Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакционная способность молекул и радикалов

    Сравнительно низкая эффективность полимеризации этилена является, по-видимому, также результатом низкой эффективности инициатора. Этого можно было ожидать, так как соединение инициатора радикала с молекулой мономера формально является тем же развитием реакции. Низкая реакционная способность молекулы этилена и вытекающая отсюда низкая эффективность инициатора находят свое отражение в чувствительности полимеризации этилена к типу инициатора. В этом отношении этилен, по-видимому, уникален. Многие инициаторы свободных радикалов дают лишь незначительные выходы полиэтилена даже при наиболее благоприятных условиях. Вследствие этого было выдано многО патентов на приготовление катализаторов, специфических для проведения полимеризации этилена. Самые разнообразные требования предъявлялись к этим катализаторам, включая высокую степень превращения этилена, полимеризацию при низких давлениях и температурах, хорошее качество полимера и др. Многие из этих требований весьма сомнительны. [c.172]


    Добавки, которые в общем не влияют на скорость полимеризации, но вызывают снижение ОР образующегося полимера, значительно большее, чем это наблюдается при простом разбавлении, называются передатчиками цепи. Поскольку характер влияния добавок на скорость полимеризации и ОР образующегося полимера является функцией как реакционной способности молекулы добавки относительно мономера или полимерного радикала, так и стабильности продукта, строгая дифференциация различных типов поведения этих веществ может представлять некоторые трудности. Действительно, одно и тоже вещество, в зависимости от различных условий (температуры, концентрации и т. д.), может реагировать с различными мономерами неодинаково. Однако для данного вещества преобладает обычно один тип поведения и для удобства классификации в настоящей главе отдельные влияния добавок на полимеризацию рассмотрены в следующем порядке инициирование, передача цепи, ингибирование и замедление. [c.232]

    Применение метода ЛКАО — МО к исследованию реакций полимеризации позволяет найти корреляционные соотношения между реакционной способностью молекул мономеров и энергией стабилизации за счет л-сопряжения АЕ)гз- Величину (А )г8 приближенно принимают равной энергии активации эту величину удается вычислить с помощью теории возмущений второго порядка. Величина (А )г8 представляет собой разность между энергией переходного состояния (т. е. радикала и мономера в процессе образования связи между ними) и энергией реагентов. Применение данного метода оправдано лишь при сравнении реакционной способности ряда родственных соединений, когда можно не учитывать изменений энтропии, а расстояние между реагирующими частицами в переходном состоянии во всех случаях можно считать одинаковым. [c.361]

    Оценить реакционную способность одного радикала с разными молекулами можно тем же способом, однако полученные результаты будут несколько менее точными. Оценим для примера реакционную способность гидроксила, взаимодействие которого с рядом молекул было рассмотрено выше. В табл. 10 партнеры гидроксила расположены по убыванию теплоты реакции. Изменение энергии активации, за исключением окиси углерода и водорода, происходит более или менее закономерно. Если принять, что стерические факторы близки по значениям, получим закономерный ряд возрастания реакционной способности от ацетилена к формальдегиду (за исключением, естественно, Нг и СО) (5-й столбец табл. 10). Однако более точное сравнение с учетом стерического фактора (6-й столбец табл. 10) дает несколько худшие результаты — выпадает и этан. [c.155]


    Нивелировка активности радикалов при переходе М —> — - М02 обусловлена вероятнее всего существенным уменьшением влияния структуры молекулы мономера М на реакционную способность свободного радикала типа МОг по сравнению с радикалом типа - М. Это влияние не распространяется, по-видимому, далее атома кислорода фрагмента М0— в звене МОО, поскольку направление орбиталей неподеленных пар электронов атомов кислорода перекисей взаимно перпендикулярны [149]. В этом, вероятно, заключается также причина сравнительно малого изменения реакционноспособности соответственно первичных, вторичных и третичных перекисных радикалов в реакции отрыва атомов водорода в зависимости от строения радикала [33, 148] (см. также табл. 10). [c.43]

