Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители измерение растворяющей способност

    Поскольку уксусная кислота достаточно неудобна в работе, использование ее в качестве растворителя имеет смысл лишь тогда, когда это дает существенные преимущества по сравнению с другими, менее ядовитыми соединениями. В электрохимии ее применяли в трех различных областях кислотноосновном титровании, полярографии на КРЭ и как растворитель для реакции анодного ацето ксил про вания. К важнейшим свойствам растворителя, используемого при титровании, особенно при кулонометрической генерации титрованного раствора и потенциометрическом определении конца титрования, относятся диэлектрическая постоянная, кислотность и основность и константа ионного произведения. Уксусная кислота интересна в первую очередь своей кислотностью. По сравнению с другими кислотами, применение которых возможно для этих целей, например серной и муравьиной, уксусная кислота характеризуется лучшим сочетанием свойств. Ее диэлектрическая постоянная ниже, чем у этих двух кислот, но она не настолько мала, чтобы затруднить проведение электрохимических измерений. Хотя по кислотности уксусная кислота уступает указанным кислотам, все же она достаточно сильная кислота и способна титровать многие слабые основания. Уксусная кислота имеет намного меньшую константу автопротолиза (2,5 10 ) [2], благодаря чему она гораздо более удобная среда для титрования. [c.32]


    При растворении вещества в кислом растворителе оно может протонироваться. Если растворителем служит вода и концентрация растворенного вещества не слишком велика, pH раствора является хорошей мерой протонодонорной способности растворителя. К сожалению, это не распространяется на концентрированные растворы, в которых коэффициенты активности отличаются от единицы. Измерение кислотности растворителя нужно как при работе с концентрированными растворами, так и со смесями растворителей. В случае кислых растворов с высокой диэлектрической проницаемостью используется функция кислотности Гаммета [66, 67]. Для любого растворителя, в том числе для смесей известного состава, эта величина, обозначаемая как Но, выражается уравнением [c.332]

    В основу фотометрических методов определения палладия при помощи диоксимов положена способность диоксиматов палладия растворяться в органических растворителях. Измерения светопоглощения производят в ультрафиолетовой области. [c.166]

    Изменение дисперсности асфальтенов в зависимости от состава растворителя было прослежено путем измерения светорассеяния на нефелометре НФМ-56 растворов асфальтенов в смеси гептана и бензола при изменении содержания последнего. В чистом бензоле асфальтены давали растворы с минимальным светорассеянием, в гептане же были практически не растворимы. На рис. 3, а приведены кривые изменения мутности ряда растворов асфальтенов мухановской нефти постоянной концентрации от 0,0039 до 0,0625 г/л Б зависимости от содержания бензола в растворителе. На рис. 3, б показана эмульгирующая способность растворов асфальтенов различной концентрации в зависимости от содержания бензола в растворителе. [c.7]

    Не менее информативными с точки зрения выявления особенностей гидратации углеводов являются данные по объемным свойствам растворов [57-60]. Стереоспецифичность гидратации, проявляющаяся в зависимости физико-химических характеристик растворов от конформационных свойств растворенного вещества и от способности структуры растворителя соответствовать структуре конформера, находит отчетливый отклик в объемных параметрах. Так, например, стереохимические изменения, сопровождающие превращение в растворе одного диастереоизомера в другой, непосредственно фиксируются при прецизионном измерении плотности [60]. Подробно данные по объемным свойствам водных растворов моно- и дисахаридов, а также влияние на них температуры и концентрации будут обсуждаться в следующем разделе. [c.80]


    На рис. 3.2 приведены данные, показывающие, что в воде сила любой кислоты не превосходит силу Н3О+. Обладающие такими свойствами растворители называют выравнивающими. Для того чтобы оценить относительную силу минеральных кислот, необходимо производить измерения в растворителях с очень низкими основностью и ионизирующей способностью. По понятной причине такие растворители назвали дифференцирующими. Приведенная на рис. 3.2 диаграмма показывает, что в раствори- [c.105]

