Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки определение общей формы

    В клетках постоянно Происходит синтез молекул многих сотен различных белков, в том числе и белков-ферментов. Известно также, что каждому виду растения или животного свойственны свои специфические белки, характеризующиеся в первую очередь определенной последовательностью аминокислот в полипептидной цепи. Возникает вопрос, каким образом ъ живых клетках регулируется синтез белков с определенной последовательностью аминокислот, а не образуются случайные сочетания из 20 или более аминокислот, которые находятся в клетках В последние годы ученые значительно подвинулись вперед в решении данного вопроса, и хотя многие детали этого механизма еще неясны, в общей форме этот механизм расшифрован. Проблема воспроизведения специфичности белков широко изучается сейчас с точки зрения переноса информации в биохимических системах. [c.295]


    Несмотря на то что использованные методы были весьма различными, полученные результаты, в общем, довольно хорошо согласуются между собой (для одного и того же белка). Установлено, что молекулярные веса различных протеинов колеблются от 6000—12 ООО до нескольких миллионов и даже до десятков миллионов, чаще всего от 20 000 до 90 000. Форма макромолекул найдена весьма различной от частиц почти шарообразных, лишь несколько удлиненных, до вытянутых, нитевидных. В первом случае говорят о глобулярных белках, во втором — о фибриллярных. Большинство ферментов и других специфически активных протеинов представляет собой глобулярные белки. Обычно, характеризуя форму белковых частиц и степень их асимметрии, условно пользуются представлением о гидродинамически эквивалентном эллипсоиде, приближенно принимаемом за форму молекулы белка. При этом указывают величину отношения размеров его полуосей — s/a. Здесь в — продольная и а — поперечная полуоси. Величина е/а колеблется у различных белков примерно от 1 до 200. У глобулярных белков (в том числе ферментов) она обычно составляет от 1—2 до 4—6. Следует отметить, что истинные формы белковых молекул далеко не ясны и поэтому величины подобного рода имеют в определенной мере условный характер. [c.31]

    Во всех стадиях роста участвуют биохимические процессы. Во время роста информация, заключенная в ДНК, реализуется в синтезе определенных белков, в том числе ферментов. Ферменты регулируют активность клетки. Они вызывают изменения, которые в конечном счете приводят к изменению общей формы и структуры как отдельных органов, так и организма в целом. Этот процесс известен под на- [c.119]

    Альтернатива этой биологической схемы определения заключается в использовании физико-химических свойств белков, и именно к ней обратились генетики. Полипептидную цепь из аминокислот в общей форме можно представить в виде [c.111]

    Растворы, содержащие макромолекулы, имеют большую вязкость, чем чистый растворитель. Возрастание вязкости раствора по сравнению с вязкостью растворителя является функцией ряда параметров молекулы, каждый из которых увеличивает инкремент вязкости. Такими параметрами являются объем раствора, занимаемый молекулой, отношение длины молекулы к ее ширине осевое отношение или отношение длин осей минимального эллипсоида вращения, в который может быть помещена данная молекула), а также жесткость молекулы. Для глобулярных молекул, какими являются молекулы многих белков, принципиальное значение имеет молекулярный объем, который легко может быть связан с молекулярной массой, В случае очень жестких тонких молекул, как, например, ДНК, основной эффект оказывает осевое отношение и оно также является функцией молекулярной массы. Следовательно, вискозиметрия может быть использована для определения М с другой стороны, если величина М хотя бы приблизительно известна, то можно получить информацию об общей форме молекулы. Это два главных применения метода вискозиметрии. [c.360]


    Одной из самых ранних моделей взаимодействия фермента с субстратом была модель ключа и замка , иллюстрируемая рис. 25.8. На этом рисунке показано, что форма субстрата точно соответствует определенному участку структуры белка (активному центру), специально приспособленному для взаимодействия с данным субстратом. Когда субстрат связывается с ферментом, происходит катализируемая реакция, после чего продукты реакции отделяются от фермента. Очевидно, такая модель действия фермента имеет много общего с моделями действия гетерогенных катализаторов, обсуждавшимися в разд. 13.7. Различие заключается только в том, что действие фермента более специфично. [c.453]

    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]

    И чтобы подчеркнуть, что эта иерархическая связь между естественными науками обусловливает их единство, т. е. целостность всего естествознания как одной системы, Ф. Энгельс прибег к таким определениям отраслей естествознания, которые указывают на происхождение высших форм из низших, — одну из другой . Физику он назвал механикой молекул , химию — физикой атомов , а биологию — химией белка . При этом Ф. Энгельс отметил, что такого рода прием не имеет ничего общего с механистической попыткой сведения одной формы к другой, что это — лишь демонстрация диалектической связи между разными уровнями как материальной организации, так и ее познания, и вместе с тем это — демонстрация скачков от одного дискретного уровня научных знаний к другому и качественного отличия этих уровней между собой. [c.24]