    Величина константы скорости является численным выражением реакционной способности молекулы при атаке ее по той или иной связи тем или иным радикалом. Величина з — энергия активации элементарного акта — показывает, какой наименьшей энергией должна обладать реагирующая система (молекула или радикал в случае мономолекулярного процесса или обе реагирующие частицы вместе взятые в случае бимолекулярного процесса), чтобы произошла данная реакция. [c.8]

    Основной причиной изменения скорости радикальной полимеризации в зависимости от природы растворителя является специфическая сольватация за счет комплексообразования мономера или полимерного радикала с растворителем. Именно такая сольватация оказывает основное влияние на протекание гомолитических реакций в растворах (см. гл. IX, 3). Наиболее распространенным типом этой сольватации является образование комплексов с помощью водородной связи. Комплексы мономер — растворитель обычно получаются за счет атомов, не находящихся в непосредственной близости к реакционному центру. Так же как и в низкомолекулярных гомолитических реакциях, образование водородной связи чаще всего снижает реакционную способность молекул по отношению к радикалу, однако это не является общей закономерностью [5]. Характерный пример — реакции сополимеризации мономеров, один из которых способен к образованию водородной связи с растворителем [c.379]

    В силовом поле металла происходит диссоциация молекул, наиболее активных в энергетическом отношении и обладающих повышенным по сравнению с остальными запасом энергии. При этом распад молекул осуществляется по наименее прочным связям. В данном случае прогнозирование реакционной способности соединений возможно по энергии (прочности) связи между активным элементом и органическим радикалом. Чем меньше энергия связи, тем выше противозадирные свойства соединения. Например, сопоставлением энергии связи показаны преимущества дисульфидов по сравнению с сульфидами в условиях высоких контактных нагрузок, установлено влияние органического радикала сульфидов и дисульфидов на их противозадирные свойства (табл. 5.2). [c.259]

    Последняя реакция — взаимодействие пероксидного радикала с углеводородом — определяет строение образующегося гидропероксида и последующих продуктов окисления. При этом соблюдается Обычный для радикальных реакций порядок изменения реакционной способности атомов водорода, определяемый относительной стабильностью промежуточного радикала R-. Вследствие этого преимущественным местом атаки молекулы при окислении арил-алканов становится а-положение боковой цепи по отношению к ароматическому ядру, а для олефинов—аллильное положение. Кроме того, для углеводородов всех классов справедлива известная последовательность в изменении способности к замещению атомов водорода, находящихся при разных углеродных атомах (третичный >вторичный>первичный). [c.358]

    Рассмотрим теперь взаимодействие одного радикала с различными соединениями (образуются одинаковые, а разрываются разные связи). Реакции Н-перехода с участием -СНз-радикала и различными молекулами углеводородов были щироко исследованы Стеси с сотр. [227]. Результаты, приведенные в табл. 15.2, показывают, что скорость перехода атома водорода постоянна для каждого типа связей С—Н. Нетрудно заметить, что для всех классов углеводородов наблюдается возрастание реакционной способности в последователь- [c.145]

    Влияние полярных заместителей на реакционную способность субстрата удобно проанализировать на примере хлорзамещенных алканов. Хорошо известны два наиболее существенных эффекта, обусловленных замещением. Во-первых, атомы хлора, перетягивая электронное облако со связей молекулы субстрата, становятся отрицательно заряженными центрами. Во-вторых, повышается стабильность радикала вследствие способности электронов атомов J к сопряжению. Конкуренция этих эффектов имеет существенное значение при определении реакционных свойств субстрата, атакуемого нуклеофильным, электрофильным или радикальным реагентом. [c.151]

    Подобная закономерность в изменении s-факторов наблюдается-и для реакций радикальной полимеризации, но только при гораздо более низких температурах. Присоединение полимерного радикала ко второй молекуле мономера (этилена или пропилена) связано с резким уменьшением s-фактора, но при последующем присоединении третьей и четвертой молекул мономера к полимерному радикалу s-фактор практически не изменяется [273]. Постоянное значение стерических факторов реакций роста цепи можно рассматривать как обоснование эмпирического положения об относительно одинаковой реакционной способности полимерных радикалов различной длины, принимаемого в кинетике полимеризационных процессов [73]. В случае реакций присоединения непредельных молекул друг к другу, например при молекулярной полимеризации этилена, образование димера имеет сравнительно высокий s-фактор ( 0,1), но присоединение третьей молекулы к димеру, или образование тримера, сопряжено с резким уменьшением s-фактора на 3—4 порядка [273]. Это может объяснить задержку полимеризации на стадии димеризации [274]. В связи с этим роль катализаторов наряду с обычным понижением энергии активации состоит в устранении пространственных затруднений (на стадии образования тримера и далее) путем сильного увеличения стерического фактора. [c.181]


