Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворите и и Определение летучести растворителей

    Алифатические монокарбоновые кислоты в жидком состоянии или в растворах в неполярных растворителях находятся в форме димеров, что объясняется образованием водородных связей между одиночными молекулами. Вызываемая этим свойством их сравнительно низкая летучесть является причиной того, что жирные кислоты, за исключением низкомолекулярных соединений, нельзя непосредственно анализировать газохроматографическим путем. Химическое превращение дает возможность газохроматографического анализа высших жирных кислот. В настоящее время этот метод уже господствует в области анализа жирных кислот, так как требует меньше времени и позволяет проводить относительно точное количественное определение кислот наряду со значительным улучшением разделения. В качестве летучих производных для газохроматографического анализа лучше всего пригодны метиловые эфиры жирных кислот, так как их получение сравнительно просто и протекает почти с количественным выходом. [c.269]


    Перед проведением упаривания, т. е. повышения концентраций растворенного в жидкости вещества удалением части растворителя, следует заранее подсчитать, до какого объема нужно упарить раствор, чтобы получить нужную концентрацию. Окончание упаривания можно определить путем определения плотности раствора. Особая осторожность и постоянное наблюдение требуются при упаривании растворов в низкокипящих растворителях. Пары их обладают большой летучестью, поэтому и упаривание их происходит очень быстро. [c.184]

    Независимо от намеченного плана решения конкретной поставленной задачи, подготовка пробы к анализу является начальным и одним из самых ответственных этапов любой аналитической методики. Как справедливо отмечается в книге [221, ...Весь процесс выделения и концентрирования полон опасностей, и можно без преувеличения сказать, что изменения, произошедшие на этих ранних этапах анализа, никогда нельзя исправить на более поздних его стадиях... Ни новейшее аналитическое оборудование, ни лучшие из разработанных способов ввода пробы, ни самые инертные высокоэффективные колонки или сложнейшее оборудование по обработке данных не могут дать корректную информацию, если проба подготовлена для анализа неправильно . В связи с этим приведем лишь один пример. Если в хроматографическую колонку ввести разбавленный спиртовый раствор смеси органических веществ, существенно различающихся по летучести, то пик растворителя (спирта) перекроет, замаскирует сигналы детектора на многие летучие соединения, подлежащие определению, а нелетучие компоненты пробы, оставаясь длительное время в колонке, могут послужить причиной ложных результатов при о работке последующих хроматограмм. Поэтому при исследовании такого рода объектов необходимо предварительно удалить все нелетучие вещества и основную часть растворителя, причем проделать это так, чтобы относительные концентрации других летучих соединений не изменились. [c.157]

    Статья — Измерение осмотического давления как метод определения летучести растворителя в растворе . [c.86]

    Для определения относительной летучести растворителей разработаны различные методы и их модификации, В основе этих методов лежит определение кинетики испарения растворителей из тонких пленок, поскольку процесс испарения из больших масс растворителей не дает представления о характере улетучивания растворителя из лакокрасочных покрытий. Для исследования кинетики испарения небольшие количества растворителя наносят на различные подложки как пористые (ватман, фильтровальная бумага), так и гладкие (стекло, алюминий). Чтобы подложка во время опыта смачивалась равномерно, поверхность, например, алюминиевых дисков обрабатывают раствором щелочи. Другая трудность состоит в исключении неравномерности слоя из-за капиллярного эффекта. В зависимости от формы и размера диска, на который наносят растворитель, жидкость может либо подниматься по его бортикам, либо собираться в середине диска. [c.91]


    Реакции органических реагентов с неорганическими ионами в растворе могут давать продукты с различными свойствами например, они могут вызвать изменение цвета, люминесценции, растворимости, летучести. Продуктами реакции могут быть комплексные соединения, или новые органические вещества (образовавшиеся в результате окислительно-восстановительного либо каталитического действия неорганических ионов), или же иные формы самого реагента (рН-индикаторы). Помимо участия в этих типах реакций, органический реагент в растворе может адсорбироваться на осадке неорганического вещества, причем его адсорбция сопровождается изменением цвета реагента (адсорбционные индикаторы). Твердые органические реагенты, нерастворимые 6 данном растворителе, составляют специальный класс (ионообменные смолы, стационарные фазы в хроматографии и т. д.). Образование продуктов, которые не растворяются в данном растворителе (обычно воде), может быть использовано для гравиметрического определения, выделения или осадительного титрования того или иного иона. Если продукт реакции в воде менее растворим, чем в органическом растворителе,, не смешивающемся с водой, то такую реакцию можно использовать для экстракции растворителем любого из компонентов. [c.21]