    Основные положения предложенной мною конформационной теории белков были сформулированы в общем виде и имели вначале чисто эвристический характер [40, 41]. Создание расчетного метода требовало их детализации и тщательной проверки. Достоинство теории даже в ее первоначальной, быть мо жет, несовершенной форме заключалось в том, что она позволяла всю необходимую работу с первой и до завершающей стадии заранее представить в виде строго последовательного ряда логически связанных между собой шагов, где каждое продвижение вперед опиралось на результаты предшествующих исследований и предваряло последующее. Иными словами, теория, отражавшая вначале чисто субъективное представление автора о структурной организации белка, в то же время представляла собой достаточно четко ориентированную рабочую программу исследования. Одно из положений теории, а именно предположение о согласованности в белковой глобуле всех внутри- и межостаточных взаимодействий, давало возможность разделить задачу на три большие взаимосвязанные части. Цель первой заключалась в кон-формационном анализе свободных остатков стандартных аминокислот, т.е. в оценке ближних взаимодействий валентно-несвязанных атомов. Идеальными моделями для изучения ближних взаимодействий явились молекулы метиламидов М-ацетил-а-аминокислот (СНз-СОМН-С НК-СОЫН-СНз). Вторая часть общей задачи состояла в выяснении влияния средних взаимодействий, т.е. взаимодействий между соседними по цепи остатками. Объектами исследования здесь могли служить любые природные олигопептиды. Цель третьей, завершающей части - изучение роли контактов между удаленными по цепи, но пространственно сближенными в глобуле остатками и априорный расчет трехмерной структуры белка. В дефинициях нелинейной неравновесной термодинамики эти цели могут быть сформулированы следующим образом. Во-первых, определение возможных конформационных флуктуаций у свободных аминокислотных остатков и выявление энергетически наиболее предпочтительных. Во-вторых, нахождение возможных конформационных флуктуаций локальных участков полипептидной цепи и установление среди них бифуркационных флуктуаций, ведущих к структурированию фрагментов за счет средних невалентных взаимодействий. В-третьих, анализ возможных флуктуаций лабильных по средним взаимодействиям участков полипептидной цепи и идентификация бифуркационных флуктуаций, обусловливающих комплементарные взаимодействия конформационно жестких нуклеаций, стабилизацию лабильных участков и, в конечном счете, образование нативной трехмерной структуры молекулы белка. [c.109]


    Смесь помещают в термостат и выдерживают в течение 12—20 часов при 37°. В этих условиях отщепляется прочно связанная с белком форма рибофлавина. Смесь доводят водой до определенного объема с таким расчетом, чтобы общее разведение соответствовало отношению 1 25 или 1 30, и фильтруют через складчатый фильтр. Из фильтрата отбирают в колбу 5 мл, добавляют 5 мл 20% раствора трихлоруксусной кислоты, помещают на кипящую водяную баню и выдерживают 10 минут. [c.140]

    Оказалось, что исходная форма и мутанты различаются по общему содержанию белка и по составу его компонентов. А так как этот признак наследуется полигенно, то очевидно, чем выше содержание белка у мутантов по сравнению с исходной формой, тем по большему числу генов произошли изменения. Пиже показаны результаты определения содержания белка (в %) в муке семядолей мутантов Мз  [c.86]

    Исходя из общих принципов термодинамики необратимых процессов, можно вывести уравнения, по форме очень близкие к полученным выше. В эти уравнения входят такие величины, как 5, О, коэффициенты активности и т. п. Чтобы приложить эти уравнения, скажем, к определению молекулярной массы белка в солевом растворе, необходимо сделать некоторые допущения. Достоинство термодинамического вывода состоит в том, что он позволил выяснить целесообразность этих допущений. К примеру, оказывается, что считавшееся нами раньше необходимым допущение о равенстве к оэффициентов трения в случае седиментации и диффузии (при выводе уравнения Сведберга) является в действительности излишним. [c.90]

    Осмометрические определения молекулярных весов соединений, имеющих молекулярный вес ниже 150 000, более точны, чем определения при помощи других методов, так как их результаты менее зависят от формы и гидратации белковых молекул. Осмометрические определения, однако, не дают возможности судить, является ли белок в испытуемом растворе гомогенным или же он представляет собой смесь белков различных молекулярных весов. Если раствор содержит более одного вида белка, то молекулярный вес, рассчитанный из осмотического давления, является средней величиной, равной сумме молекулярных весов всех белковых молекул, разделенной на общее число молекул белка. [c.51]