    Строго говоря, присоединение каждого нового остатка мономера к цепи полимера представляет собой новую химическую реакцию п образование молекулы полимера происходит в результате большого числа последовательных стадий. Система дифференциальных уравнений, описывающая кинетику такого процесса, содержит большое число уравнений и не может быть строго проинтегрирована. Это же относится и к обратным процессам превраш,ения полимера в мономер или другие низкомолекулярные соединения (деструкция полимеров). Однако, как правило, можно считать, что увеличение или уменьшение длины полимерной частицы (молекулы или свободного радикала) не меняет существенно реакционной способности этой частицы. Это дает возможность рассматривать в первом приближении образование полимерной молекулы не как последовательность большого числа различных стадий, а как многократное повторение одной и той же реакции. Тем самым становится возможным рассматривать рост или деструкцию полимера как сравнительно простой процесс, состоящий, в зависимости от механизма реакции, из одной или нескольких элементарных стадий. [c.354]

    Передача цепи. Для процессов полимеризации, протекающих в среде растворителя, а также для полимеризации мономеров, в молекулах которых имеются подвижные атомы или группы, характерны реакции передачи цепи. В этом случае насыщение макрорадикала происходит вследствие присоединения атомов или групп, отщепляющихся от других молекул (мономера, полимера, растворителя и др.). В результате образуются валентно-насы-щенная макромолекула полимера и свободный радикал, начинающий новую молекулярную цепь. Таким образом, при передаче цепи прекращение роста макромолекулы не приводит к уничтожению кинетической цепи. Если реакционная способность новых радикалов, образующихся при передаче цепи, мало отличается от активности начальных радикалов, инициирующих образование кинетических цепей, то передача цепи заметно ие изменяет скорость полимеризации, но приводит к образованию полимера с пониженным средним молекулярным весом. Протекание реакций передачи цепи может быть обнаружено из сопоставления молекулярного веса и скорости полимеризации при различных концентрациях веществ, на молекулы которых передаются цепи. [c.125]

    Однако, как правило, можно считать, что увеличение или уменьшение длины полимерной частицы (молекулы или свободного радикала) не меняет существенно реакционной способности этой частицы. Это дает возможность рассматривать в первом приближении образование полимерной молекулы не как последовательность большого числа различных стадий, а как многократное повторение одной и той же реакции. Тем самым становится возможным рассматривать рост или деструкцию полимера, как сравнительно простой процесс, состоящий, в зависимости от механизма реакции, из одной или нескольких элементарных стадий. [c.353]

    Таким образом, чем меньше эффект сопряжения в мономере, т. е чем меньше его молекула поляризована, тем больше активность образующегося нз него радикала. Поскольку эффект сопряжения больше сказывается на активности радикала, чем на реакционной способности мономера, скорость радикальной полимери ации зависит главным образом от активности радикала. [c.388]

    Бирадикальный характер триплетных молекул обусловливает протекание реакций с отрывом атомов водорода. Так, при импульсном фотолизе 2-нафтола в присутствии пиридина образуется наф-токсильный радикал в результате переноса атома водорода с триплетного состояния 2-нафтола к пиридину. При импульсном фотолизе эозина в присутствии анилина, резорцина, 2-нафтола и других наблюдается образование анион-семихиноновых радикалов эозина и углеводородных радикалов. Свойства и реакционная способность молекул в триплетном состоянии во многом зависят от характера распределения электронной плотности в возбужденной молекуле. [c.160]

