраалкиламмония, которые являются источниками галогенид-ионов, в значительной степени диссоциированы на свободные ионы [11]. В диполярных апротонных растворителях главным фактором, определяющим реакционную способность галогенид-ионов, является их основность, поэтому ряд реакционной способности инвертируется 1 <Вг"<С1 [12]. Тем не менее прийти к такому выводу в ряде случаев невозможно, если пренебречь влиянием ионной ассоциации. Так, в реакции н-бутилброзилата (Х = ОВз) с галогенидами лития наблюдаемая константа скорости растет в ряду ЫС1<ЫВг<Ы1 (табл. 7.1), и только пересчет ее в с помощью уравнения Акри ставит все на свои места. [c.253]

    КОН степени смещен в область сильного поля, что оба сигнала перекрываются. Спектры ЯМР и диаграммы температур застывания системы пиррол — ацетилацетон [80] указывают на образование слабого комплекса за счет водородных связей пиррола с карбонильным кислородом кетоформы ацетилаиетона. Возможно образование как 1 1, так и 1 2 комплексов. Использование метода двойного резонанса [46] позволило изучить влияние растворителей как на водород НН-, так и на водороды СН-групп. Разбавление пиррола циклогексаном смещает все сигналы в сторону слабого поля, причем наибольший сдвиг претерпевает сигнал от водорода НН-группы, а наименьший — сигналы от р-водородов. Этого нельзя ожидать в случае разрыва связи ЫН Ы, однако оно вполне совместимо с уменьшением я-взаимодействия между НН-группой пиррола и я-электронной системой второй молекулы [81]. Это взаимодействие изменяет химические сдвиги сс- и р-протонов. Из сопоставления длин связей видно, что р-протоны расположены так далеко от донорного пиррольного кольца, что его влияние невелико. Из двух возможных циклических димеров, из которых один содержит два пиррольпых кольца, являющихся я-донорами, а другой состоит из одной свободной и одной ассоциированной НН-группы,— первый лучше согласуется с результатами ЯМР. При добавлении пиридина к циклогексановому раствору пиррола сигнал от НН-группы смещается в область более слабого поля. Этот сдвиг приписывают ассоциации НН Н, включающей неподеленную пару электронов атома азота пиридина. Константы равновесия этой ассоциации были определены из температурной зависимости величина ЛН равна — 4,3 ккал/моль, а изменение стандартной энтропии Д5° = —8,0 кал/моль, что согласуется со значениями, полученными из калориметрических измерений и данных ИК-спектров. [c.437]

    Было найдено, что растворитель также оказывает влияние на скорость реакции изоцианата со спиртом. Так, при концентрации реагентов 0,24 моль л константа скорости некатализируемой реакции фенилизоцианата с метиловым спиртом в дибутиловом эфире при 20 °С равна 0,28-10 л1 моль сек), а в бензоле — 1,18-10 л1 моль-сек) По данным ИК-спектроскопии в дибутиловом эфире происходит ассоциация спирта с растворителвхМ, а в бензоле — не происходит. Предполагают, что ассоциация спирта с растворителем понижает скорость реакции главным образом за счет уменьшения величины Вполне вероятно, что комплекс изоцианат — спирт атакуется ассоциа-том спирт — растворитель медленнее, чем неассоциированным спиртом. [c.175]

    Первое уравнение Онзагера сравнивали с экспериментальными данными. Весьма важно исследовать зависимость константы ионной ассоциаций от диэлектрической проницаемости растворителя. Для этой цели особенно пригодны смеси воды и 1,4-диоксана (С4Н8О2), поскольку, несмотря на свою низкую диэлектрическую проницаемость (е = 2,21 при 25 °С), диоксан смешивается с водой. Диэлектрическую проницаемость смеси диоксан — вода можно варьировать в интервале 78,5—2,2. Однако при добавлении диоксана к воде изменяется не только диэлектрическая проницаемость среды, но и, что весьма существенно,— структура жидкости. Соответственно изменение проводимости водных растворов электролита вследствие присутствия диоксана обусловлено не только изменением диэлектрической проницаемости, но также и всех взаимодействий, определяющих подвижность ионов и зависящих от структуры жидкости. Тем не менее было показано, что в смесях диоксан — вода влияние на проводимость изменений диэлектрической проницаемости значительно. [c.365]

