Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия взаимодействия между молекулами диполь влияние

    Под влиянием реактивного взаимодействия энергия образования слабых химических связей снижается, что понижает энергию связи в ассоциативных или агрегативных комбинациях. Это взаимодействие повышает энергию диполь-дипольного, дисперсионного (лондоновского) и поляризационного взаимодействия между молекулами жидкости. [c.102]


    Но если такой расчет все-таки произвести, то получится, что од,тах= = 0,95 къТ к разность энергий дипольного взаимодействия при параллельном и антипараллельном расположении диполей двух соседних молекул пиридина в жидкой фазе при 300 К составляет около 2 кв Т, что по порядку величины близко к энергии слабого химического взаимодействия молекул. Такого рода совпадение (при отсутствии до недавних пор надежных экспериментальных методов исследования слабых химических взаимодействий) является одной из причин того, что влияние дипольного взаимодействия между молекулами в жидкой фазе сильно переоценивалось. Другая причина, как будет показано в гл. II, состоит в том, что при описании межмолекулярных взаимодействий обычно не учитывалось влияние реактивного поля, создаваемого полярными молекулами. [c.22]

    Однако этим влияние диэлектрической проницаемости на растворимость не ограничивается. Уже отмечалось (см. с. ООО), что в неводных растворителях электролиты часто находятся в форме ионных пар. Собственный дипольный момент ионных пар, как правило, очень велик, соответственно, велика и энергия диполь-ди-польного взаимодействия между молекулами ионных пар, заставляющая их собираться в агрегаты, размеры и сложность которых увеличиваются с ростом этой энергии, т. е. с понижением ДП растворителя. Степень агрегации при этом нередко становится столь внушительной, что в растворе образуются микрокристаллы, которые, объединяясь в макрокристалл, выделяются в отдельную твердую фазу, выпадая из раствора . Вот почему повышение ДП и здесь увеличивает растворимость. [c.67]

    При изучении спектров поглощения органических соединений в растворителях различной полярности обычно наблюдается влияние природы растворителя на положение, интенсивность и форму полос поглощения [1—4]. Причина этих эффектов заключается в том, что взаимодействия между молекулами растворенного вещества и растворителя (в том числе ион-дипольные, диполь-дипольные, индуцированного и постоянного диполей, водородные связи и т, д.) прежде всего изменяют разность энергий между основным и возбужденным состояниями поглощающих частиц, содержащих хромофор. Влияние среды на спектры поглощения можно изучать, сравнивая спектры в газовой фазе и в растворе или в нескольких растворителях различной природы. Поскольку в больщинстве случаев регистрировать спектры поглощения в газовой фазе не удается, то в этой главе будет рассматриваться только второй метод изучения. Такой подход представляется вполне оправданным, поскольку в последние годы появляется все больше данных, свидетельствующих о непрерывном изменении спектральных характеристик при переходе от изолированных молекул (газовой фазы) к слабо или сильно взаимодействующим жидким средам, если только отсутствуют специфические взаимодействия типа ДЭП/АЭП или образование водородных связей [3]. [c.403]


    В случае электрически асимметричных молекул (обладающих постоянным дипольным моментом) к дисперсионным силам добавляются силы диполь-дипольного взаимодействия, которые вызывают дополнительное притяжение, а также ориентацию молекул, приводя их более или менее упорядоченному расположению. Ориентирующее влияние постоянного дипольного момента уменьщается при повышении температуры и усилении теплового движения молекул. Кроме того, молекулы, обладающие постоянным моментом, до некоторой степени поляризуют друг друга, т. е. создают индуцированный дипольный момент. Энергия взаимодействия между двумя молекулами с учетом всех трех эффектов будет выражаться следующей формулой  [c.26]

    Уравнение (5-17) выведено на основе предположений, что тепловая релаксация избыточной колебательной энергии происходит раньше переноса возбуждения, что взаимодействие между молекулами О и А может быть аппроксимировано диполь-дипольным взаимодействием и что молекулы растворителя не оказывают сильного влияния на молекулы растворенного вещества. Из уравнения (5-17) получается, что скорость переноса энергии возбуждения для запрещенных переходов меньше, чем для разрешенных . Для данного донора скорость переноса будет увеличиваться при возрастании коэффициента экстинкции акцептора (усредненного по спектру испускания донора). [c.119]

