Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий как катализатор при реакции углеводородов

    Например, отмечалось увеличение скорости реакции дегидрогенизации циклогексана, этилциклогексана, а также дегидрогенизации и дегидратации спиртов в первые часы работы катализаторов с активным металлическим компонентом [65, 101—104], Временное увеличение активности катализатора отмечалось в процессе ароматизации парафиновых углеводородов (14, 24, 105]. При крекинге углеводородов на алюмосиликатных катализаторах отмечалось сохранение каталитической активности вплоть до 5—10% увеличения веса катализатора [106, 107]. Отсутствие отравляющего действия углистых отложений на катализаторе в начальных стадиях угле-накопления отмечалось и другими авторами [108]. Сохранение специфики природы различных катализаторов (медь, силикагель, кварц, а также медь, серебро, золото, железо, кобальт, никель, окись ванадия на силикагеле) после сильного обугливания было отмечено в случае пиролиза бензола (50, 56, 59]. В ряде случаев отмечено изменение специфичности катализатора по мере обугливания. Например, изменяется соотношение между выходами олефинов и арп-матики по мере обугливания катализатора [24, 105]. Двуокись титана, проявляющая в свежеприготовленном состоянии дегидрирующие свойства в реакции с изо-пропиловым спиртом, становится типично дегидратирующим катализатором после обугливания в ходе дегидрогенизации [109]. То же наблюдается с окисью иттрия [ПО, 111] и с некоторыми другими катализаторами. [c.286]


    Была проверена [31] пригодность многочисленных катализаторов реакции гидродеалкилирования. Опыты проводили при температуре 530 °С, давлении 50 ат и мольном соотношении водород углеводород, равном 4 1, ароматическом экстракте с пределами кипения 204— 286 °С, выделенном из легкого циркулирующего газойля каталитического крекинга. В указанных условиях окись алюминия и древесный уголь скорлупы кокосовых орехов способствовали гидродеалкилированию, правда, в незначительной степени. Степень превращения значительно повышалась при добавлении к катализатору ванадия или металлов VI группы периодической системы. Дополнительное добавление щелочного металла значительно снижало образование кокса, которое без этого добавления достигало 2—7% на сырье. Из испытывавшихся катализаторов одним из лучших оказался подщелоченный алюмохромовый, который легко регенерировался окислением, хотя избирательность реакции на нем была значительно ниже, чем в присутствии современных промышленных катализаторов. На реакции гидрирования и образования газов при гидродеалкилировании, например метилнафталина, расходовалось примерло [c.195]

    Действие окиси ванадия как катализатора основано на том, что в условиях реакции она может переходить из одной степени окисления в другую. Высший окисел окисляет углеводород, а сам при. этом восстанавливается затем он немедленно снова окисляется свободным кислородом воздуха. Необходимо давать избыток воздуха, чтобы равновесие было сдвинуто в сторону окисла более высокого валентного состояния, [c.10]

    Изучалось также влияние добавки различных химических веществ во время сульфирования углеводородов на ускорение или завершение реакции (при использовании серной кислоты), на уменьшение образования побочных продуктов (при применении высококонцентрированного олеума или ЗОз) или на изменение соотношения образующихся изомеров. Эти добавки рассматриваются как катализаторы или промоторы сульфирования. Но так как ароматические углеводороды легко сульфируются, вопросу ускорения этой реакции но уделялось достаточного внимания. Отмечается, что при высокой температуре (около 250°) сульфирование (главным образом моно- и некоторое количество ди-) бензола ускоряется добавлением солей металлов, особенна солей натрия и ванадия, добавленных вместо [5]. Ускорение введения второй сульфогруппы, которое происходит значительно труднее, чем первое, достигается добавлением различных соединений металлов [10, 73, 91], а ртуть может быть использована для облегчения введения третьей сульфогруппы [1031. [c.518]


    Многие важные в практическом отношении химические реакции возможны в условиях гетерогенного катализа. Например, синтез аммиака из водорода и азота на железном катализаторе, окисление диоксида серы до серного ангидрида на пятиоксиде ванадия при контактном способе получения серной кислоты, крекинг углеводородов на алюмосиликатных катализаторах и многие другие. [c.764]