    Допущение возможности полимеризации элементарных рядов с образованием связи —ЫН—СО— служило причиной того, что А. Данилевского называли предшественником Э. Фишера в открытии пептидной связи или даже первооткрывателем этой связи в белках (см. [3, 19]). Не совсем верно толкуется это предположение Данилевского даже в очерке его деятельности Г. Е. Владимировым, который, указывая на чисто внешнее сходство полипептидной теории с теорией Данилевского, утверждает, что у последнего группировка СО—МН связывается с вхождением в молекулу биурета [7]. Но Данилевский кроме существования группировки СО—ЫН в биурете элементарных рядов допускал существование связей СО—ЫН между элементарными рядами. Он писал, что между элементарными рядами существуют двоякого рода связи, из которых одни удерживаются в целости, даже в состоянии пептона, другие же, а именно связи ангидридного типа при посредстве карбоксильных и амидных групп, существуют только в ангидридных формах белка [17, стр. 405]. Но и в том и в другом случае связь СО—ЫН не имеет ничего общего с пептидной связью Э. Фишера. Таким образом, частица белка, по Данилевскому,— это сложный комплекс, состоящий из различного числа элементарных рядов разного строения, которые могут объединяться в белках во всевозможных сочетаниях. Хотя в своих статьях Данилевский нигде определенно не высказывался за полимерное строение белка, он стоял к представлению о белке как об индивидуальном химическом полимерном соединении гораздо ближе, чем все его современники, не поднимавшиеся выше утверждений об агрегатном строении белковой молекулы. Так, в письме к А. М. Бутлерову еще в 1871 г. он писал, что полученные им данные наводят на мысль о том, что частицы альбумина есть [c.53]

    Между содержанием белкового, общего азота и углеводами существует определенная зависимость. Начиная с фазы трех пар листьев до фазы цветения содержание углеводов резко возрастает, а количество белкового азота снижается. Однако по некоторым формам азотных удобрений такой зависимости между белками и углеводами не наблюдается. [c.152]

    Число исследуемых вариантов трансферрина больше числа вариантов любого другого сывороточного белка человека. Генетический локус, контролирующий синтез трансферрина, может существовать во многих мутантных формах, причем ни одна из таких мутаций не ведет к какой бы то ни было клинической патологии. Новые варианты, особенно те, которые встречаются относительно часто в отдельных популяциях, необходимо тщательно сравнивать с известными вариантами. При отсутствии какого-либо общего селективного преимущества или химически обусловленного предрасположения к возникновению определенной мутации маловероятно, что один и тот же [c.129]

    Белковые молекулы, напротив, могут принимать бесчисленное множество разных форм и очень тонко приспосабливать их к специфическим нуждам. Скелет белковой молекулы более гибок, и, кроме того, к ней могут быть присоединены боковые группы разных видов число этих видов в современных белках может достигать 20. Отсюда исключительное разнообразие каталитических функций, которые способны выполнять белки. Вместе с тем, как известно, не существует общего прямого механизма для репликации белков посредством копирования. Причина заключается в том, что аминокислоты не реагируют друг с другом специфически, т. е. одна аминокислота не обязательно всегда реагирует с определенной другой аминокислотой, как это делают нуклеотиды (основания). Взаимодействия между белковыми цепями идут скорее на уровне третичной структуры и по своей природе отличаются от взаимодействия между нуклеотидами. [c.26]

    Молекула фитохрома состоит из двух частей относительно небольшого хромофора, поглощающего свет, и значительно более крупного бесцветного белка. Хромофор, подобно хромофору фикоцианина и других пигментов водорослей, представляет собой тетрапиррол с незамкнутой цепью (рис. 11.12). После поглощения фитохромом света с определенной длиной волны форма хромофора изменяется, и это в свою очередь изменяет форму белкового компонента. Белок, по-видимому, состоит из 4 субъединиц, расположенных в виде двойной гантели, с общей мол. массой около 240 ООО это умеренно крупный белок, состоящий примерно из 2000 аминокислот. [c.343]