    ФОТОХИМЙЧЕСКИЕ РЕАКЦИИ, хим. р-ции, протекающие под действием света. Поглощение фотона с длиной волны 100-1500 нм, чему соответствует энергия 0,8-12,4 эВ (80-1200 кДж/моль), вызывает квантовый переход молжулы в-ва из основного электронного состояния в одно из возбужденных состояний или фотоионизацию - отщепление алектрона и образование катион-радикала. Возбужденные состояния молекул имеют отличную от основного состояния электронную структуру и, как правило, более высокую реакционную способность. Молекулы вступают в хим. р-ции, первичные продукты к-рых (ионы, радикалы, изомеры) чаще всего оказываются нестабильными. Конечные продукты Ф. р. появляются в результате обычных термич. р-ций, к-рые протжают либо непосредственно с участием первичных частиц, либо как рад последовательных хим. превращений. [c.179]

    Представляет интерес рассмотреть влияние заместителей в фенильном радикале на эти константы. Как известно, скорость реакции роста цепи определяется в основном активностью полимерного радикала, а не мономера. Обобществление я-электронов в системе, т. е. появление сопряжения винильной связи с какими-либо группами, в большей степени снижает реакционную способность радикала, чем мономера. В молекулах метакриламидов наличие заместителей в бензольном кольце, связанном с азотом ЫН-группы, обладающим свободной парой электронов, смещает электронное облако в сторону сопряженной карбонильной группы, чем в определенной мере повышает электронную плотность на двойной связи С = С. Этим самым повышается реакционная способность радикала, обусловливающая скорость гомополимеризации. Таким образом, за счет наличия групп, отталкивающих электроны в направлении СО-группы, повышается реакционная способность полимерных радикалов и возрастает скорость полимеризации. При введении в бензольное кольцо электронофильных заместителей свободная пара электронов оттягивается в сторону фенильного радикала тем самым облегчается взаимодействие неспаренных электронов с карбонильной группой. За счет этого увеличивается степень делокализации электронов в радикале, что, в свою очередь, снижает реакционную способность такого радикала, а следовательно, и скорость гомополимеризации (см. табл. 21). Так как в реакции электровосстановления принимает участие двойная связь С = С, то полярографические характеристики также зависят от величины электронной плотности на этой группе. [c.188]

    К сожалению, механизм этих реакций изучен недостаточно Установленная взаимосвязь распределения электронной плотно сти в молекулах и реакционной способности алкильных радика лов [258, 259]1 в присутствии алюмокобальтмолибденового ката лизатора, а также образования алкоголятных структур на окисно алюминиевых катализаторах [262] не дают полной картины о ха рактере протекающих превращений. По-видимому, в каждом конк ретном случае механизм переалкилирования определяется строе нием исходных алкилфенолов, условиями процесса, а также прн родой катализатора. [c.295]

    Исходя из наблюдений, о которых речь шла выше, был предложен механизм гетерогенной полимеризации, основанный, в первую очередь на предположении о том, что многие (если не все) полимерные радикалы в процессе роста отделяются от жидкой фазы. Из обших закономерностей поведения полимерных молекул в окружении молекул осадителя можно было бы ожидать, что такие отделившиеся радикалы свернуты в плотный клубок. Реакционная способность отдельного радикала такого типа будет пониженной, так как существует большая вероятность того, что конец радикала окажется окклюдированным в клубке, однако возможно и множество конфигураций, при которых активный конец будет способен реагировать с другими реагентами, в том числе и с другими радикалами. Средняя величина реакционной способности будет также уменьшаться вследствие коалесценции радикала с частицами неактивного полимера. Относительное влияние каждого из этих факторов на кинетику зависит от конкретной системы. Если полимер способен набухать, то роль свертывания в клубок может быть незначительной в случае же ненабухающего полимера, особенно высокомолекулярного, значение образования клубков возрастает, но, по-видимому, коалесцепция всегда играет главную роль. Степень окклюзии, от которой зависит доступность радикалов, нельзя определить точно, но очевидно, что она должна характеризовать величину полимерного барьера, препятствующего проникновению реагента к радикальному концу. [c.137]

    Другим примером связи реакционной способности молекул с их строением может служить рис. 74, из которого следует линейная связь между логарифмом константы скорости присоединения радикала СС1д к ароматическим углеводородам и индексом свободной валентности [1095] . [c.297]