    Легкие углеводороды (разбавители) в основании лифт-реактора контактируют с регенерированным катализатором, способствуют поднятию и ускорению катализатора 2 перед тем, как остаточное сырье попадает в разбавленный каталитический поток через специальный сырьевой распылитель 3. Зоны 1 и 2 способствуют быстрому и тесному контакту катализатора с нефтяным остаточным сырьем, что позволяет увеличить выход продукции и добиться частичной пассивации металлических загрязнителей в циркулирующем катализаторе. Далее основные реакции протекают в лифт-реакторе 4. Газопродуктовая смесь через верх реактора поступает на фракционирование, а отработанный катализатор - в двухступенчатый регенератор 5 с холодильником катализаторов 6. Двухступенчатый регенератор позволяет решить достаточно трудные задачи-за счет выжигания в 2 ступени снизить концентрацию кокса в катализаторе до заданного низкого уровня, несмотря на то что кокса много образуется за счет высокого содержания в остаточном сырье тяжелых асфальтовых соединений и отравляющих катализатор металлов-никеля и ванадия. Вместе с тем, чтобы избежать разрушения катализатора, условия в регенераторе должны быть достаточно мягкими и обеспечивать надежный теплоотвод и заданный температурный режим. [c.183]

    Дегидрогенизационный кокс образуется в результате реакций дегидрирования углеводородов на металлах, осевших на катализаторе из сырья (ванадий, никель, молибден). [c.44]

    Высшие окислы ванадия являются типичными окислительными катализаторами, окись трехвалентного ванадия с электронной конфигурацией обладает способностью катализировать реакции гидрирования и дегидрирования. В восстановительной среде УзОз весьма устойчива, способна активно сорбировать на своей поверхности водород и ненасыщенные углеводороды. [c.165]

    Каталитическое окисление насыщенных парафиновых углеводородов имеет большое промышленное значение, однако оно не представляет большого интереса для препаративной органической химии. Процесс характеризуется обычно малыми выходами и образованием сложной смеси продуктов. В качестве катализаторов процесса окисления в паровой фазе было предложено использовать платиновую проволоку, платинированный силикагель, окись ванадия на носителе и палладий [336]. При окислении -бутанана окиси ванадия в реакцию вступает только 7% углеводорода из смеси продуктов реакции были идентифицированы формальдегид (3,5%) и кислоты (6,4%) [337]. [c.148]

    Приготовление нятиокиси ванадия. Наиболее удобным и активным контактом для окисления нафталина является пятиокись ванадия. Этот катализатор применяется на носителе (окись алюминия, силикагель), и метод приготовления сводится к пропитыванию носителя раствором ванадата аммония с последующей сушкой катализатора при 110° и прокаливанием при 400—600°. В последнее время для некоторых окислительных реакций применяется плавленая пятиокись ванадия. Для приготов.ле-ния этого катализатора используется ванадат аммония, который разлагают при 400° до пятиокиси ванадия, затем температуру повышают до 600°, при которой пятиокись ванадия плавится. После охлаждения эту застывшую массу дробят на кусочки размером 2—3 мм- Пятиокись ванадия активируют в реакторах реакционной смесью (углеводород -)- кислород). Эта активация но данным некоторых исследователей [79, 80] связана с образованием на поверхности окисла ванадия состава 204,34. [c.24]

    Состав продуктов окисления углеводородов сильно зависит от концентрации исходных веществ. Для определения порядка и констант скоростей [243] канедой из частных реакций изменялось содержание пропилена и кислорода в реакционной смеси. В качестве катализатора была использована пятиокись ванадия, нанесенная на пемзу. [c.139]

    Подобным же образом нафталин можно окислить одновременно во фталевый ангидрид и нафтохинон, хотя последний и окисляется дальше во фталевый ангидрид и оба эти продукта медленно окисляются в малеиновый ангидрид. Окисление о-ксилола во фталевый ангидрид протекает легко на катализаторах из пятиокиси ванадия [172] было проведено несколько фундаментальных исследований по кинетике этой реакции и по изучению поведения катализаторов. Катализатор в значительной степени восстанавливается в обычных условиях окисления [173] так, уже при 1% о-ксилола в воздухе образуется много каталитически неактивной УаО , а при 3% о-ксилола обнаруживается УгО . По-видимому, реакция протекает с восстановлением поверхности и с ее повторным окислением кислородом. Представляется интересным проверить это явление, используя 01. Некоторое подтверждение этого дает исследование [123] изменений электропроводности и термо-э. д. с. в присутствии ксилола или исходных для окисления смесей. Катализатор представляет полупроводник п-типа с анионными вакансиями при нормальном давлении кислорода. Кислород хемосорбируется лишь в ограниченном количестве, так как эта хемосорбция деплетивная. При соприкосновении с углеводородом поверхностная проводимость возрастает либо углеводород образует положительный ион и электроны, либо он удаляет ионы кислорода и освобождает электроны [c.332]