    Пример 13-А. Определение общей формы белков. Как уже обсуждалось в гл. 1, белки можно условно разделить на очень компактные, статистические клубки, спиральные и полужесткие (или комбинацию трех последних). Представление об общей форме может быть получено из сравнения вязкости нативного и денатурированного белка. (Денатурацию можно вызвать действием кислоты, высокой температуры или денатурирующих агентов, таких, как хлорид гуанидиния). Поскольку денатурированная форма представляет собой статистический пли около-статистический клубок (см. пример 13-Б для их различия), можно определить, является ли нативная форма более или менее компактной по сравнению со статистическим клубком по тому, увеличивается или уменьшается вязкость при денатурации. Например, т1отп рибонуклеазы заметно увеличивается в процессе термической денатурации в кислоте отсюда следует, что она имеет компактную нативную структуру (которая характерна для большинства глобулярных белков). С другой стороны, вязкость поли -у-бензил- -глутамата, имеющего форму жесткого стержня, в 4 раза уменьшается, если его поместить в условия, в которых он превращается в статистический клубок. Аналогично вязкость [c.373]

    Дипольный момент амфотерных ионов. Аминокис-логгы, белки и фосфолипиды интересны как класс полярных молекул при определенной кислотности раствора такие молекулы существуют как амфотерные (диполяр-ные) ионы. Общую форму таких амфотерных ионов можно проиллюстрировать на примере аминокислоты глицина (гликокола), показанной на рис. 8. [c.87]

    В связи с переводом на тетраплоидный уровень многих форм гороха небезынтересно было выяснить наличие возможности и перспектив для селекции тетраплоидов на повышенное содержание белка. Определение содержания общего азота у 22 форм, относящихся к трем хозяйственно-ценным видам, показало, что во всех без исключения случаях у полиплоидов наблюдается возрастание процентного содержания общего белка от незначительного (0,57) до существенного (4,47) (табл. 4). Причем во всех случаях наблюдается достаточно высокая и достоверная степень различий между диплоидами и тетраплоидами по содержанию сырого протеина. Эти различия еще бопее существенны при ont>-ставлении диплоидного и тетраплоидного линейного материала. Некого рые линии тетраплоидов превосходили лучшие дшхлоидные тех же исходных форм на 5,0-5,5 и даже 6,1% сырого белка. [c.205]

    Несмотря на то что общая форма октамера теперь определена достаточно точно (хотя на рисунке этого не видно), индивидуальные гистоны изображены на рисунке в виде аморфных шариков, поскольку мы не располагаем данными об их структуре. Распределение аминокислот на N-конце, несущем большой заряд, одинаково у всех гистонов. Остальная часть молекулы содержит гидрофобные аминокислоты, которые, вероятно, образуют глобулярную структуру и участвуют в белок-белковых взаимодействиях. По этой причине гистоны иногда воспринимаются как глобулярные белки с заряженными N-концевыми хвостами . Можно было бы думать, что у хвостов преобладает ДНК-связывающая активность, тогда как глобулярные области входят внутрь сердцевины. Однако против этой модели свидетельствуют данные о том, что N-концевые области можно отщепить (обработав трипсином) от гистонов сердцевины, не вызывая при этом сколько-нибудь существенных нарушений структуры нуклеосомы. Кроме того, гистоны без N-koh-цевых хвостов могут участвовать в сборке нуклеосомы in vitro. В настоящий момент мы не можем приписать индивидуальных функций определенным участкам гистоновых молекул. [c.369]

    Оценивая роль различных взаимодействий в стабилизации глобулярных бел-ков, следует считать, что характер нативной конформации определяется не каким-либо одним эффектом, а представляет собой результат совместного тонко сбалансированного действия целого ряда энергетических и энтропийных факторов. Водородные связи, образованные между полярными группами и водой и внутри глобулы, — главный фактор в обеспечении стабильности отдельных областей молекулы белка. Они ограничивают локальные конформационные изменения внутри белка, определяя жесткость конструкции и общий характер потенциальных барьеров для внутренних движений частей нативной структуры. В то же время гидрофобные взаимодействия между боковыми группами на отдельных участках основной цепи играют решаюшую роль в процессах сворачивания глобулы из первичной аминокислотной последовательности и в определении ее общей формы. В обоих случаях вода как растворитель имеет огромное значение, облегчая полярные взаимодействия за счет образования водородных связей как на поверхности, так и внутри макромолекулы белка.  [c.234]

    Как будет описано позднее (гл. 9), большая часть генов детерминирует синтез белков, которые внедряются в химическую-структуру данной ткани или органа и таким образом закрепляют определенную альтернативу, обязывая эту структуру принять одну из ряда форм, доступных ей ранее. Ген обеспечивает повторный отбор этой формы в каждом новом поколении. Примером служит раковина моллюсков, состоящая из молекул карбоната кальция, пронизанного сетью кератиноподобных белков. Атомы карбоната кальция определяют общую форму раковины. Белок лишь уточняет, будет ли раковина представлять собой длинную или короткую спираль или же большую или маленькую сферу. [c.49]