    Индукционное взаимодействие осуществляется между полярной и неполярной молекулами. Под влиянием электростатического поля полярной молекулы в неполярной молекуле наводится (индуцируется) временный дипольный момент, а затем обе молекулы взаимодействуют как диполи. Энергия индукционного взаимодействия не зависит от температуры. Она возрастает с увеличением поляризуемости молекул. [c.112]

    Оказалось, что времена ядерной магнитной релаксации 71 и Гг растворителя (изотопы Н и Ю) резко укорачиваются под влиянием парамагнитных катионов за счет прямого диполь-ди-польного и контактного сверхтонкого взаимодействия между электронным и ядерным магнитными моментами. Ввиду большого значения магнитных моментов неспаренных электронов этот механизм эффективен уже при малых концентрациях парамагнитных катионов 10 —10 моль/л [833]. Парамагнитные примеси, создавая сильные магнитные поля на ядрах молекул растворителя, координированных парамагнитным катионом, ускоряют отвод энергии от системы резонирующих ядерных спинов к ее окружению (решетке). Благодаря быстрому обмену молекул воды в координационной сфере аква-комплекса влияние парамагнетика распространяется на весь объем растворителя, и за время релаксации все ядра растворителя успевают побывать в непосредственной близости от катиона. При прочих равных условиях скорость релаксации 01=(1/Г1) или 02=(1/Гг) линейно зависит от концентрации катиона Таким образом, ядерная магнитная релаксация оказывается чувствительным инструментом обнаружения и количественной оценки содержания парамагнитных ионов в растворе. [c.436]

    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]


    Постоянный дипольный мо мент [1 одной молекулы может индуцировать дипольный момент в соседней молекуле. Индуцированный дипольный момент всегда направлен в сторону индуцирующего диполя. Таким образо М, между двумя молекулами возникает притяжение, сила которого не зависит от температуры. Индуцированный дипольный момент тем больше, чем выше поляризуемость а неполярной молекулы, испытывающей влияние постоянного диполя. Энергия взаимодействия, усредненная по всем возможным ориентациям постоянного диполя, описывается уравнением [32] [c.33]

    Энергия протонного переноса складывается из двух частей 1) внутренней специфической части энергии и 2) части энергии, проявляют,ейся после диссоциации в процессе различных взаимодействий с растворителем (диполь-ное взаимодействие, образование водородной связи, влияние диэлектрической проницаемости и т. д.). Первая часть зависит только от разности между значениями наиболее низких уровней квантовой энергии иона (или молекулы) до и после протонного перехода ( внутренний протонный переход), в то время как та часть энергии, которая основывается на взаимодействии, в значительной мере зависит от сольватации. Константа равновесия при этом зависит от того, имеют ли эти две части энергии одинаковые или противоположные знаки. [c.24]

    Оствальда, которые, как предполагалось, зависят только от положения соответствующих лигандов. Теперь приведем некоторые соображения по поводу того, что в действительности определяет соответствующие р-множители в различных случаях. Для многоосновных кислот взаимодействие кислотных групп, расположенных одна от другой значительно дальше, по своей природе является почти исключительно электростатическим, так что здесь 3-множители определяются главным образом зарядом отдельных кислотных групп и расстоянием между ними. Аналогично электростатический эффект наблюдается в комплексных акво-кислотах или в системах комплексов, где лигандами служат отрицательно заряженные анионы. Но здесь появляется дополнительный остаточный эффект, которым нельзя пренебречь. Этот остаточный эффект, который один определяет лиганд-эффект в системах с нейтральными молекулами, до некоторой степени, возможно, вызван отталкиванием диполей, индуцированных в лигандах центральным ионом (или постоянных диполей, ориентированных в поле центрального иона). Но, по мнению автора, вообще невероятно, чтобы это взаимодействие составляло значительную, не говоря об основной, часть остаточного эффекта. Более вероятно предположить, что остаточный эффект во всех системах комплексов прежде всего обусловлен влиянием лигандов на энергию связи с центральной группой. Это толкование также лучше согласуется с обычным представлением о том, что силы связи действуют главным образом между центральной группой и лигандами. Кроме того, это единственное непосредственное объяснение того факта, что остаточный эффект часто является отрицательной величиной в системах комплексов. [c.51]