    В качестве характерного примера механизма реакций окисления ароматических углеводородов рассмотрим окисление нафталина на сложном ванадий-калий-суль-фатно-силикагелевом катализаторе. [c.207]

    Этого, по-видимому, нельзя сказать о процессах окисления таких веществ, как SO2, HaS, H l. Необходимость обеспечения стабильной работы катализаторов окисления этих соединений (а также Sj) приводит к тому,что эффективные контакты упомянутых процессов (за исключением, пожалуй, только платины как катализатора окисления SOa) существенно отличаются от катализаторов, которые используются для окисления углеводородов, СО, NHg, На- Интересной особенностью реакций каталитического окисления хлор- или серусодержащих неорганических соединений является то, что относительная роль активации участников реакции — окисляющегося вещества и кислорода — различна для разных процессов. Например, при каталитическом окислении сероуглерода определяющее значение имеет, по-видимому, легкость активации кислорода наиболее активными катализаторами этой реакции являются сульфиды никеля, кобальта, а также серебряно-марганцевый катализатор (последний химически связывает образующиеся окислы серы и при этом дезактивируется). В то же время, на лучших катализаторах окисления SO2 (ванадий-калий-сульфатно-силикагелевом) и хлористого водорода (хлорид меди, окись хрома) обеспечивается активация не только кислорода, но и окисляющихся молекул. Очевидно, в этих случаях активации только одного из участников реакции недостаточно для эф )ективного протекания процессов. Наконец, окисление HaS на наиболее эффективных катализаторах этой реакции — бокситах, алюмосиликатах — лимитируется активацией именно сероводорода, который в этом состоянии легко окисляется молекулярным или физически сорбированным кислородом. [c.282]

    Большинство известных катализаторов, применяемых при производстве фталевого ангидрида как из нафталина, так и из о-ксилола. содержит в качестве главного активного компонента- пятиокись ванадия. Хотя реакция и выход целевого продукта до некоторой степенк зависят от наличия промоторов и от физического состояния нримопяемого катализатора, особенно от отношения поверхность объем, эти влияния здесь ие учитывались. Для иллюстративнЬ1х целей служил катализатор из очищенной пятиокиси ванадия, нанссенлой в расплавленном состоянии на инертный носитель, например на гранулированный алюмииий (размер зерна от 14 до 30 меш) [5]. При скорости подачи 0.12 моля углеводорода в час (на каждый моль углеводорода подавалось 103 моля воздуха) на 51 см катализатора, имеющего 48% свободного объема, в трубке диаметром 12,5 мм можно получить выход 68% от теоретического, если максимальная температура катализатора находится в пределах 500—600°. Эти условия соответствуют времени контакта около 0Д2 сек. [c.9]

    В заключение отметим недавнее появление французского патента № 821767 (1937), согласно которому катализаторами реакции нитрации могут служить соединения хрома, вольфрама, молибдена, тантала, ниобия, ванадия, галлия и индия. По утвержденшо патента, применением одного из этих катализаторов можно легко, с малым расходом крепких кислот, получить тетранитронафталин и даже неизвестные до сих пор пента- и гексанитронафталины) и другие высоконитрованные углеводороды. Едва ли обещания этого патента оправдаются, но они свидетельствуют о настойчивой потребности в катализаторе, реакции нитрации. [c.26]

    Поскольку окись ванадия является эффективным катализатором дегидрогенизации углеводородов, можно было бы на основании чисто термодинамических соображений ожидать, что удастся подыскать условия, при которых должна протекать обратная реакция. Экспериментальные исследования, проведенные в нашей лаборатории с осажденным алюмованадие-вым окисным катализатором, подтвердили правильность этой точки зрения. [c.797]