    Попытки сделать выводы из химической реакцпонноспособ-ности метилена о его спиновом состоянии и обратные выводы имеют длительную и порою неотчетливую историю. Ранние опыты с целью показать присутствие метилена в газовых струях заключались в переносе металлических зеркал из теллура, селена, мышьяка и сурьмы, а метод теллурового зеркала [44] был излюбленным для детектирования метилена, пока не было показано [45], что, по крайней мере при получении метилена фотолизом кетепа, перенос зеркала обусловлен главным образом реакцией с другими молекулами. Метилен реагирует также с иодом с образованием СНаХз [46, 47] и с окисью углерода с образованием кетена [48, 49]. Реакция дифеиилкарбена с кислородом дает бензофенон [43]. Метилен и его производные могли бы, вероятно, реагировать и со многими другими вещ ествами, если создать соответствующ ие условия, поск льку метилен весьма реакционпоспособен как в синглетном, так и в триплетном состоянии. Поэтому сомнительно, чтобы какое бы то ни было исследование случайно выбранных реакций, за исключением самого подробного, дало бы значительную информацию о типичных химических свойствах синглетных и триплетных состояний. Прежние предположения, как, нанример, то, что синглетный метилен обладает малой реакционной способностью [50] или что триплетный метилен, несомненно, обладает реакционной способностью свободного радикала , по-видимому, либо неправильны, либо чересчур упрощенны. [c.284]

    Н, д. Соколов, Я хотел кратко остановиться на вопросе о реакционной способности молекул в триплетном состоянии. Вопрос этот, вообще говоря, очень большой, поскольку химия молекул в триплетном состоянии представляет собой самостоятельную область. Я остановлюсь только на качественной характеристике энергии активации реакции, в которой участвуют молекулы, находящиеся в триплетном состоянии. Чем отличается такая молекула от радикала Простейшим примером является молекула Ог, для которой триплетное состояние основное. Рассмотрим с ачала взаимодействие молекулы Ог с атомом Н, приводящее к образованию радикала ОгН. В данном случае, очевидно, энергии активации нет. [c.88]

    Карбониевый ион образуется из более реакционноспособного пз двух углеродных атомов эфира, и образование алкилхлорида из иона сопровон дается обычными эффектами, зависящими от характера групп, связанных с углеродом. Точно так же поведение другой части расщепленной молекулы — алкилдихлорбори-ната — зависит от реакционной способности алкильного радикала. В случае этил-(+)-1-метилгептилового эфира при образовании [c.57]

    Химия алкенов и циклоалкенов определяется в основном наличием связи С = С, и три причины лежат в основе этого. Во-первых, относительно слабая и легко поляризуемая связь взаимодействует без труда как с электрофилами, так и со свободными радикалами, подвергаясь соответственно гетеролизу или гомолизу. Гетеролиз, естественно, сопровождается одновременным или последовательным взаимодействием катионного интермедиата с анионом, в то время как гомолиз обычно сопровождается реакцией с атомом или радикалом, образующимся по радикальной реакции замещения. В обоих случаях конечный итог состоит в том, что осуществляется реакция присоединения, и атомы углерода, ранее участвовавшие в я-связи, теперь образуют две новые а-связи, суммарная энергия которых намного превышает прочность п-связи. Во-вторых, связь С = С может стабилизировать соседний радикальный, анионный или катионный центр за счет делокализации электронов и таким образом увеличивать реакционную способность молекулы по этому центру. Трехуглеродный фрагмент такого типа известен как аллильная группа, и уже указывалось, что аллильный радикал и карбониевый ион являются относительно устойчивыми (стр. 173 — 185). В-третьих, геометрия связи С = С, так же как строение интермедиатов в реакции, ориентирует общую направленность присоединения таким образом, что различные реакции такого рода для соответствующих замещенных алкенов проявляют ярко выраженную стереоспецифичность. Следует также отметить, что двойная связь как элемент структуры, положение которого в молекуле может изменяться, может являться причиной появления изомеров положения. Так, известны два изомера бутилена — бутен-1 и бутен-2, причем последний существует в виде цис- и то/)янс-изомеров (ср. гл. 4). [c.261]