    Различие между взаимодействием анионов и катионов с молекулами воды, возможно, обусловлено также тем, что центр положительного заряда в дипольной молекуле воды расположен ближе к границе молекулы, чем центр отрицательного заряда. Следовательно, постоянный диполь может сблизиться с анионом на более короткое расстояние, чем с катионом, а энергия анион-дипольного взаимодействия выше энергии катион-дипольного взаимодействия [35—37]. Влияние анионов и катионов на деформацию электронного облака молекулы воды (т. е. поляризация) мало различается. В результате влияния катиона и аниона вблизи протона располагается в среднем меньшее число молекул, чем в их отсутствие. Вблизи атома кислорода, повернутого к катиону, средняя электронная плотность молекулы воды повышается, тогда как [c.87]

    В ароматических соединениях сказывается сильное влияние V/ на полярность молекулы эффекта сопряжения, которое отражается на энергии диполь-дипольного взаимодействия молекул ароматического соединения с водой и на энергии водородной связи между водой и этими молекулами. Так, оттягивание электронной плотности из бензольного кольца молекулы фенола на введенную в кольцо нитрогруппу вызывает повышение эффективного положительного заряда на атоме кислорода и приводит вследствие этого к ослаблению водородной связи между фенольной группой и молекулами воды. В результате этого растворимость нитрофенола меньше растворимости фенола в 10 раз. [c.12]

    Межмолекулярное взаимодействие обязано различным силам электрической природы. Если молекулы обладают дипольным (квадрупольным или вообще мультипольным) моментом, они электростатически взаимодействуют друг с другом, причем потенциальная энергия этого взаимодействия зависит не только от расстояния между ними, но и от их взаимной ориентации в пространстве. На большую роль в межмолекулярном взаимодействии дипольного взаимодействия указал Кеезом (1916 г.). Если одна молекула обладает постоянным электрическим моментом, а другая неполярна, то последняя молекула может поляризоваться под влиянием первой и между диполями (квадруполями и т. д.) обеих молекул возникает так называемое индукционное взаимодействие, теория которого была разработана Дебаем (1920 г.). [c.284]

    Полезным введением, позволяющим лучше понять некоторые особенности теории, является рассмотрение примитивного кристалла , состоящего только из двух молекул, и выяснение того, как эти молекулы будут взаимодействовать друг с другом и какое влияние это взаимодействие окажет на спектр. Если молекулы находятся на достаточно далеком расстоянии друг от друга, т. е. грубо говоря, дальше, чем расстояние, при котором облака зарядов начинают перекрываться, то взаимодействие является в основном диполь-дипольным. Если обе молекулы находятся в основном состоянии, то энергия этого взаимодействия очень мала и зависит от поляризуемости молекул. Это может быть представлено с классической точки зрения как притяжение между колеблющимся диполем одной молекулы и наведенным им диполем другой молекулы. Величины наведенного момента и энергии его взаимодействия с основным моментом сильно зависят от расстояния Я, и энергия этого взаимодействия уменьшается пропорционально Это взаимодействие называется вандерваальсовским притяжением двух неполярных молекул. Оно играет также главную роль, если обе молекулы находятся в одном и том же возбужденном состоянии. Однако если одна молекула находится в основном состоянии, а другая в возбужденном, то результат получается другим. Взаимодействие между молекулами может привести в этом случае к обменному или резонансному возбуждению, и совершенно неизвестно, какая из молекул в действительности будет возбуждена в тот или иной момент времени. Резонанс возбуждения в некотором отношении похож на электронный резонанс в, если за отправную точку берется система из атома водорода в состоянии 15 и протона. При небольших расстояниях электрон резонирует между положительными центрами и может рассматриваться как обобществленный электрон. Одно из стационарных состояний системы является стабильным, а другое нестабильным по сравнению с разъединенной системой. Аналогия с резонансом возбуждения довольно близкая, так как для некоторых целей резонанс возбуждения может рассматриваться как резонанс экситона, или частицы возбуждения. Это также ведет к двум состояниям, одному стабильному и одному нестабильному, по отношению к разъединенным молекулам. Зависимость притяжения от расстояния при этом такая же, как зависимость притяже-вия собственных диполей, т. е. энергия его пропорциональна Действительно, это взаимодействие может быть описано в классическом приближении как взаимодействие собственных, а не наведенных диполей двух молекул. По величине эти диполи равны дипольному моменту перехода из основного состояния в рассматриваемое возбужденное состояние. [c.512]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    Адсорбция на поверхности металлов под влиянием неполярных сил Ван-дер-Ваальса требует специального рассмотрения. В литературе имеется много попыток трактовать металл как вещество, обладающее идеальной поляризуемостью. Однако, как указывают Маргенау и Поллард [28], использование представления о так называемом изображении встречает серьезные возражения. Индуцирующие поля диполей в неполярной молекуле изменяются непрерывно и настолько быстро, что электроны проводимости металла не могут поспевать в своем перемещении за этими изменениями. Поэтому металл ведет себя по отношению к силам Ван-дер-Ваальса как диэлектрик. Маргенау и Поллард записывают энергию вандерваальсового взаимодействия между адсорбированным атомом и адсорбирующим металлом в виде суммы двух членов [c.32]