    Ранее уже было показано, что при реакциях в растворах полярность растворителей очень сильно влияет на их способность сольвати-ровать полярные частицы или ионы и, следовательно, на величины К, а также к. Во многих сериях физические константы растворителей (диэлектрическая проницаемость, дипольный момент, показатель преломления) не коррелируют с /Сг или Эти константы поэтому не подходят в качестве меры полярности растворителей. Параметр У используют в качестве эмпирического параметра относительной полярности. Таким образом, вода оказывается полярнее уксусной кислоты. Величину У можно определить лишь для небольшого числа растворителей, в которых возможно проведение реакций 5л 1. Однако существует целый ряд других измеряемых явлений, например поглощение света определенными красителями, зависящих от полярности растворителя. Такого рода измерения возможно осуществить уже в большинстве растворителей.  [c.176]

    Вода практически не должна поглощать в ультрафиолетовой области при длинах волн >190 нм, хотя коэффициент экстинкции воды был измерен в интервале длин волн 230—185 нм. Однако существует несколько методов анализа, основанных на использовании веществ, которые либо сами способны поглощать в данной области спектра, либо реагируют с водой с образованием соединений, поглощающих в УФ-области спектра. В ряде случаев косвенный метод определения воды в органических растворителях может быть основан на уменьшении люминесценции раствора комплекса Ве(НОз)2 с салициловым альдегидом (в соотношении [c.362]

    Для определения ККМ иногда может быть применено измерение точки замерзания раствора [12, 96]. С термодинамической точки зрения измерение осмотического коэффициента представляет большой интерес, однако обычные ПАВ недостаточно растворимы при температуре замерзания растворителя, и точки Крафта их находятся выше 0°. Таким образом, значения ККМ или осмотического коэффициента, получаемые этим методом нри температурах, близких к точке замерзания растворителя, не представляют большого практического интереса, если иметь в виду, что такие важные поверхностные свойства растворов, как пенообразующая способность, устойчивость пен и ряд других, сильно изменяются с температурой. [c.22]

    В общих чертах измерение молекулярных весов методом светорассеяния основано на том, что часть света, проходящего через любую систему, рассеивается. Рассеяние обусловлено тем, что в результате теплового движения отдельные микроучастки раствора неоднородны в растворах всегда существуют значительные флуктуации плотности и концентрации. Различие в плотностях обусловливает различие в показателях преломления этих участков. Следовательно, свет, проходящий через среду, преломляется на границах между участками с разной плотностью, т. е., отклоняясь от первоначального направления, рассеивается. Очевидно рассеяние тем больше, чем больше флуктуации. Если в среде находятся частицы разного сорта, например молекулы растворителя и молекулы полимера, то, кроме флуктуаций плотности среды — растворителя,— имеет место флуктуация концентрации полимера. Эти флуктуации тем интенсивней, чем меньше осмотическое давление внутри участков с большей концентрацией, т. е. чем выше молекулярный вес полимера. Таким образом, связь между рассеивающей способностью [c.81]

    Уравнение (VI.2i), известное просто как закон Бера, справедливо для монохроматического света. Оптическая плотность О может быть непосредственно измерена с помощью фотометра. Коэффициент экстинкции является мерой способности раствора поглощать свет длины волны Я. Поскольку некоторое количество света может быть поглощено растворителем и другими веществами, обычно вводят поправку, получаемую путем измерения оптической плотности раствора без индикатора в тех же условиях, при которых измеряется оптическая плотность раствора, содержащего индикатор. [c.148]

    В отличие от сдвига Д мк константа равновесия не всегда растет с увеличением электронодонорной способности растворителя. Так, доля молекул бутилацетилена, связанных с растворителем при одной и той же температуре, возрастает в ряду бензол—мезитилен—ацетон, при переходе же к дибутиловому эфиру и триэтиламину — уменьшается, несмотря на увеличение прочности Н-связи. Это же явление отчетливо проявляется и в области полосы поглощения деформационного колебания ацетиленовой группы 6 (=СН). Как видно из рис. 4, две полосы поглощения свободных и связанных молекул наблюдаются только для раствора в ацетоне, т. е. для раствора с максимальным содержанием связанных молекул бутилацетилена. Спектр системы н-бутилацетилен+триэтиламин, в которой согласно измерениям в области валентного колебания V (=СН) равновесие мономер — комплекс в наибольшей степени сдвинуто в сторону мономерных молекул, совпадает со спектром [c.42]


    Если попытаться подразделить очень больщое количество органических растворителей в соответствии с их способностью растворять гетероциклические соединения, то можно выделить три принципиальные группы спирты, гидрофобные растворители и растворители, способные разрушать водородные связи. Детальное обсуждение, подобное проведенному выше для воды, к сожалению, невозможно из-за отсутствия систематических и точных измерений растворимости в каком-либо ряду. Однако можно высказать несколько общеприменимых положений. [c.199]