    Сополимеризацию можно проводить так же, как полимеризацию пропилена (см. рис. 69). При периодическом методе реакцию проводят в автоклаве, куда при —65 °С сначала вводят жидкий пропилен, а затем подают этилен под таким давлением, чтобы газ был нужного состава. Оба компонента могут быть растворены в гептане, циклогек-саие или бензоле. Компоненты катализатора подают отдельно в виде растворов в углеводородах. Полимеризация продолжается примерно 10—40 мпн, после чего ее прекращают добавкой спирта. Для удаления соединений ванадия и алюминия реакционную смесь обрабатывают кислотами. После очистки добавляют антиоксиданты для стабилизации сополимера. [c.313]

    Минимальная температура, необходимая для инициирования окисления, больше зависит от катализатора, чем от природы окисляемого [4] углеводорода. При применении в качестве катализатора ванадата олова о-ксилол можно окислить даже при температуре 270°, тогда как при применении чистой плавленой пятиокиси ванадия минимальная темпсфатура окисления будет около 425°. Выделяющееся тепло реакции быстро нагревает слой катализатора до более высокой температуры. Обычно реакция контролируется путем регулировки температуры охлаждающей бани таким образом, чтобы максимальная температура, измеряемая в слое катализатора, поддерживалась постоянно в нужном интервале. Максимальные гемпературы катализатора, лежащие несколько ниже 525°, благоприятны для получения продуктов более низкой степени окисления, чем фталевый ангидрид, например альдегидов. При температурах, значительно превышающих 600°, происходит чрезмерное переокисление и реакцию становится трудно контролировать. [c.10]

    Серная кислота. Этот вопрос более полно будет рассмотрен в главе об очистке. Приведем здесь только общие замечания. Серная кислота с этиленовыми углеводородами дает реакции трех родов 1) Образование серных эфиров. Такая реакция вызывается некоторыми катализаторами, например солями серебра и ртути, окисью ванадия и т. д. эти серные эфиры при гидролизе дают спирты. Этилен дает этиловый спирт. С высшими углеводородами можно получить при действии HaSOi также вторичные и третичные спирты. 2) Концентрированная серная кислота вызывает реакции полимеризации этиленовых углеводородов, причем склонность к полимеризации возрастает вместе с молекулярным весом. 3) Наконец при употреблении во время очистки нeпpeдed ьныx фракций нефти весьма крепкой серно й кислоты происходит выделение SOj, что указывает на окисление нефти и восстановление серной кислоты. [c.31]

    На примере окисления углеводородов на гетерогенных окисных катализаторах было установлено, что в жидкофазном процессе в ряде случаев образуются иные продукты, чем в газофазном с той же исходной системой [77, 78]. Продукты реакции при этом приближаются к продуктам реакции жидкофазного цепного окисления с гомогенными катализаторами из растворимых солей металлов переменной валентности. Так, о-ксилол в газовой фазе окисляется на пятиокиси ванадия во фталевый ангидрид, а в жидкой — в о-толуи-ловую кислоту, которая получается при окислении о-ксилола в жидкой фазе и с солями кобальта и марганца. В некоторых работах роль поверхности окисных катализаторов при жидкофазном окислении углеводородов сводят только к генерированию радикалов для ценного процесса, протекающего в объеме [79, 80]. Однако исследования [c.42]

    Окисление проводится в реакторе 1 из нержавеющей стали в интервале температур 160—190 °С и при давлении 4,8 МПа без катализатора или в присутствии солей кобальта, меди, магния, ванадия. Воздух подается в нижнюю часть реактора в таком количестве, чтобы содержание кислорода в отдувочном газе составляло не более 4% (об.). Пары продуктов реакции и непрореагировавшие углеводороды поступают совместно с отработанным воздухом в конденсационную систему 2—4, приспособленную для утилизации теплоты. Отсюда жидкий конденсат возвращается в зону реакции. Отработанный воздух поступает в турбодетандер 5, где охлаждается до —60 °С. Полученный холод используют на установке. Оксидат из реактора поступает в ректификационную колонну 7, в которой отделяются нейтральные кислородсодержащие продукты, возвращаемые на доокис-ление в реактор 1. На колонне 8 происходит отделение воды и кислот С —С4, а тяжелый кубовый остаток, пройдя блок выделения янтарной кислоты 9, поступает на повторное окисление. Вода от кислот отгоняется с помощью азеотропной перегонки (блок 10). Товарные муравьиная, уксусная и пропионовая кислоты выделяются с применением азеотропной и обычной ректификации (блоки 11—13). Суммарный выход кислот С —С и янтарной кислоты в расчете на превращенный бензин находится на уровне 100—110%, причем выход уксусной кислоты составляет 60—75% от товарной продукции и зависит от технологии проведения процесса и используемого для окисления сырья. [c.178]