    Такой системой является стирол винилацетат. Экспериментальные данные о ней представлены на рис. 37 [110]. Хотя уравнение (31) по необходимости обрывается при приближении системы к чистому винипацетату, однако из расслют рения рис. 37 очевидно, что прибавление небольшого количества стирола к винилацетату вызывает чрезвычайно сильное снижение скорости полимеризации. Объяснение этого эффекта не представляет труда и оказывается более наглядным при рассмотрении существующих констант скоростей этой реакции (табл. 13). Вследствие высокой реакционной способности как радикала винилацетата, так и мономера стирола в присутствии следов стирола радикалы винилацетата быстро превращаются в стирольные радикалы. Последние редко встречаются с молекулами стирола и поэтому могут реагировать только с випилацетатом. Эта реакция протекает очень медленно и проявляется в заметном замедлении полимеризационного процесса. Короче говоря, стирол действует как ингибитор полимеризации винилацетата. [c.120]

    Ранние представления Попа, Дикстра и Эдгара [16], считавших, что начальная атака направлена на метильную группу в конце самой длинной алкильной цепи, уступили место общепризнанному мнению, что, строго говоря, атака свободных радикалов может быть направлена на любой атом водорода в углеводородной молекуле и что частота атак в любое положение зависит от таких обстоятельств, как реакционная способность водородных атомов, количество их в данном положении и в некоторых случаях от стерических факторов. В общем случао реакционная способность возрастает в ряду — первичный, вторичный и, наконец. Третичный атомы водорода. Например, в нормальных парафинах начальная атака направлена преимущественно на метиленовые Г1)упны, а между ними более или менее произвольно. Это было четко показано Бентоном и Виртом [6], которые, изучая самоокисление н-декана при 145° С, установили, что все восемь метиленовых групп в пределах точности эксперимента подвержены атаке в одинаковой степени, тогда как обе метильные группы являются гораздо менее реакционноспособными. Такой обычный характер атаки главным образом на метиленовые группы по является неожиданным в связн с ранними исследованиями свободнорадикальных реакций хлорирования однако доказательствам Бентона и Вирта противостоят утверждения других исследователей, нашедших, что атака направлена преимущественно в 2-положение [11]. Таким образом начальная ассоциация радикала и кислорода будет обычно приводить к образованию вторичного алкилперекисного радикала  [c.271]

    Всякая реакция может идти как путем простой перегруппн-ровки связей, так и цепным путем с образованием н участием в процессе свободных атомов и радикалов. Как уже было сказано, радикалы обладают большой реакционной способностью и, кроме того, при реакции одновалентного свободного радикала с молекулой свободная валентность не уничтожается, что обусловливает развитие цепей. [c.199]

    Хлорированные углеводороды являются исходными веществами для получения многих классов соединений, которые не удается получать из углеводородов прямым способом. Их реакционная способность обусловлена связью С—С1, а остальная часть молекулы ведет себя во многих реакциях как неразрывное целое. Поэтому удобно представлять себе углеводородную часть таких молекул как некий радикал, присоединенный к функциональной группе. Например, этилхлорид, СН3СН2—С1, обладает химическими свойствами комбинации этильного радикала, СН3СН2— или С2Н5—, и хлоридной группы, —С1. Хлорированные углеводороды вступают во многие реакции замещения при надлежащих температуре и катализаторах  [c.290]

    Обобщим этот пример. Пусть за счет внешнего источника энергии (свет, электроразряд, нагревание, а-, р- иЛи -излученне, электронный удар) образуются свободные радикалы или атомы, обладающие ненасыщенными валентностями. Они взаимодействуют с исходными молекулами, причем в каждом звене цепи вновь образуется новая активная частица. Путем попеременного повторения одних и тех же элементарных процессов происходит распространение реакционной цепи. Ее длина может быть очень большой (в рассматриваемом примере па каждый поглощенный квант образуется до 100 ООО молекул НС1). Столкновение двух одинаковых радикалов при условии, что выделяющаяся при этом энергия может быть отдана третьему телу, приводит к обрыву цепи. Причиной обрыва может служить не только рекомбинация свободных радикалов (XII), но и их захват стенкой реакционного сосуда, взаимодействие радикала с примесями (если они не служат источником свободных радикалов), а также образование малоактивного радикала (обрыв в объеме). Вот почему скорость цепной реакции очень чувствительна к наличию посторонних частиц и к форме сосуда. Так, содержание Б хлороводородной смеси долей процента кислорода в сотни раз уменьшает длину цепей, а поэтому и скорость синтеза гтом Н, легко реагируя с О2, образует малоактивный радикал НО2, не способный вступать в реакцию [c.127]