    Эффекты растворителей, меняющие частоты валентных колебаний мономерных групп ОН, в больщинстве случаев обусловлены взаимодействиями при образовании водородной связи. Это давно установлено в случае таких растворителей, как ацетон и эфир, а позднее было признано, что смещения частот в случае ароматических растворителей обусловлены взаимодействием с л-элек-тронами. В нитрилах смещения частот возникают, вероятно, при ассоциации с участием полярного атома азота. В случае таких растворителей, как четыреххлористый углерод и сероуглерод, положение менее ясно, но нет причин предполагать, что имеются существенные отличия в механизме взаимодействия. В самом деле, смещения частот колебаний группы ОН фенола в алкилгалогени-дах отнесены за счет образования водородных связей, и измерены энергии взаимодействия. Поэтому для большинства целей достаточно просто рассматривать растворители как основания. Однако необходимо соблюдать большую осторожность при учете влияния растворителя на такие из иерения, как определение константы равновесия или энергии водородной связи. [c.262]

    Спектроскописты уже занимались исследованием проблем, связанных с влиянием эффектов пространственных затруднений на ассоциацию спиртов, но совсем нелегко отличить реальные пространственные затруднения от других эффектов, таких, как изменения энтропии и кислотности. Даже при сравнении констант равновесия метанола и грет-бутанола совершенно очевидно, что доля свободного спирта при любом данном разбавлении будет больше в случае грет-бутанола. Вычисление ДЯ, основанное на этих данных и на температурных эффектах, дает различие между ними, достигающее 4,4 ккал. Однако значения Д очень мало отличаются, и, по-видимому, доли свободной и ассоциированной форм определяются скорее изменением разности энтропий при переходе от метанола к грег-бутанолу, чем какими-либо реальными изменениями в силе водородных связей. Аналогичные трудности возникают при интерпретации спектров 2,6-замещенпых фенолов. Исходя из того факта, что значения Д по существу остаются неизменными для всего ряда жидких 2,6-диалкилфенолов с метильными, этильными и изопропильными группами, Беллами и др. [13] утверждают, что все эти соединения образуют водородные связи примерно одной и той же силы, а за наблюдающиеся различия в константах равновесия ответственны скорее энтропийные эффекты, а не изменения энтальпии. Это находит косвенное подтверждение в результатах исследований влияния растворителя на комплексы с эфиром. Только в случае трет-бутилзамещенных фенолов были найдены четкие доказательства истинных стерических эффектов. Нужно, однако, добавить, что значения Дл ди-орто-алкилфенолов меньше, чем у моноалкилзамещенных соединений, значения для которых в свою очередь меньше, чем для фенола. В какой-то мере вопрос еще остается открытым то ли это обусловлено, как предполагает Беллами, изменениями полярности ОН, вызванными алкильными группами, то ли стерическим эффектом, обусловленным увеличением расстояний 0---0. Патнем [94], например, также исследовал эту проблему и пришел к противоположным выводам. Он полагает, что у 2,6-диалкилфенолов наблюдается значительное увеличение эффекта пространственных затруднений по мере увеличения степени разветвления при атоме углерода в а-положении. Другие авторы пришли к аналогичным выводам в случае фенолов, ассоциированных с ацетоном (см. следующий раздел). Поэтому в настоящее время этот вопрос не может быть решен окончательно. [c.276]

    Эффекты пространственных затруднений при ассоциации орто-замещенных фенолов с карбонильными группами были изучены Такахаши и Ли [93] и Хейненом [88]. Общепризнанно, что существуют значительные пространственные затруднения при сольватации 2,6-ди-трет-бутилфенолов, но в случае менее объемных заместителей, таких, как мзо-пронильная или этильная группы, положение менее ясно. На основании данных, полученных в результате исследований влияния растворителей, Беллами [13] предположил, что пространственные затруднения ие играют главной роли в определении силы водородной связи между фенолами и эфиром, если только речь идет не о таких больщих алкильных группах, как трег-бутильная. Исключая этот случай, Беллами относит изменения констант равновесия за счет изменений кислотности и энтропийных эффектов. Однако этим представлениям противоречат данные Хей-нена по ассоциации с ацетоном, согласно которым значения AvOH 2,6-диалкилфенолов не согласуются с величинами о Гаммета, а это означает, что все различия в силе водородной связи различных фенолов не могут быть отнесены только к изменениям кислотности. Измерения, выполненные Бруксом и др. [237] для ассоциации между фенолами и кетонами с пространственными затруднениями у тех и других, в общем подтверждают точку зрения Беллами. [c.281]