    Отсюда следует, что пшеница — это единственный вид зерновых, из которого в настоящее время промышленным способом извлекают белки в форме клейковины для их повторного дополнительного введения в определенные пищевые продукты, главным образом для улучшения качества выпечных изделий, но также в мясные колбасные изделия. Использование белков кукурузы, являющихся побочным продуктом в производстве крахмала, значительно менее существенно и ориентировано на кормление животных. Поэтому в данной главе будут рассматриваться белки пшеницы с особым вниманием к запасным белкам зерна, накопленным в крахмалистом эндосперме. На них приходится 72 % общего количества белков зерна, а их свойства представляют интерес с технологической точки зрения. [c.176]

    Анализ известных белковых структур дает ценные сведения для понимания.механизма свертывания и стабильности белков. В структурах этих белков обнаруживаются шесть уровеней организации. На первом уровне находится аминокислотная последовательность, которая целиком определяет окончательную структуру белка. В структурах белков можно выделить несколько типов упорядоченности формы основной цепи. Это так называемые вторичные структуры, которые составляют второй уровень. Две из таких регулярных структур (а-спираль и 3-складчатый лист) были предсказаны на основе ковалентного строения основной цепи как наиболее простые. Следующие два уровня, сверхвторичные структуры и структурные домены, гораздо более сложны и пока не предсказуемы. На этих уровнях также проявляются вполне определенные закономерности, например такие, как корреляция между близкими по цепи остатками. Эти закономерности не выражаются в каких-либо определенных структурах, а носят весьма общий характер. На двух самых высоких уровнях организации, занимаемых глобулярными белками и агрегатами, сейчас уже делаются попытки некоторых структурных предсказаний. Возможность таких предсказаний основана на том, что нижние структуры, домены для глобулярных белков и глобулярные белки для агрегатов предполагаются внутренне стабильными (в некоторых случаях это подтверждено экспериментом). Характер агрегатов можно предсказать с помощью анализа контактной поверхности глобулярных белков. Это же относится и к предсказаниям строения глобулярных белков по их доменам. Кроме того, свойства поверхности, как это следует из изучения поверхностей раздела белок — белок, имеют важное значение для белкового узнавания. В главе обсуждены некоторые законо- [c.127]

    Фикобилипротеины обеспечивают в клетках цианобактерий поглощение света в области 450—700 нм и с высокой эффективностью (больше 90 %) передают поглощенный свет на хлорофилл, при этом основное количество энергии передается на хлорофилл, связанный со II фотосистемой. Все цианобактерии содержат небольшие количества аллофикоцианина и его длинноволновой формы — аллофикоцианина В, а также значительные количества фикоцианина, одного из основных клеточных пигментов, содержание которого в условиях низкой освещенности может достигать 60% от общего уровня растворимых белков клетки. Некоторые цианобактерии содержат также второй основной фикобилипротеин — фикоэритрин. Способность синтезировать фикоэритрин может быть конститутивным свойством организма или индуцироваться в определенных условиях освещения. [c.268]

    Нуклеиновые кислоты представляют собой линейные полимерные молекулы, состоящие из чередующихся углеводных и фосфоди-эфирных остатков. Фрагменты углеводов существуют в молжулах нуклеиновых кислот в- фураиозиой форме и связаны по атому С-1 с остатками пиримидиновых или пуриновых оснований (общее рассмотрение структуры нуклеиновых кислот см. [45]). Дезоксирибонуклеиновая кислота (ДНК) присутствует во всех живых клетках и служит носителем генетической информации. В качестве углеводного остатка в молекуле ДНК присутствует о-дезоксирибоза, а в качестве оснований — тимин. цитозин (пиримидиновые основания) и аденин, гуанин (пуриновые основания) (рис. 7.14, а). Определенная последовательность расположения пиримидиновых и пуриновых оснований в цепи ДНК связана с конкретной генетической информацией. Рибонуклеиновые кислоты (РНК) также представляют собой неразветвлеиные полимерные молекулы, отличающиеся от молекул ДНК тем, что содержат вместо дезоксирибозы о-рибозу (с группой ОН при атоме С-2) и урацил вместо тимина. РНК выполняют роль матриц для синтеза белка. [c.317]