    I. Магнийорганические соединения, будучи нуклеофильными реагентами, не являются, однако, веществами, диссоциированными на ионы. Поэтому нуклеофильная реакционная способность этих реагентов ниже, чем у анионов "ОН, 8Н и др. Как уже отмечалось, степень ионности связи С—Мд в реактиве Гриньяра составляет 35%. Правда, в эфирном растворе она может повыситься из-за сольватации атома магния молекулами эфира, отчего положительный заряд на атоме магния уменьшается, частично переходя на атомы кислорода молекул эфира. Это уменьшает электростатическое притяжение органического радикала К к магнию и увеличивает его анионоидный характер. Однако полного гетеролиза связи С—Мд с образованием карбаниона К все равно не происходит. Таким образом, более корректно схему реакции можно изобразить так  [c.267]

    Таким образом, алкильные радикалы, обладая электронодонорными свойствами, замедляют эту реакцию, а в случае хлораля — за счет электроноакцепторного действия группы СС1з (—/-эффект) происходит увеличение реакционной способности карбонильного углерода. Следует обратить внимание на то, что в случае кетонов в отличие от альдегидов с карбонильной группой связаны два радикала, понижающие активность молекулы. Вот почему альдегиды-обладают большей химической активностью, чем кетоны. [c.127]

    Трихлорметильный радикал I3 способен отрывать водород от молекул углеводородов. Реакционная способность бензола, дифенилметана и трифенилметана в этой реакции выражается так 1 8 17. Напишите уравнения реакций и объясните причину разной реакционной способности углеводородов. [c.208]

    Реакции с участием бирадикалов сравнительно редки. Бирадикал, у которого две ненасыщенные валентности находятся на разных атомах в разных местах молекулы, реагирует как монорадикал независимо одной и другой валентностью. Специфической реакционной способностью обладают активные частицы, несущие два электрона, не участвующие в химической связи, на одном атоме. Примером может служить свободный метилен СН , который образуется при термическом или фотохимическом распаде H2N2 и СНг = С=0. Метилен существует в двух формах синглетной и триплетной. Триплетный метилен с С—Н-связью реагирует как обычный свободный радикал  [c.117]

    Алифатические заместители могут оказывать блокирующее влияние на активный центр молекулы, снижая ее реакционную способность в реакциях свободнорадикального присоединения или замещения. Так, реакция присоединения метильного радикала к стиролу протекает в 7 раз быстрее, нежели к винилмезитилену [c.267]

    Мо текулярные параметры Ло(Н2) = 2,65 эВ и г ХНз) = 1.0610 м (1,06 А) говорят о достаточной прочности молекулы, ее физической устойчивости (потенциальная кривая с глубоким минимумом). В то же время молекулярный ион Щ — свободный радикал и химически весьма активен. Радикалами называют частицы, у которых внешняя орбиталь занята только одним электроном. У ион-радикала Н2 есть возможность заселения связывающей орбитали вторым электроном, что приводи г к добавочному понижению энергии (высокое СЭ). Поэтому Ш — химически активная частица, захватывающая электроны из окружения. Другие свободные радикалы большей частью также обладают повышенной реакционной способностью и малым временем жизни. Однако известны [c.111]


Смотреть страницы где упоминается термин Реакционная способность молекул и радикалов: [c.160]    [c.31]    [c.316]    [c.105]    [c.413]    [c.144]    [c.83]    [c.228]    [c.102]    [c.424]   
Смотреть главы в:

Химическая физика старения и стабилизации полимеров -> Реакционная способность молекул и радикалов




ПОИСК





Смотрите так же термины и статьи:

Реакционная способность радикало



© 2024 chem21.info Реклама на сайте