    Вращательная способность какого-либо вещества в растворе зависит от концентрации этого раствора, а также от длины поляриметрической трубки, температуры, при которой проводится измерение, длины волны используемого источника света и от растворителя. На основании, [c.82]

    Стандартный электродный потенциал (см.) в неводных растворителях часто мало отличается от такового в воде, хотя различия в степени сольватации ионов могут привести к некоторому его смещению. Для измерения электродных потенциалов в неводных растворителях обычно пригодны электроды сравнения, используемые для водных растворов. Однако при замене растворителя скорости электрохимических реакций могут радикально измениться, поскольку изменятся факторы, определяющие легкость перехода электронов на поверхности электрода. К таким факторам относятся сольватация электроактивных ионов, их способность к образованию ионных пар и комплексообразованию, адсорбируемость растворителя и активных частиц на поверхности электрода и ряд других, которые могут влиять на структуру двойного электрического слоя (см.). [c.117]

    Исторический обзор возникновения интереса к неводным растворителям, а следовательно, и к выяснению роли растворителя в природе растворов, дан в известных монографиях Вальдена 121 иЮ. И. Соловьева [3]. Еще в середине XVI в. Бойль заинтересовался способностью спирта растворять хлориды железа и меди. Позднее ряд химиков отмечает и использует растворяющую способность спирта. В 1796 г. русский химик Ловиц использует спирт для отделения хлоридов кальция и стронция от нерастворимого хлорида бария, как будто положив начало применению неводных растворителей в аналитических целях. В первой половине XIX в. подобные наблюдения и их практическое применение встречаются чаще, причем химики устанавливают случаи химического взаимодействия растворителя с растворенным веществом, показывая, что и в органических жидкостях могут образовываться сольваты (Грэхем, Дюма, Либих, Кульман). Основным свойством, которое при этом изучалось, была растворимость. В 80-х годах XIX в. Рауль, исследуя в целях определения молекулярных весов понижение температур замерзания и повышение температур кипения нри растворении, отмечает принципиальное сходство между водой и неводными средами. Но систематическое физико-химическое изучение неводных растворов наряду с водными начинается только в самом конце столетия, когда Каррара осуществляет измерение электропроводности растворов триэтилсульфония в ацетоне, метиловом, этиловом и бензиловом спиртах, а также ионизации различных кислот, оснований и солей в метиловом спирте. В этот же период М. С. Вревский проводит измерения теплоемкостей растворов хлорида кобальта в смесях воды и этилового спирта [4], а также давлений и состава паров над растворами десяти электролитов в смесях воды и метилового спирта [5]. Им впервые четко установлено явление высаливания спирта и определено как .. . следствие неравномерного взаимодействия соли с частицами растворителя . Несколько раньше на самый факт повышения общего давления пара при растворении хлорида натрия в смесях этанола и воды, на первый взгляд противоречащий закону Рауля, обратил внимание И. А. Каблуков [6]. Пожалуй, эти работы можно считать первыми, в которых подход к смешанным растворителям, к избирательной сольватации и к специфике гидратационной способности воды близок современному пониманию этих вопросов. Мы возвратимся к этому сопоставлению в гл. X. [c.24]

    Растворимость газа - это его максимальное количество, которое способно раствориться в условиях равновесия при данных температуре и давлении в определенном количестве растворителя. Прецизионное определение растворимости газов проводится главным образом на основе волюмо-манометрического эксперимента, т.е. путем точного определения объемов растворителя v, раствора Ур, абсорбированного газа V2, давления и температуры. Эти данные служат в качестве исходных параметров для вычисления молярных величин количества вещества компонентов раствора в паровой и жидкой фазах, объемов, концентраций. В этой связи мы вначале рассмотрим некоторые вопросы, общие для любой методики измерения растворимости газов. [c.222]

    Как было показано, в описанной системе все эти корреляции имеют место. В частности, когда значения ДДС, измеренные в растворах растворителей разной донорной способности относительно величины ДС в ацетонитриле, строятся как функция донорной способности в ацетонитриле, то получается линейная корреляция (рис. 4.3). На основании этого утверждается, что если известны донорные способности растворителей, величины ДС сольватации хлорвд-иона в них и величины ДС испарения данных растворителей, то можно рассчитать константы равновесия реакции в растворах этих растворителей. Аналогичным образом Гутман и Майер [89] выполнили расчеты системы иод — трииодид в различных растворителях. [c.66]