    Следует напомнить об известных трудностях идентификации функциональных групп активных центров ферментов по величинам рК, полученным из изучения зависимости скорости реакции от pH. Во-первых, одна и та же группировка в белках разного строения может иметь неодинаковое значение рК из-за влияния соседних групп. Некоторую помощь в этом случае может оказать измерение теплоты диссоциации ионогенных групп, рассчитываемой по измерениям температурной зависимости рК. К сожалению, для холинэстераз эти термодинамические константы достаточно надежно не измерены. Согласно данным Шукудза и Шинода [122], теплоты диссоциации основной группировки ацетилхолинэстеразы эритроцитов и холинэстеразы сыворотки крови человека составляют соответственно 8,5 и 6,5 ккал1моль. Эти величины выше или ниже найденной для диссоциации имидазольной группы гистидина в других белках (6,9—7,5 ккал моль [123]). Если признать, что в обеих холинэсте-разах в качестве основной группировки активного центра выступает имидазол гистидина, то трудно понять столь существенное различие в величинах теплот диссоциации. Во-вторых, даже если измерение активности фермента при разных pH рассматривать в качестве своеобразного титрования функциональных групп активного центра, то полученные результаты нельзя безапелляционно считать отражением прямого участия этих групп в каталитическом акте. Можно представить, что ионы Н и ОН -среды выполняют свою функцию, вызывая не только протонизацию или депротонизацию функциональных групп активного центра, но также и более общую функцию создания и поддержания специфической для каждого фермента третичной структуры. Можно думать, что в создании третичной структуры фермента большую роль играют ионные связи между такими группировками, которые расположены вне активного центра и непосредственно не участвуют в реакции с субстратом. Такие ионогенные группировки при взаимодействии могут сближать друг с другом (или наоборот удалять друг от друга) определенные функциональные группы белка, которые непосредственно участвуют в каталитическом акте. Внешне эта непрямая роль кислотно-основных группировок фермента будет отражаться в форме обычной зависимости кинетических констант (и, V, Кт) от pH, но по существу такая зависимость не дает оснований для решения вопроса, является ли она следствием влияния pH на конформацию белка в районе активного центра или диссоциацию группировки, прямо участвующей в реакции с субстратами. [c.184]

    Общий вид спектра радикала АХЦ14), связанного с сывороточным альбумином (рис. IV.21), соответствует изотропному вращению радикала при частотах, лежащих на границе областей быстрого и медленного вращения (см. раздел II.5, рис. 11.13), однако в низкопольной части спектра заметно усложнение формы спектра, свидетельствующее о двух типах мест посадки радикала АХ1(14) на молекуле белка, отличающихся временами корреляции. Так как наиболее интенсивным является спектр, соответствующий более быстрому вращению радикала, то параметры спектра, определенные без разделения спектра на составляющие, характеризуют прежде всего именно этот тип комплексов зонда с белком. [c.190]

    Там, где возможно сравнение, оказывается, что неорганическ.ий катализатор, повидимому, понижает анергию (изменение теплосодержания) активации [3] то же самое справедливо для ферментов [131]. Влияние катализатора на энтропию активации, насколько это представляет себе автор настоящей статьи, в общем менее заметно. Каким-то образом молекулы, адсорбированные на металле, окиси металла или на других катализаторах или удерживаемые специфическим белком, превращаются в более лабильную форму, т. е. потенциальный барьер для одного определенного вида реакции (или, может быть, для нескольких реакций) значительно понижен. [c.193]

    Далее была разработана методика количественного определения дикетопиперазинов в нативных белках [13]. При этом было установлено, что желатина содержит наибольшее количество циклических форм. В табл. 18 приведены данные об относительном количестве циклических и цепочечных форм связи в процентах к общему азоту белка для желатины. [c.86]

    Доступность синтетических полипептидов сыграла большую роль в уточнении условий, определяющих устойчивость вторичной структуры, однако установление третичной структуры значительно сложнее. Это было наглядно показано путем определения конформаций миоглобина [32] и гемоглобина [34] методом рентгеновского кристаллографического анализа. Белок миоглобина состоит из единственной полипептидной цепи с восемью сегментами правой а-спирали. В спираль входит 7—24 аминокислотных остатка, а их общая длина составляет примерно 78% полипептидной цепи. Два остатка образуют острые углы, а другие спиральные сегменты отделяются за счет изменения длины цепи при переходе к нерегулярной конформации. Кендрью [376] обсудил некоторые особенности структуры белков, которая чрезвычайно компактна и имеет внутри не более пяти изолированных молекул воды. За очень редким исключением, все полярные группы располагаются снаружи молекулы, и, следовательно, боковые цени, находящиеся в контакте друг с другом внутри молекулярной структуры, как правило, имеют гидрофобный характер. Таким образом, создается впечатление, что гидрофобное взаимодействие должно быть основным фактором, стабилизующим конформацию. Однако остается спорным вопрос о том, что же определяет точки, в которых происходит нарушение конформации. Известно, что остаток пролина может и не размещаться в а-спирали однако это ограничение не может служить объяснением всех неспиральпых последовательностей в молекуле миоглобина. Состав неспиральных участков не имеет также никакого отношения к классификации синтетических полипептидов в соответствии с их тенденцией к существованию в спиральной форме [377]. Интересно, что конформации миоглобина и четырех субъединиц, составляющих молекулу гемоглобина, несмотря на различную последовательность Б них аминокислот, должны быть весьма сходны между собой [378, 379]. В таком случае третичная структура будет, по-видимому, определяться сложными соотношениями, которые детально не исследованы. [c.135]