    В процессе дальнейшего изучения, путем многократной фракционировки и окисления отдельных, отвечающих индивидуальным соединениям, фракций, было установлено содержание в бензине н-понтана, к-гексана, н-гептана, 3-метилоктана, к-ио-нана, пентена-1, пентена-2, гексена-2, 3,3-диметилпентона-1, гентена и октена-2. Нафтены обнаружены не были. Ароматических углеводородов оказалось очень мало бензола 8% во фракции 72—87°, или 0,1% от всего бензина, толуола — 16,5%i во фракции 103,5—117°, или 0,4—0,5% от всего бензина. Кох, основываясь на цитированных выше исследованиях Б. Л. Молдавского с сотр., Б. А. Казанского и А. Ф. Платэ, а та1> же данных американских патентов № 351078 и 382747 по каталитической ароматизации алифатических углеводородов над окисями ванадия и хрома, подверг исследованию в этом отношении ряд фракций синтина. Гептеи-гептановая фракция (с т. кии. 92— 95°) подвергалась ароматизации над окисями ванадия и хрома в пределах 400—530°. Прп оптимальных условиях выход ароматических углеводородов в продуктах реакции составлял 55% от исходного, причем основным углеводородом был толуол. Катализатор быстро терял активность, но легко регенерировался продуванием воздуха. [c.199]

    Положенное в США в основу производства синтетическою каучука дегидрирование бутанов и бутенов изучалось Гроссом [43] и Моррелем [44]. В качестве катализаторов этими авторами были использованы хром-молибден и окись ванадия, нанесенная на глинозем. Над теми же катализаторами, приготовление которых было описано Гроссом, может быть осуществлено и дальнейшее дегидрирование олефинов в диолефины [45]. Последнюю реакцию, в отличие от дегидрирования парафиновых углеводородов, осуществляют иод вакуумом в 0,25 атм при 600—6.50 и времени контакта от0,3 до0,03сек. Выход бутадиена за проход колеблется в пределах от И до 30%, а максимальный выход 1,3-бутадиена из бутонов достигает 1 % (при отделении сажи, не превышающем 10%). В С(>СР этот путь синтеза дивинила разрабатывался П. Д. Зелинским, О. К. Богдановой, А. П. Щегловой, М.П. Марушкиными Л. Н. Павловым [46, 47].Производство каучука, а затем резины потребовало, в свою очередь, преодоления ряда новых трудностей. Мы приведем лишь два примера, относящихся к полимеризации смесей дивинила п стирола и к производству сажи. [c.474]

    Очистка бензольных- углеводородов в присутствии водорода осуществляется в газовой фазе над катализатором. Целевыми реакциями очистки являются гидрообессеривание и гидрирование ненасыщенных углеводородов. При получении бензола высокой степени чистоты определяющими являются реакции гидрообессе-ривання, особенно гидрогенолиз наиболее термически стабильного соединения — тиофена. Катализаторами гидрообессеривания могут быть сульфиды или оксиды молибдена, кобальта, вольфрама, никеля, ванадия. В промышленности широко распространен алюмокобальтмолибденовый катализатор. [c.224]

    При исследовании каталитического действия различных сульфатов и окислов на скорость сульфирования бензола 70%-ной кислотой при 242—260° [17] найдено, что самым активным катализатором является смесь сульфата натрия и пятиокиси ванадия. Бензол и другие углеводороды количественно сульфируются при комнатной температуре избытком серной кислоты в присутствии сухой инфузорной земли или животного угля [18]. Бензолсульфо-кислЬта вместе с другими продуктами реакции образуется при действии иода и серной кислоты на бензол при 170—180°, а также при нагревании серной кислоты с иодбензолом [19]. Гладкое превращение дифенилртути в ртутную соль бензолсульфокислоты под действием серного ангидрида [20] может дать некоторые указания на механизм каталитического влияния солей ртути на некоторые [c.11]