    При взаимодействии макроскопических тел в конденсированной среде аддитивное приближение оказывается менее удовлетворительным, чем при взаимодействии в вакууме. Флуктуация заряда в объеме одного из тел индуцирует дипольные моменты не только у молекул другого тела, но и у молекул находящейся в зазоре жидкости. В свою очередь,индуцированные диполи второго тела взаимодействуют не только с первичными диполями первого тела, но и с индуцированными диполями жидкой среды, находящейся между ними [186]. В результате возникает необходимость учета влияния среды на межчастичное взаимодействие в дисперсных системах, в частности, на распространение ловдоновского поля между элементами макроскопических тел и учет конечности величины притяжения частиц средой [187]. Наличие жидкой среды уменьшает силы взаимодействия между частицами, которые в этом случае даже при сравнительно больших R не всегда являются только дисперсионными[188]. Так, резонансная энергия должна вносить существенный вклад в суммарную энергию межчастичного взаимодействия в жидкой среде, особенно если она представлена аромати- [c.99]

    Влияние растворителя. Сущность влияния растворителя на скорость реакции в общем случае обусловлена как ван-дер-ваальсовым, так и дисперсионным взаимодействием, электростатическим взаимодействием между ионами и диполями, а также сольватацией растворителем молекул исходных реагентов, активированных комплексов и продуктов реакции. Перемена растворителя вызывает изменение константы скорости, параметров уравнения (II.90), а в отдельных случаях и порядка реакции. Требуется установить количественную связь между характеристиками процессов образования активированного комплекса и свойствами растворителя. Задача эта весьма сложна и в общем виде далека от решения. Не представляется возможным оценить энергию каждого из видов взаимодействий в растворах — как реагентов (между собой), так и активированных комплексов и продуктов реакций с растворителем. [c.152]

    Поляризационное взаимодействие обусловлено деформацией электронной оболочки одной молекулы под влиянием электрич. поля другой, что всегда приводит к понижению энергии (притяжению молекул). При больших расстояниях между нейтральньг и молекулами главный вклад в поляризац. энергию дает взаимод. постоянного диполя полярной молекулы с индуцированным диполем другой. Поэтому это взаимод. иногда называют индукционным. Согласно ф-ле Дебая, [c.13]

    Рассмотрим на модельном примере влияние полярного растворителя на реакционную способность. Обычно полагают [179, 209], что оно связано с изменением дипольного момента переходного состояния (м-х) по сравнению с дипольными моментами реагентов (2р,а). Действительно, в полярном растворителе, например, увеличение Их по сравнению с должно приводить к дополнительной стабилизации переходного состояния за счет электростатического дипольного взаимодействия с молекулами растворителя и, как следствие, к понижению энергии активации и увеличению скорости реакции. В работе [206] ва примере модельной системы ЫНзЧ-НР была исследована зависимость энергии активации и дипольного момента активированного комплекса от полярности растворителя, который моделировался двумя диполями, составленными из двух пар точечных зарядов, расположенных по оси переноса протона. Расстояние между точечными зарядами составляло 0,15 нм, минимальные расстояния по оси между зарядами и атомами системы — 0,2 нм, величина заряда варьировалась по модулю от 0,1 до 1,0 е. На рис. 2.2 приведены зависимости полной энергии рассмотренной системы от положения атома Н между атомами Мир для разных величин а на рис. 2.3 — зависимость АЕ , которую [c.87]