    Вирусная оболочка (или капсид) построена в общих чертах из относительно небольших белковых молекул, имеющих правильную форму и способных поэтому собираться в устойчивые оболочки определенных размеров. Процесс этот осуществляется за счет образования водородных связей, ионных и гидрофобных взаимодействий, а не обычных химических связей. Структурные особенности вирусных белков, обусловливающие такое высокое специфическое связывание идентичных, а иногда и неидентичных молекул, по-видимому, не менее сложны, чем у ферлюнтов или ряда других белков, таких, как авидин или антитела [357], связывающихся со своими субстратами и другими малыми или большими молекулами с высокой степенью сродства и специфичности. Эта способность к специфическому связыванию обусловлена специфической конформацией белка, которая в свою очередь определяется последовательностью образующих белки аминокислот. Именно по этой причине выяснение аминокислотной последовательности вирусных белков и представляет громадный интерес. Работа по изучению вирусных белков проводилась в целом ряде лабораторий на множестве различных вирусов. Первичная структура вирусных белков представляет интерес не только потому, что с ней связана функциональная активность белков, [c.63]

    По-видимому, наиболее важным открытием из сделанных когда-либо в биологии было установление того факта, что рассмотренный выше или какой-либо другой процесс копирования уже существуюш их белковых цепей вообще не протекает в организме и что информация о последовательности аминокислот в молекулах ферментов хранится в хромосомах и используется (но терминологии, применяющейся в вычислительной технике) для программирования в белоксиитезирующих системах (рибосомах), обеспечивая правильное воспроизведение последовательности аминокислот. Эта программа хранится не в виде аминокислотной последовательности полипептидных цепей и не в какой-либо иной форме, имеющей прямое структурное или химическое сходство с рассматриваемой аминокислотой, а в виде кода, записанного на лентах нуклеиновой кислоты, при этом каждой аминокислоте соответствует определенное, состоящее из трех букв, кодовое слово (кодон), которое по своей химической структуре не имеет ничего общего с данной аминокислотой. Таким образом, последовательность аминокислот в полипептидной цепи фермента закодирована в виде последовательности нуклеотидов в полинуклеотидной цепи нуклеиновой кислоты. Буквы кодона не следует понимать как некие символы, записанные на бумаге, они представлены пуриновыми или пиримидиновыми основаниями. Записывая нуклеотидные последовательности, принято обозначать нуклеотиды первыми буквами их химического названия например, кодон для метионина представляет собой последовательность из трех нуклеотидов— аденина, урацила и гуанина — и записывается AUG. Информация о последовательности аминокислот в белках хранится в хромосомах, точнее, в молекуле дезоксирибонуклеиновой кислоты (ДНК). Последняя отличается от рибонуклеиновой кислоты (РНК) тем, что содержит восстановленный сахар (дезоксирибозу) и метилированные урациловые группы (иногда бывают метилированы и другие основания). [c.6]

    В книге подробно рассмотрены методы исследования гликопротеинов и обсуждены особенности их структуры. Проанализированы суш ествующив методы выделения гликопротеинов из сложной смеси родственных им веществ — белков, полисахаридов и др., методы проверки их гомогенности, определение величины и формы молекул. Методы установления состава гликопротеинов изложены с рассмотрением осложнений, возникающих при гидролизе смешанных биополимеров. Накопленный за последние годы опыт исследования гликопротеинов позволил авторам изложить общие методы изучения структуры гликопротеинов, включая методы фрагментации, выделения и исследования фрагментов. Особое место уделено углевод-пептидным связям в гликопротеинах. [c.5]