    Фотометр (рис. 18) иред-назнгчеи для измерения оптических плотностей растворов, обладающих избирательной поглощающей способностью. Он устанавливается на рейтере 1, который крепится на оптической скамье 2. Во входные отверстия 3 попадают два параллельных пучка света, один из которых проходит через кювету с раствором, а другой — через кювету с растворителем. В обоих входных отверстиях смонтированы клиновые диафрагмы, которьгми можно уменьшить световой поток. Изменение величины входного отверстия производится враи1ением барабана 5 (рис. 17 и 18), на котором нанесены две шкалы. По красной шкале против неподвижного указателя 4 (рис. 18) отсчитывается непосредственно оптическая плотность, по черной — процент пропускания. Далее оба световых пучка линзами объектива направляются на ромбические призмы 3 (см. рис. 17), которые соединяют оба пучка света в один, проходящий через светофильтр 7 и попадающий в лиизы окуляра 6. [c.30]

    Непосредственно обнаружить и измерить осмотическое давление раствора невозможно, поскольку о стенку сосуда одновременно ударяются не только частицы растворенного вещества, но и молекулы рдстворителя. Для измерения осмотического давления необходимо отделить раствор от чистого растворителя при помощи полупроницаемых перегородок, способных пропускать растворитель и задерживать частицы растворенного вещества. [c.211]

    Активность II концентрацию ионов водорода обычно определяют путем измерения значениА pH, однако такая оценка кислотностп имеет смысл лпшь при использовании очень разбавленных растворов и индивидуального растворителя, как правило воды. Для определения кислотности концентрированных растворов, а также неводных плн смешанных растворителей необходимо вводить другой параметр. Таким параметром является функция кислотности, характеризующая протонодонорную способность среды п имеющая большое значение при исследовании кинетики реакций, катализируемых кислотами и осиованиямп. [c.78]

    Конечно же, прежде всего ваше вещество должно растворяться в выбранном растворителе. Но растворимость не обязательно должна быть очень высокой, особенно если вы собираетесь регистрировать прогонный спектр. В этом случае 1 мг вещества в 0,4 мл растворителя вполне достаточно для получения хорошего спектра на приборе со средним и сильным полем. Растворитель может повлиять на получаемые результаты еще несколькими путями. При наблюдении протонов и углерода сигналы растворителя могут закрывать некоторые области спектра. Вязкость растворителя влияет на разрешение в спектре, особенно при работе с протонами. Некоторые растворители, например вода и метанол, содержат способные к обмену атомы водорода, что не позволяет наблюдать сигналы обменивающихся протонов в изучаемом веществе. Если планируются температурные эксперименты, то необходимо учесть температуры кипения и замерзания растворителей, равно как и возможные температурные изменения растворимости исследуемого вещества. Растворители ароматической природы, такие, как бензол и пиридин, могут вызывать большие изменения химических сдвигов в спектре растворенного вещества по сравнению со спектрами, полученными при использовании неароматических растворителей. Интедсивность н ширина сигнала дейтерня от растворителя могут оказывать влияние на результаты некоторых экспериментов, таких, как, например, разностная спектроскопия. И наконец, цены иа дейтерироваиные растворители различаются очень сильно, что может оказаться важным ( ктором при выборе методик для ежедневного приготовления и измерения спектров большого числа образцов. От тщательного учета всех перечисленных факторов может во многом зависеть успех всего эксперимента. [c.55]