    Среди явлений, включаемых в понятие гидратации, преобладающим фактором часто считают влияние электрического поля ионов непосредственно на соседние дипольные молекулы воды. Чем меньше размер и ыше заряд иона, тем это влияние имеет большее значение, так как электрическая сила на периферии ( поверхности ) иона становится при этом больше. Это взаимодействие более или менее ориентирует дипольные молекулы в направлении силовых линий вопреки беспорядочному тепловому движению, оно уменьшает их подвижность и вызывает частичное (или полное) диэлектрическое насыщение. Оно увеличивает также время диэлектрической релаксации дипольных молекул по отношению к внешним электрическим влияниям. Можно ожидать, что величину этой ион-дипольной силы или соотношение этой силы и тепловой энергии удастся легко оценить, так как, согласно электростатике, потенциальная энергия электрического взаимодействия между точечным электрическим зарядом е и электрическим диполем с моментом ц, расположенным на расстоянии г от заряда, равна (ер os )/ег , где д — угол М16ЖДУ осью диполя и, направлением г. Проводя это вычисление и полагая, что между молекулой воды и ионом существует вакуум (е=1), получим для потенциальной энергии однозарядных ионов значение (124 os )/r2 ккал-моль , которое ДЛЯ случая полной ориентации ( os 0 =l) выше, чем средняя тепловая энергия при комнатной температуре (/ Г- 0,6 ккал- МОЛЬ" ) вплоть до расстояния примерно 14 А. Однако это вычисление, очевидно, не верно, так как между ионами и соседними молекулами воды нет вакуума. Если при вычислении использовать макроскопическое значение диэлектрической проницаемости воды, то потенциальная [c.522]

    В газовой фазе молекулы свободно вращаются. Это вращательное движение квантовано, и в микроволновом спектре можно обнаружить переходы между вращательными уровнями энергии, если молекула имеет постоянный электрический ди-польный момент. В таких молекулах вращательное движение приводит к возникновению магнитного момента, так как электроны не совсем жестко связаны в своем движении с ядерным остовом. Если у молекулы имеется магнитный электронный спиновый момент, то последний будет взаимодействовать с вращательным моментом по механизму диполь-дипольного взаимодействия. Влияние этого взаимодействия такое же, как и влияние днполь-дипольных взаимодействий между электронами в твердых телах. Однако это взаимодействие в газовой фазе не усредняется до нуля, поскольку векторы вращательного углового и магнитного моментов коллинеарны и фиксированы в пространстве. Из-за спин-вращательного взаимодействия газофазные спектры ЭПР оказываются весьма сложными (разд. 12-6). [c.234]

    Диполь-дипольное взаимодействие ядро — иеспа-ренный электрон в ближайшем окружении парамагнитного иона. Времена корреляции. Механизм выравнивания энергии в системе спинов и между системой спинов и решеткой через флуктуацию локальных магнитных полей был привлечен для объяснения известного экспериментального факта — укорочения времени ядерной релаксации под влиянием парамагнитных примесей. Было принято [21, 22], что релаксация в присутствии парамагнитных ионов определяется диполь-дипольным взаимодействием между электронным и ядерным магнитными моментами, прерываемым диффузией частиц. Ввиду большой величины магнитных моментов неспаренных электронов этот механизм эффективен уже при малых концентрациях парамагнетика (например, 10 —10 г-ион/л). Парамагнитные примеси в этом случае, создавая более сильные магнитные поля на ядрах входящих в окружающие парамагнитный ион молекул (локальное поле на ядре лиганда может достигать величины 1Т, или ЮкГс), катализируют, ускоряют отвод энергии от системы резонирующих ядерных спинов к ее окружению (решетке), как бы увеличивают тепловой контакт между ними, и времена релаксации ядер резко сокращаются. Соотношение (1.8) для рассматриваемого случая можно записать следующим образом  [c.18]

    Электростатическое взаимодействие между ионной молекулой и окружающей диэлектрической средой может быть разделено на две части. Первое слагаемое в уравнении (2) соответствует энергии сольватации точечного заряда по Борну, а второе выражает энергию взаимодействия диполя с диэлектрическим растворителем по Кирквуду. Борновская энергия не включена в электронный гамилтониан и, таким образом, не влияет на электронную волновую функцию и электронную энергию. Его численное значение, однако, превышает многократно энергию дипольного взаимодействия (см. табл. 6—9 для заме ценных аммиака и аммоний-ионов). Б то же время дипольная энергия Кирквуда может иметь определяющее значение для геометрической структуры молекулярного иона. Интересным примером такого влияния является ион гидроксония НзО" ", для которого обычные ССП расчеты без поляризационных функций предсказывают плоскую структуру как наиболее стабильную. Добавление потенциала взаимодействия диполя с диэлектрической средой, однако, повышает относительную стабильность пирамидальной конфигурации, котораш является энергетически предпочтительной в средах с > 2 (см. табл. I). [c.131]