    Для экспериментального определения % особенно быстрым и удобным является метод газожидкостной хроматографии [34], Хотя экспериментальная методика и может использоваться для конечных концентраций растворителя, она наиболее эффективна для растворов, бесконечно разбавленных по отношению к растворителю, т. е. когда объемная доля полимера приближается к единице. Некоторые данные по летучести растворителей, полученные хроматографией [59], представлены на рис. 8.21. По этим данным можно рассчитать х, подставив [c.337]

    Растворы полимеров. Можно пользоваться прямым газохроматографическим анализом на летучие компоненты, вводя растворы полимеров в хроматограф непосредственно или после переосаждения метиловым спиртом. Такие методики применяются давно и в ряде стран признаны официально [71—73]. Существенный их недостаток состоит в необходимости частой смены хроматографических колонок и чистки испарителей, загрязняемых полимерами. Непосредственное хроматографирование растворов иногда оказывается невозможным из-за наложения широких пиков растворителей на пики примесей, причем дозирование растворов полимеров затрудняется их высокой вязкостью и адгезией. В паровой фазе эти осложнения отпадают, а соотношение пиков растворителей и летучих примесей оказывается гораздо более благоприятным, особенно если растворитель имеет невысокое давление паров. Решающим критерием при выборе растворителя является его растворяющая способность по отношению к полимеру, при этом предпочтительны высококипящие легко очищаемые жидкости с большими, чем у анализируемых примесей, временами удерживания. Чаще всего применяются в качестве растворителей диметилацетамид и диметилформамид (табл. 3.4). Предел чувствительности таких определений очень сильно зависит от летучести примесей. Для газообразных мономеров (винилхлорида, бутадиена) в указанных органических растворителях он достигает [c.139]

    Выбор разделяющего агента эмпирическим путем требует больших затрат труда и времени. Определение эффективности растворителя по свойствам бинарных растворов, например по среднему коэффициенту относительной летучести, существенно упрощает задачу. Однако при огромном количестве возможных разделяющих агентов и такой метод весьма сложен. [c.85]

    В табл. 4 можно видеть, что стандартное отклонение при установлении титра хлорной кислоты по кислому фталату калия составляет около 0,5%, в то время как при визуальном титровании оно равно 0,7%. Нормальности, определенные этими методами, отличаются на 1%. Это расхождение обусловлено различием в величинах холостых определений, полученных при применении обеих методик, и, возможно, в большей степени различием во времени, необходимом для завершения соответствующ,их титрований (2 мин при визуальном определении, 8 мин — при потенциометрическом). В тех случаях, когда титрование длится более 3—5 мин, возможны значительные потери вследствие летучести растворителя в титранте. Поэтому если поршень бюретки недостаточно хорошо пригнан, важно установить нормальность стандартного раствора обоими методами и визуальным и потенциометрическим титрованием. [c.122]

    На 1 г пигмента принимают постоянное количество нелетучих веществ — 3 г. Это либо 3 г сухого остатка лака НЦ-222, либо 1 г пластификатора и 2 г коллоксилина, вводимого в виде 20%-ного раствора, что в зависимости от плотности пигмента соответствует ОКП в высушенной пленке 8—15%. Учитывая большую летучесть растворителей, перед определением укрывистости проверяют сухой остаток нитратцеллюлозного лака НЦ-222 или раствора коллоксилина. Пигмент и пластификатор взвешивают с точностью до 0,01 г, нитратцеллюлозный лак и раствор коллоксилина — до 0,02 г. [c.139]


    На рис. 40 показано, как при введении в раствор сополимера винилхлорида с винилацетатом в бутилацетате осадителя — гептана — повыщается прочность и эластичность сформированных пленок. Такие системы являются по сути дела лиофильными дисперсиями, однако благодаря больщой летучести гептана при пленкообразовании система обогащается хорощим растворителем и становится однофазной. Фазовая неоднородность в определенной степени сохраняется и в пленке переходит в структурную неоднородность, положительно сказывающуюся на свойствах покрытия [137]. При высоком содержании осадителя фазовый переход соверщается при больщих концентрациях полимера, и, если эта концентрация [c.152]

    Для определения растворимости А1 в Hg Клемм [173] использовал суженную в середине кварцевую трубку (вакуум), в одну половину которой была введена алюминиевая проволока с ртутью при температуре 600° в другую часть при повороте всей печи на 180° стекал.жидкий металл. Такой способ [174] применяют обычно в тех случаях, когда нужно работать без доступа воздуха или при низких температурах. Поскольку речь идет о летучем растворителе, на летучесть следует вводить соответствующие поправки [175]. Для отделения донной фазы раствор фильтруют через помещенный в середину трубки тампон из стеклянной ваты, фильтрующую стеклянную пластинку и т. п. лучше всего раствор подавать сверху под давлением. При использовании сосуда из металла (например, монельметалла для жидкого HF) раствор отделяют от осадка через узкое отверстие, которое закрывается винтовым запором [176]. [c.216]