    Многие результаты теоретических и экспериментальных работ по гидратации ионов (некоторые из этих работ приведены в табл. 2 и 3) можно интерпретировать на основе современных представлений о структурных и динамических свойствах воды. Особый интерес представляет способность некоторых ионов разрушать структуру воды, образовывая с ней комплексы, включаться в существующую структуру воды, увеличивать или уменьшать степень упорядочения растворителя на значительном расстоянии. Ионы классифицируются как "структуроразрушители" и "структурообразователи" в зависимости от того, разрушают ли они структуру воды с образованием менее специфической структуры со слабой координацией молекул, стабилизируют существующую структуру или же приводят к новой гидратной структуре с сильной координацией. Однако такое разделение не всегда оправдывается в различных измерениях. В настоящее время почти нет сомнений в том, что в растворе могут существовать гидратированные группы со специфической локальной координацией ионов и молекул воды. Некоторые ионы могут разрушать структуру воды путем комбинации кулоновского взаимодействия, поляризационных и стерических факторов. Так, имеются свидетельства того (табл. 3), что ионы с сильными полями образуют гидратные комплексы с ближним порядком, аналогичным порядку в соответствующих кристаллогидратах, но с различной степенью ковалентного связывания иона ме-тадла с кислородом воды. Сильные поля таких ионов могут вызывать упорядочение растворителя за первым гидратным слоем. Имеются также данные, указывающие на то, что при низких концентрациях и температурах "водоподобные" области могут сосуществовать с гидратированными ионами. Такие ионы также увеличивают среднюю энергию активации диффузии молекул И jO и действуют как "положительные гидрататоры", по терминологии Самойлова [3, 4]. С другой стороны, большие ионы с низким зарядом могут разрывать структуру воды, вызывая уменьшение средней энергии активации диффузии, т.е. действуя как "отрицательные гидрататоры". Очевидно также, что в некоторых случаях (табл. 3) ионы могут включаться (путем внедрения или замещения) в существующую структуру воды и при этом не разрушать ее. [c.194]

    В ряде работ по термодинамическому исследованию растворов полимеров [1—6] было показано, что их сорбционная способность определяется в основном гибкостью цепей и плотностью их упаковки. Если цепи полимера гибкие, то вследствие своей гибкости молекулы могут принимать различные конформации, что способствует плотному размещению их в объеме полимера. Наблюдаемая значительная сорбция низкомолекулярного соединения таким полимером является результатом увеличения конформационного набора в смеси и, следовательно, определяется главным образом гибкостью полимерных цепей, а пе плотностью молекулярной упаковки. При этом изотерма сорбции имеет вид монотонной кривой [3, 5] (см., например, стр. 292, рис. 1). В случае полимеров с жесткими цепями, конформационный набор которых невелик, можно было ожидать малых значений сорбции. Однако опытные данные свидетельствуют о том, что сорбционная способность таких по.лимеров может быть значительной даже при малых значениях относительного давления пара низкомолекулярного компонента [1, 4, 6]. Такое сорбционное поведение полимеров с жесткими дщпял1И может быть связано только с тем, что молекулы этих полимеров вследствие малой гибкости не могут упаковаться плотно, т. е. такие полимеры должны обладать большей или меньшей микро-пористостью . В связи с этим можно предположить, что поглощение полимерол растворителя в начальной стадии должно приближаться к истинной адсорбции, сопровождаемой обычно уменьшением энтропии растворителя. Такое предположение действительно подтверждается измерениями теплот растворения полистирола в эти.тбензоле и бензоле 6, 7]. В этих работах было показано, что полистирол растворяется с выделением теплоты, что свидетельствует о малом взаимодействии между его цепями, т. е. о больших расстояниях между ними. Однако при низком молекулярном весе полимера короткие цепи вследствие большей своей подвижности могут осуществлять и плотную упаковку. Наличие сильных полярных групп в цепи полимера, создающих большие межмоле-кулярные взаимодействия, также может привести к структурам с большой плотностью упаковки. Таким образом, молекулярная упаковка жестких полимеров может различаться очень сильно — от рыхлой, с большой микропористостью, до плотной, типа низкомолекулярного стекла. [c.290]