    Кроме контактно-каталитического получения карбоновых кислот за последние годы большое промышленное применение нашел одностадийный синтез нитрилов сопряженным окислением кислородом соответствующего углеводорода и аммиака, так называемый окислительный аммонолиз. Реакцию проводят в газовой фазе над катализатором из оксидов металлов — висмута, ванадия, молибдена, титана, при 500—550 °С, Пары воды, галогены, органические галогенпроизводные и серусодержащие соединения способствуют реакции. Этим путем из толуола или этилбензола получают бензонитрил с выходом более 90 %, из о-ксилола или нафталина — фталодинитрил с выходом 80%. Из м- и л-ксилолов образуются изофтало- и терефталодинитрилы, которые можно гидролизовать в дикарбоновые кислоты или восстанавливать в ксилилендиамины, применяемые в синтезе полимеров. Крупнейший промышленный процесс на основе этого метода — получение акрилонитрила из пропилена и аммиака. [c.319]

    Исследовалась реакция окислителыюго обессеривания дизельного топлива, основную долю которого составляли углеводороды состава Сд -Сп, содержание серы -0.86 мае %. Варьировались окислительные системы, а также следующие параметры температура, продолжительность процесса, количество МФК, концентрация Н2О2. Установлено, что все полученные пероксокомплексы ванадия, молибдена и вольфрама являются активными катализаторами для проведения процессов окислительного обессеривания и позволяют довести содержание общей серы в дизельном топливе до 0.20 мас.%. [c.61]

    Нафталин, бициклический углеводород, легко окисляется в условиях, в которых бензол не затрагивается, а поскольку продукт реакции еще и стабилизован двумя мета-направляющими группами, то нет опасности дальнейшего окисления. В настоящее время фталевую кислоту получают парофазным каталитическим окислением нафталина (Гиббс). Пары нафталина в смеси с воздухом пропускают над катализатором при высокой температуре, причем образующаяся кислота превращается в ангидрид, который возгоняется и улавливается в конденсаторе в очень чистом виде. Результаты опытов, проведенных в условиях, сходных с производственными (Шрив, 1943), показали, что фталевый ангидрид может быть получен с выходом 76% при нагревании продажного нафталина до 460—480 °С в присутствии катализатора — окиси ванадия на силикагеле побочным продуктом реакции является а-нафтохинон. [c.346]

    Методы окисления бутилена в жидкой фазе кислородом воздуха аналогичны описанным выше для окисления пропилена. Реакция проводится в автоклаве при парциальном давлении кислорода 20—25 ат и температуре 65—140 °С. В качестве растворителя рекомендуется бензол. Инициаторами окисления являются азо-бис-дициклогексилцианид и азодиизобутиронитрил . Для увеличения скорости процесса иногда применяют катализаторы — соли кобальта, марганца и ванадия. При окислении смеси углеводородов, содержаш,ей 7% бутилена, в присутствии нафтената ванадия при 130—140 °С под давлением, обеспечиваюш,им наличие жидкой фазы, основным продуктом реакции была 2,3-окись бутилена. Кроме того, найдены небольшие количества метилацетата, ацетальдегида, кротонового альдегида, метилэтилкетона, муравьиной, уксусной и пропионовой кислот. [c.151]

    Один из путей повышения селективности связан с проведен ем реакции окисления с преимущественным получением гидроп оксида с последующим его направленным разложением, напр мер, с помощью водного раствора щелочи, введением в реакцио1 ную смесь различных катализаторов, в частности солей ванади молибдена, рутения. Однако гидронероксидное направление оки< ления пока находится иа уровне лабораторных исследований.. .j Другой, более эффективный путь повышения селективное связан с окислением циклопарафиновых углеводородов возд хом в присутствии соединений бора (борная кислота и ее эфир особенно метабораты) при повышенной температуре 160-190 В случае окисления циклогексана используется воздух, обедн ный кислородом (до концентрации 10 % (об.) Oj). [c.338]

    В реакциях окисления углеводородов на оксиде ванадия(У) под влиянием среды V превращается в У и образуется несколько фаз с ванадием в разной степени окисления V , V . При окислительном аимонолизе толуола при 450 °С на молибденовом катализаторе обнаружены разные переходы оксида молибдена  [c.642]