    Ассоциации групп N=0 с образованием водородной связи очень мало изучены. Из геометрических соображений следует, что свойства этой группы будут подобны свойствам карбонильной группы, но имеются и некоторые различия. Исследования влияния растворителей в случае нитритов показали [101], что группа N=0 цис-нитритов менее чувствительна к донорам протонов, чем группа N=0 гракс-нитритов. Об этом можно судить по величинам смещений vN=0, но, как указано выше, эти величины не являются достаточно надежным критерием. Можно, конечно, предполагать, что группы N=0 г мс-нитритов, характеризующиеся меньшими частотами, будут более основными. Грамстед [102] сообщил о небольшом числе измерений величин AvOH, ДЯ и констант равновесия при ассоциации фенола с несколькими соединениями, содержащими группу N=0. Полученных данных недостаточно для нахождения общих закономерностей, но, как и следовало ожидать, наибольшие смещения vOH наблюдаются в случае окисей пиридинов. При пере- [c.285]

    Чаще всего влияние гидратации на ассоциацию карбоновых кислот объясняют, используя допущение об образовании стехиометрических гидратов. Предложены различные методы расчета констант гидратации по данным распределения воды и кислоты [15]. Для описания распределения обычно приходится учитывать образование двух-трех гидратов. Например, Танака с сотр. [16] изучили экстракцию масляной кислоты различными растворителями. На основании описания равновесия был сделан вывод об образовании в процессе экстракции соединений состава (НА)2, НА-2НгО и ЗНА-НгО. В этих системах содержание воды цревышает ее растворимость в чистых растворителях лишь на 20—30%. Следовательно, для описания даже столь малого изменения распределения воды приходится использовать допущение об образовании двух стехиометрических гидратов, что маловероятно. [c.60]

    Трудно объяснить наличие поверхностного сопротивления как следствие химической реакции при переходе уксусной кислоты (а также других органических кислот) из водной фазы в органический растворитель [14, 15]. В этом случае массопередача замедляется реакцией ассоциации кислоты, так как переход в органическую фазу возможен лишь для электроней-тральных молекул кислоты. Однако константа диссоциации уксусной кислоты равна 1,7-Ю , и наличие столь ничтожного количества диссоциированных молекул не может отразиться на скорости процесса [27]. Отметим, что скорость ассоциации ионов Н+ и СНзСОО" равна 4,5-10 ° л моль-сек) [28], что значительно превосходит скорость диффузионного процесса. По тем же причинам трудно предположить влияние химической реакции на скорость процесса массопередачи при экстракции бензойной кислоты из бензола водой. [c.55]

    Для количественной оценки стерического влияния орто-алкильных заместителей на прочность водородной связи в ряду пространственно-затрудненных фенолов были использованы изменения частот колебаний гидроксильной, группы этих фенолов при ассоциации их с. различными протоноакцепторными растворителями и константы равновесия Кр) этих процессов При этом предполагается, что константы равновесия являются мерой общего эффекта, а сдвиг частот колебаний гидроксильной группы в ИК-области спектра отражает изменения в прочности водородной связи, так как он определяется изменениями силовой константы связи О—И. Показано что величина Avon симбатно изменяется с ос-НОВНОСТЫ0 растворителя (эфиры) и увеличением стерического эффекта алкильных заместителей в феноле. Исключение составляет [c.22]


Смотреть страницы где упоминается термин Константа ассоциации растворителя влияние: [c.31]    [c.589]    [c.646]    [c.137]    [c.114]   
Водородная связь (1964) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация с растворителем

Константы ассоциации

Константы ассоциации ионов влияние растворителя

Константы ассоциации на ионитах влияние растворителя



© 2025 chem21.info Реклама на сайте