    Сольватацией называется такое взаимодействие растворенного вещества с растворителем, которое приводит к более низкой активности растворителя вблизи частиц растворенного вещества по сравнению с чистым растворителем. В случае водных растворов сольватация называется гидратацией. Гидратация ионов обусловлена ориентацией дипольных молекул воды в электрическом поле иона, а гидратация полярных групп — в молекулах неэлектролитов и полимеров— ориентацией молекул воды в результате взаимодействия диполей и образования водородных связей. В гидратном слое молекулы воды располагаются более упорядоченным образом, но остаются химически неизмененными, чем гидратация отличается от химического соединения с водой окислов металлов и ангидридов кислот. Благодаря постепенному падению энергии связи растворенного вещества с растворителем (по мере удаления от молекулы растворенного вещества), сольватный слой имеет несколько диффузный характер, но в основном энергия взаимодействия и наибольшее падение активности растворителя сосредоточены в первом молекулярном слое. Растворитель в сольватной оболочке обладает, меньшей упругостью пара, меньшей растворяющей способностью, меньшей диэлектрической постоянной, меньшей сжимаемостью, он труднее вымораживается, обладает большей плотностью и т.,д. изменение любого из этих свойств раствора может быть использовано для определения величины сольватации. Наиболее прямой метод измерения сольватации состоит в установлении теплового эффекта поглощения навеской полимера определенного количества растворителя из смеси последнего с инертной к полимеру жидкостью например, Каргин и Папков определили, что сольватация нитроцеллюлозы в ацетоне и пиридине составляет около 1 молекулы растворителя на одну полярную группу — ОМОг полимера (табл. 15). Думанский и Некряч определили гидратацию ряда полимеров по теплоте смачивания (см. стр. 78), в частности, для крахмала найдено, что на глюкозный остаток приходится 3 молекулы связанной воды. Думанский установил также, что связывание воды самыми различными веществами происходит с тепловым [c.173]

    Определения молекулярного веса. Первым методом, использованным для приблизительного определения степени диссоциации производных гексафенилэтана в растворе, было криоскопи-ческое определение их кажущихся молекулярных весов в таких растворителях, как бензол и нафталин. Измерения по этому методу можно производить только в ограниченном интервале температур и концентраций. Однако полученные данные имеют больщое качественное значение, хотя точность экспериментальных результатов невысока (возможная ошибка в приводимых цифрах может составить около 10%). Метод может быть с уверенностью использован для сравнения способности различных соединений к диссоциации в одинаковых экспериментальных условиях. Таким путем первые исследователи этого вопроса сумели показать, что степень диссоциации молекул типа КзС—СКз на радикалы КзС возрастает при увеличении числа ароматических колец. Это можно проиллюстрировать данными таблицы 7. [c.63]

    И его пара-замещенные производные. Сорбционная способность фенолов по отношению к гелям сшитого полиамида (В10-Се1 Р-2 и Р-6) была изучена Стреули [20], который обнаружил очень хорошую корреляцию между молекулярной структурой и абсорбционными свойствами фенолов. Колонка была калибрована с помощью 0,5 /о-ного водного раствора голубого декстрана для определения промежуточного объема (У,), а незаполненный объем (Уо) плюс объем пор определили с помощью ацетона и тетрагидрофурана. Величины и Уо, измеренные с помощью вышеуказанных растворителей, были меньше, чем в случае использования для этих целей метанола, и больше, чем в случае использования диметилсульфоксида. Ацетон и тетрагидрофуран были применены с учетом того, что их молекулы обладали наименьшей вероятностью взаимодействия с гелями. В качестве элюента использовали разбавленный раствор хлорида натрия. [c.35]

    Заключение. Из приведенной таблицы видно, что измеренная величина АН в использованном ряду растворителей изменяется в весьма широких пределах, превышая минимальное значение АЯ = 0,5 0,3 ккал/моль в несколько раз. Видно также, что несмотря на неопределенность, вносимую вкладом ван-дер-вааль-совых взаимодействий при измерении в растворе энергии Н-связи, значение АН для исследованных растворителей регулярно растет с ростом электронодонорной способности. Вместе с тем, если учесть, что образование Н-связей в растворе происходит на фоне ван-дер-ваальсовых взаимодействий с раство- [c.45]

    Поскольку перекись водорода является очень слабым электролитом, электропроводность ее вод1Ш1х растворов приближается к электропроводности чистой воды, причем измерения электропроводности осложняются необходимостью удаления следов примесей. Перекись водорода, как и вода, является превосходным ионизирующим растворителем. Таким образом, диссоциация электролитов может происходить в любом интервале составов. Высокая реакционная способность перекиси водорода ограничивает число металлов, пригодных для измерения электропроводности наиболее практичным является выбор для этой цели литого олова. Несмотря на эти трудности, в продаже имеются растворы перекиси водорода, обладающие удельной электропроводностью, сравнимой с электропроводностью обыкновенной дистиллированной воды (т. е. 10 ом --см или меньше), причем путем тщательной пере- [c.220]