    Относительно каталитического действия окислов металлов прч крекинге углеводородов опубликовано очень мало экспериментального материала. ОкислЫ молибдена, ванадия и некоторых других тяжелых металлов могут заметно ускорять расщепление парафинов при высоких температурах. Как будет показано в главе 3, при дест-Буктивной гидрогенизации скорость образования бензина значительно повышается в присутствии таких катализаторов гидрогенизации,, как соединения молибдена. Таким образом, эти соединения могут ускорять две различные реакции — гидрогенизацию и разложение. [c.25]

    Для гетерогенного каталитического окисления углеводородов [22] катализаторами мягкого окисления являются окиси ванадия, вольфрама и молибдена, а для этилена также и металлическое серебро. Катализаторами глубокого окисления являются шпинели (хромиты меди, железа и магния), платина, медь. При окислении простейпшх углеводородов на катализаторах глубокого окисления в продуктах реакции, кроме углекислого газа и воды, обнаруживаются только следы альдегидов и совершенно отсутствуют окиси олефинов. На катализаторах же мягкого окисления полезная и вредная реакции протекают в области умеренных температур параллельно. Продукты неполного окисления прочно адсорбируются на поверхности катализатора и блокируют некоторые ее участки, тормозя таким образом все реакции и прежде всего свое собственное окисление. Лишь при более высоких температурах адсорбированные продукты удаляются с поверхности, после чего наряду с параллельными реакциями начинают играть роль и последовательные. Протекание процессов гетерогенного каталитического окисления углеводородов может быть представлено схематически следующим образом. [c.467]

    При прохождении смеси паров и водородсодержащего газа над катализатором под влиянием температуры и давления протекают различные реакции, к числу которых относят реакции гидрообессеривания, гидрирование ненасыщенных соединений, гидрирование ароматических углеводородов, гидрокрекинг насы щенных углеводородов, деметилирование гомологов бензола Целевыми реакциями очистки являются гидрообессеривани и гидрирование ненасыш,енных углеводородов При получении бен зола высокой степени чистоты определяющими являются реакции гидрообессеривания, особенно гидрогенолиз (разрушение) наиболее термически стабильного соединения — тиофена Катализаторами гидрообессеривания могут быть сульфиды или оксиды молибдена, кобальта, вольфрама, никеля, ванадия В промышленности широко распространен алюмокобальтмолибденовый катализатор 306 [c.306]

    Главными кислородсодержащими продуктами окисления непредельных углеводородов являются альдегиды и окиси олефинов, а насыщенных — альдегиды и кислоты. Прн окислении простейших углеводородов на платине и шпинелях в продуктах реакции обнаруживают только следы альдегидов и совершенно не находят окисей олефинов. Прн окисленпи этилена, про1шлена, этапа и пропана на катализаторах мягкого окисления (окиси ванадия, вольфрама и молибдена) присутствует значительное количество альдегидов и кислот, но не обнаружено окиси этилена и пропилена. На серебряном катализаторе при окислении этилена п пропилена люжно получить значительные количества окиси этилена н только следы окиси пропилена, но альдегиды и кислоты на этом катализаторе не образуются. На ванадиевых контактах нри окислении нафталина образуются фталевый ангидрид, нафтахинон и малеиновый анпщрид, а прп окисленпи бензола — малеиновый ангидрид и, конечно, продукты глубокого окисления СО и СОг. Что же происходит с этими продуктами на различных катализаторах в присутствии кислорода  [c.179]

    Если сравнить два типичных полупроводниковых катализатора — закись меди и пятиокись ванадия, то характер связи адсорбированных с их поверхностью молекул также неодинаков. На закиси меди кислород нри 300° прочно связан с поверхностью, которую он полностью покрывает даже при пониженных давлениях, а на УоОд адсорбция кислорода очень мала (1—2% от монослоя нри 300 — 400°), и при 400° начинается его десорбция. На закиси меди легко может протекать взаимодействие адсорбированного кислорода и непредельного углеводорода газовой фазы, вероятно, с образованием гидроиерекиси, в результате распада которой образуется непредельный альдегид. На УзОз ири взаимодействии с кислородом газовой фазы образуются насыщенные альдегиды (ацетальдегид, формальдегид) с меньшим числом атомов углерода, чем в исходной молекуле углеводорода. Одновременно протекает реакция с образованием ненасыщенного альдегида. [c.230]