Рис. 15.19. Регуляторные белки, связывающиеся с ДНК, обладают общими структурш.1ми особенностями. А. Вторичная структура белка его и субъединицы репрессора с1 характеризуются наличием пары одинаково расположенных а-спиральных участков (а2 и аЗ). Б. Ориентация пары а-спиралей обеспечивает точное структурное соответствие размерам и форме больщой бороздки двойной спирали ДНК, где происходит специфическое взаимодействие определенных оснований и аминокислотных остатков. Таким образом, достигается специфичность связывания белка с определенной последовательностью ДНК. (По Вашг R. Т. et ai, 1982. Nature 298, 447.) Рис. 15.19. <a href="/info/76656">Регуляторные белки</a>, связывающиеся с ДНК, обладают общими структурш.1ми особенностями. А. <a href="/info/35984">Вторичная структура белка</a> его и <a href="/info/1324900">субъединицы репрессора</a> с1 характеризуются <a href="/info/833071">наличием пары</a> одинаково расположенных а-спиральных участков (а2 и аЗ). Б. <a href="/info/209061">Ориентация пары</a> а-спиралей обеспечивает точное <a href="/info/196330">структурное соответствие</a> размерам и форме <a href="/info/199843">больщой</a> бороздки <a href="/info/1016243">двойной спирали</a> ДНК, где происходит <a href="/info/32737">специфическое взаимодействие</a> <a href="/info/17749">определенных оснований</a> и аминокислотных остатков. <a href="/info/461013">Таким образом</a>, достигается специфичность <a href="/info/103288">связывания белка</a> с <a href="/info/33272">определенной последовательностью</a> ДНК. (По Вашг R. Т. et ai, 1982. Nature 298, 447.)
    Таким образом, общий круговорот азота в природе представляет собой обратимый переход его свободной газообразной формы в атмосфере в фиксированную форму в почве или биологической системе. В растительных клетках поглощенные нитраты вновь восстанавливаются до аммиака, который затем связывается с определенными органическими кислотами, в результате чего образуются аминокислоты, а затем белки. Эти вещества перевариваются животными и превращаются в животные белки и азотистые продукты обмена — мочевину и мочевую кислоту. В конечном счете все животные и растения отмирают и разла- [c.220]

    У синтетических ауксинов, используемых для регулирования роста и развития растений, способность к перемещению связана с их активностью. Как правило, синтетические соединения, эффективно стимулирующие рост, обладают также и способностью к полярному транспорту. Это означает, что некоторая часть молекулы ауксина, ответственная за его действие, отвечает и за его связывание со специфическими участками транспортного белка. Когда мы измеряем контролируемый ауксином рост стебля, мы всегда находим, что скорость роста коррелирует не с общим содержанием ауксина, а с тем его количеством, которое способно к диффузии и выделяется из стебля, если его обрезать и поместить срезом на блок агара. Это свидетельствует о том, что не весь ауксин в клетке оказывает стимулирующее влияние на рост. Вероятно, рост контролируется ауксином, содержащимся в определенной части клетки, например в цитоплазме. Именно этот ауксин и доступен для транспортировки. Однако значительное количество ауксина может быть сосредоточено в других частях клетки, таких, как вакуоль, что делает его недоступным для транспортировки И неспособным оказывать влияние нарост тем не менее если мы экстрагируем ткань растворителями и измерим в экстракте количество ауксина, то при этом будет учтен и неподвижный ауксин, что приведет к неправильной оценке действительной локализации различных форм ауксина в изучаемых клетках. Этот феномен компартментации имеет большое значение для всей физиологии часто локализация того или иного соединения или фермента важнее, чем его общее содержание. Такое правило почти наверняка применимо не только к ауксину, но и ко всем другим гормонам. [c.272]

    Л. Нет, я не захожу так далеко. На основании обсуждаемых результатов мы можем сказать, что биоорганическим реакциям, например полипептидному синтезу, присущи определенные тенденции к упорядочению. Известно, однако, что совсем незначительные изменения аминокис-ютной последовательности некоторых белков могут приводить к сильно выраженным изменениям. Хорошим примером служит 5-гемоглобин и связанный с ним синдром — серповидноклеточпая анемия. Замена одной-едипственной аминокислоты в молекуле нормального гемоглобина на другую аминокиаюту вызывает резкое нарушение морфологии и функций эритроцитов [4]. Поэтому, хотя при связывании аминокислот — безразлично, па Земле или на других планетах — могут действовать одинаковые тенденции, вполне вероятно, что образующиеся в результате надмолекулярные формы будут резко различаться по своей морфологии. Несмотря на общее сходство — а это сходство неизбежно, поскольку оно базируется на одинаковых физико-химических явлениях, — под влиянием уникальных местных условий на различных планетах могут возникать выраженные биологические различия. Справедливость этого положения мы видим на примере Земли почти все живое на Земле имеет единую биохимическую конституцию при бесконечном разнообразии видов. [c.317]


Смотреть страницы где упоминается термин Белки определение общей формы: [c.449]    [c.223]    [c.224]    [c.207]    [c.245]    [c.298]    [c.102]    [c.151]    [c.210]   
Физическая Биохимия (1980) -- [ c.373 ]




ПОИСК





Смотрите так же термины и статьи:

Определение форма



© 2025 chem21.info Реклама на сайте