    При растворении в амфотерном растворителе — воде или спирте — лишь немногие углеводороды (и ограниченное число их производных) способны реагировать как кислоты и основания, и обмен водорода в СН-связях, наиболее перспективный для выяснения реакционной способности и особенностей строения органических соединений, происходит сравнительно редко. Кислотные свойства веществ очень усиливаются при их растворении в таком протофильном растворителе, каким является, например, жидкий аммиак. Это было ранее показано в работах по кислотному катализу в жидком аммиаке, по электропроводности растворов в нем и другими физико-химическими измерениями (о кислотах и основаниях в жидком аммиаке см. обзор [7]). Уксусная кислота, сероводород и даже п-нитрофенол становятся равными по силе соляной, азотной и хлорной кислотам. Это и понятно все перечисленные кислоты в жидком аммиаке превращаются в аммонийные соли, и фактически реакцию аммонолиза катализирует одна и та же кислота — ион аммония. Такие вещества, как мочевина и ацетамид, практически нейтральные в воде, в жидком аммиаке частично ионизируют и превращаются в ионы С0(МН2)МН", Hз ONH . Названные вещества катализируют реакцию аммонолиза и реагируют со щелочными металлами с выделением водорода. В аммиачном растворе амид калия (сильное основание) нейтрализует слабые кислоты — инден, флуорен, трифенилметан, дифенилметан и т. д. с образованием окрашенных анионов углеводородов  [c.38]

    Мы обсудили реакционные способности растворов мочевины. Некоторые из этих кинетических представлений применимы также к реакциям твердой мочевины с примесями очень малых количеств воды или метанола. Абсолютно безводный цетан и твердая мочевина, по-видимому, не реагируют, если не добавлен какой-либо активатор. Следы метанола вызывают медленную реакцию. Циммершид с сотрудниками U15] показали, что цетан, содержащий 0,25% добавленных соединений серы, экстрагированный из фракции неф и, может полностью затормозить реакцию, если не добавить 0 4% метанола. Горин и Розенштейн [41] предположили, что предварительно активированная твердая мочевина обладает открытой структурой, т. е. возможна реакция твердой мочевины с углеводородными системами. В результате измерения нлотности было показано, что после нагревания в растворителе, нанример в толуоле, открытая канальная структура комплекса исчезает. Однако скорость реакции увеличивается вследствие уменьшения размеров кристаллов после активирования и увеличения числа активных центров. [c.487]

    Структурные эффекты растворителя приходится учитывать, поскольку взаимодействия между молекулами растворителя включаются в термодинамические функции процесса сольватации. Эти эффекты твердо установлены только для воды, этиленгликоля и глицерина, в которых существует трехмерная сетка водородных связей, определяемая наличием по крайней мере двух Н-донорных и двух Н-акцеп-торных центров в молекуле [267], Однако для формамида подобные эффекты не обнаружены. Здесь не рассматривается вопрос о том, каким образом структурирован растворитель (ср. [35]) последнее обстоятельство влияет на термодинамику раствора через возрастание плозности энергии когезии (см. ниже). Речь идет об уникальной способности структуры этих строго определенных растворителей упорядочиваться в присутствии неполярных растворенных веществ, тогда как введение заряда в частицы растворенного вещества компенсирует это упорядочивание. Информацию о структуре растворителя можно получить путем измерения времен переориентации его молекул [267, 433]. [c.223]

    Измерение интенсивностей в растворах упрощается, поскольку ширина полос поглощения обычно в несколько раз превосходит разрешающую способность прибора. Однако ряд других факторов усложняет интерпретацию интенсивностей в спектрах жидкостей. На ннтенсивности полос поглощения в растворах влияют коэффициент преломления растворителя и его диэлектрическая постоянная. Наибольшая интенсивность полос поглощения в растворе наблюдается при использовании сильно полярных растворителей. Была разработана теория, учитывающая влияние этих факторов на интенсивности полос поглощения. Однако эта теория несостоятельна при объяснении изменения интенсивностей при переходе от одного растворителя к другому, что, возможно, обусловлено тем, что в ней учитываются только объемные свойства растворителя. [c.468]


Смотреть страницы где упоминается термин Растворители измерение растворяющей способност: [c.51]    [c.39]    [c.164]    [c.150]    [c.469]    [c.182]    [c.154]    [c.364]    [c.173]    [c.469]    [c.60]    [c.172]    [c.138]    [c.364]    [c.10]    [c.239]    [c.326]   
Волокна из синтетических полимеров (1957) -- [ c.333 ]




ПОИСК





Смотрите так же термины и статьи:

Способность pH раствора



© 2025 chem21.info Реклама на сайте