    Окисление ароматических углеводородов. Исследовано окисление бензола 1в малеииовый ангидрид на сложном акисно(М катализаторе (окись алюминия с нанесенными на нее 9% масс, смеси окислов ванадия, молибдена, никеля и фоюфат-иона) [235]. В проточный реактор помещали катализатор, общая поверхность которого составляла 15 юм , а объем за его слоем (8,16 см ) либо оставляли свободным, либо заполняли измельченным стеклом, которое увеличивало твердую поверхность до 437 см , но было инертно в реакции окисления. [c.111]

    Для окисления ароматических углеводородов на V2O5 также имеет большое значение модифицирование катализатора (табл. 62). Видно, что степень превращения бензола в малеино1вый ангидрид и селективность этой реакции максимальны при введении в пятиокись ванадия AgaO (табл. 62). В присутствии этой добавки полностью подавляется образование бензохинона. Введение dO и [c.180]

    В безградиентном реакторе изучена кинетика окисления антрацена и фена н трен а на ванадий-калий-сульфатном катализаторе, наиесенном на силикагель, при 320—380 °С [399, 407]. На рис. 74 и 75 при изучении зависимости скоростей отдельных реакций от ионцентрации исходного углеводорода обнаружены две температурные области с разными кинетическими закономерностями. При 340—370°С скорость образования из антрацена антрахинона Шах характеризуется уравнением [c.249]

    В начале XX века исследования в области катализа несколько расширились. Из работ предреволюционного периода назовем важнейшие, оказавшие наиболее значительное влияние на развитие катализа. Выдающимися исследованиями ныне Героя социалистического труда академика Н. Д. Зелинского по химии углеводородов положено начало дегидрогенизационному и необратимому катализу. В России (химическая лаборатория бывшей Михайловской артиллерийской академии, Петербург, 1901—1914 гг.) впервые начаты исследования каталитических реакций, протекающих при в.ысоких температурах и давлениях. В 1901 г. появилось первое сообщение (Григорьев) о парофазной дегидратации этилового и изобутилового спиртов в присутствии окиси алюминия, кремнезема, графита и других катализаторов. Большое значение, особенно для промышленности, имеют работы С. А. Фокина (1906—1907 гг.) по каталитической гидрогенизации ненасыщенных соединений, в частности жиров. Эти работы оказали большое влияние на исследования Виллштеттера, Пааля и других немецких химиков. Исследования Е. И. Орлова (1906—1908 гг.) по контактному окислению углеводородов, аммиака, спиртов и других веществ в присутствии меди, окислов ванадия, платины и других катализаторов до сих пор сохраняют свою актуальность. В лаборатории Тентелевского химического завода (Петроград) были приготовлены и применены лучшие в то время катализаторы контактного окисления сернистого газа. [c.4]

    Парафиновые и олефиновые углеводороды, содержащие шесть и более углеродных атомов в прямой цепи, могут быть подвергнуты дегидрированию и циклизации до ароматических углеводородов с тем же числом углеродных атомов. Для осуществления этой реакции можно использовать два типа катализаторов 1) окислы металлов и 2) восстановленные металлы. В качестве окисных катализаторов применяют главным образом окись хрома, окись молибдена и окись ванадия в чистом виде или еще лучше на носителе, например на окиси алюминия. В качестве металлических катализаторов применяют металлы vni группы периодической системы, главным образом никель или платину на носителе типа окиси алюминия. При дегидроциклизации на поверхности окисных катализаторов наряду с образованием ароматических соединений происходит образование олефинов. Образование олефинов представляет собой, по-видимому, промежуточную стадию процесса их выход, как правило, не превышает 10%. Исходный углеводород можно полностью превратить в ароматический, применив соответствующий катализатор. Наиболее эффективным катализатором в случае проведения реакции при атмосферном давлении является окись хрома (СГдОд), которую обычно наносят на окись алюминия либо путем пропитки, либо совместным осаждением обоих окислов. [c.141]


Смотреть страницы где упоминается термин Ванадий как катализатор при реакции углеводородов: [c.903]    [c.54]    [c.223]    [c.27]    [c.43]    [c.218]    [c.144]    [c.326]    [c.59]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.987 , c.989 , c.989 , c.991 , c.991 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий как катализатор при реакции

Ванадий катализаторы

Ванадил-ион, реакции

Катализаторы углеводородов



© 2024 chem21.info Реклама на сайте