    Таким образом, поглощение или испускание ИК-излучения колеблющейся молекулой, имеющей дипольный момент, можно легко пояснить в простой описательной форме, как это сделано в предыдущем параграфе. Гораздо сложнее описать подобным способом электронные переходы. В классическом смысле электронное возбуждение не соответствует увеличению энергии в осциллирующей системе во всяком случае, и высоко-, и низколежащее электронное состояние может не иметь постоянного дипольного момента (т. е. во всех состояниях электронное облако симметрично расположено вокруг ядер, так что нет разделения зарядов). Однако и в этой ситуации основные принципы взаимодействия с излучением еще применимы, и нам лишь нужно знать, происходит ли дипольное взаимодействие во время перехода между двумя состояниями. Существует единственный строгий метод решения этой проблемы уравнение Шрёдингера, упомянутое в начале раздела, может быть использовано для вычисления скорости перехода системы из одного стационарного состояния в другое под влиянием возмущающей силы. Если скорость возмущения системы, вызванного взаимодействием диполя с электрическим вектором излучения, не равна нулю, то существует дипольный момент перехода. Скорость перехода между состояниями, умноженная на число частиц в низшем состоянии, составляет, естественно, предельную скорость поглощения фотонов, так что в принципе решение уравнения Шрёдингера должно приводить к расчету интенсивности перехода. Однако точные решения этого урав- [c.31]

    Амис [19] предположил, что в случае диполь-дипольных взаимодействий влияние диэлектрической проницаемости на скорость реакции описывается следующими уравнениями, в которых от-брощены все члены, содержащие в знаменателе степени расстояния между центрами зарядов в дипольной молекуле выще третьей. Для дипольных реагентов энергия кулоновского взаимодействия Ес равна [c.73]

    Не разрешенные при комнатной температуре резонансные спектры растворов Хер2 и Хер4 дали сведения о наличии химического обмена Р между фторидами и плавиковой кислотой. Медленный обмен (с измеримой энергией активации) в случае ХеРг выявляется при охлаждении образца. Для ХеРе охлаждение образца вплоть до температуры замерзания раствора не приводит к расщеплению линий резонансного спектра. Единственная линия Р в спектре раствора ХеРе смещается в зависимости от концентрации. В то же время никакого влияния на протонный резонанс растворенного ХеРе не было обнаружено. Форма резонансной линии фтора близка к лоренцевой кривой. Ширина резонансной полосы увеличивается с ростом концентрации растворенного вещества, приближаясь в пределе к величине 1200 гц. Измерения показывают, что в растворе время релаксации для взаимодействия магнитных диполей Гг меньше, чем время релаксации магнитного диполя i. Найденная ширина резонансной полосы при нескольких концентрациях ХеРб свидетельствует о том, что изменение напряженности магнитного поля от 14,1 до 3,75 кгс не влияет на результаты. Совокупность этих фактов указывает на очень быстрый химический обмен фтором между ХеРе и плавиковой кислотой. Концентрационная зависимость положения резонансной полосы Р показывает, что среднее время жизни атома Р в молекуле ХеРе должно быть меньше 10 мксек. [c.359]

    Из хорошо воспроизводимых удельных водных чисел видно, что на их абсолютную величину-заметное влияние оказйвает спиртовый радикал эфиров, в то время как кислотный остаток оказывает меньшее влияние. При этом проявляется влияние энергии дипольного взаимодействия молекул пластификатора и воды. Если вместо ацетона ((х=2,75 D) выбрать какой-либо другой растворитель с меньшим дипольным моментом, например метиловый спирт, то удельное водное число уменьшается, так как второй растворитель не вызывает столь же эффективного разрушения ди-польной связи между пластификатором и водой. Так как прочность связи между диполями определяется дипольными моментами воды и пластификатора, а также расстоянием между зарядами этих диполей (г ), то при [c.194]


Смотреть страницы где упоминается термин Энергия взаимодействия между молекулами диполь влияние : [c.90]    [c.76]    [c.460]    [c.27]    [c.70]    [c.211]    [c.211]    [c.253]    [c.213]    [c.224]    [c.129]   
Адсорбция газов и паров Том 1 (1948) -- [ c.4 , c.283 ]

Адсорбция газов и паров (1948) -- [ c.4 , c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие диполь

Диполь

Диполь энергия взаимодействия

Молекула взаимодействие

Энергия взаимодействия

Энергия взаимодействия между молекулами

Энергия взаимодействия между молекулами ион-диполь

Энергия молекул



© 2025 chem21.info Реклама на сайте