    Другой путь, который используется для устранения мешающего влияния основного элемента на определение примеси, состоит в удалении из раствора самого элемента-основы. В случае анализа In, Ga, As, Sb и их соединений для отделения основы используются легкая летучесть галоидных соединений и их способность экстрагироваться органическими растворителями. [c.131]

    При исследовании поведения свободных от носителя индикаторов иногда можно получить некоторые данные, указывающие на состояние окисления индикатора, но такие данные редко являются надежными. Например, изоморфное внедрение индикатора в осадок указывает на то, что заряд, размер и координационное число для ионов носителя и индикатора одинаковы, и это дает возможность определить вероятное состояние окисления индикатора. Однако в случае образования аномальных смешанных кристаллов, сходных с истинными смешанными кристаллами, можно сделать ошибочные выводы. Например, если не учитывать того факта, что перенос не происходит в щелочных растворах, то можно было бы прийти к выводу, что ионы натрия и свинца сходны, так как хлориды натрия и тория В (РЬ ) образуют аномальные смешанные кристаллы в кислых и нейтральных растворах (см. стр. 102). Перенос индикатора путем адсорбции часто дает сведения относительно знака заряда индикаторного иона и растворимости индикаторного соединения. Знание этих свойств полезно для определения степени окисления индикатора. Сведения о летучести индикатора, его растворимости в органических растворителях, скорости диффузии, легкости, с которой он может окисляться и восстанавливаться, и знаке заряда иона индикатора, определяемые при изучении процессов переноса, также следует учитывать при определении степени окисления индикатора. [c.129]

    Практически применяемые растворители должны, наряду с определенными химическими свойствами, обладать и соответствующими физическими свойствами, имеющими исключительно большое значение. Кроме растворяющей способности и совместимости с другими растворителями или разбавителями, для растворителей важны пределы кипения, испаряемость и давление паров (испаряемость на воздухе и летучесть),, вязкость, воспламеняемость (температура вспышки), пределы взрываемости в смеси с воздухом и физиологическое действие. Определение физических свойств описано в специальных учебниках и не будет здесь рассматриваться. Отметим лишь, что испаряемость лаковых растворов на воздухе более важна для их практического применения, чем температура кипения, так как, например, растворитель с более высокой температурой кипения может обладать большей летучестью, чем низкокипящий растворитель. Различными методами, например на фильтровальной бумаге, определяют испаряемость растворителей, которую обычно сравнивают с продолжительностью испарения диэтилового эфира, принятую за единицу (с.м., например, DIN 53170). [c.452]

    В общем случае из одинаковых значений летучести чистых исходных растворителей не следует, что состав паровой фазы будет соответствовать составу жидкой фазы. В процессе отгонки из-за неидеальности раствора, образованного растворителями, состав жидкой фазы будет изменяться, что при определенных условиях. может привести к разделению фаз. — Прим. ред. [c.220]

    Перегонка с водяным паром находит значительное применение при отделении жидкостей с низкой летучестью от нелетучего материала и при удалении растворителей и других летучих жидкостей из раствора в относительно нелетучих маслах или из твердых адсорбентов. В этой главе рассмотрение ограничено определением минимального расхода водяного пара для нескольких специальных случаев. [c.684]

    Большая часть алкалоидов — кристаллические вещества с определенной температурой плавления, реже встречаются жидкие алкалоиды, например никотин, анабазин, обладающие летучестью. В виде свободных оснований алкалоиды обычно мало растворимы в воде, но легко растворяются в органических растворителях (спирт, эфир, хлороформ и др.). Почти все алкалоиды не обладают запахом, исключение представляют кониин, никотин, анабазнн и некоторые другие. Многие алкалоиды оптически активны. С кислотами алкалоиды образуют соли, большей частью растворимые в воде. Прн наличии одного атома азота в молекуле они присоединяют одну молекулу одноосновной кислоты при наличии двух атомов азота они способны присоединять одну или две молекулы одноосновной кислоты, образуя кислые и средние соли, что сказывается на константах их диссоциации. Являясь слабыми основаниями, алкалоиды образуют с кислотами легко диссоциирующие соли, разлагающиеся под влиянием едких щелочей, аммиака, а иногда карбонатов и окиси магния при этом выделяются свободные основания. Некоторые алкалоиды, помимо основных свойств, характеризуются реакциями, зависящими от наличия в их молекуле функциональных групп, например фенольной (у морфина, сальсолина), кетонной (у лобелина), ви-нильной (у хгнина) и др., что отражается на нх химических свойствах. Напрнмер, морфин растворяется в растворах едких щелочей, лобелии образует карбонильные производные, хинин присоединяет водород, галогены и др. [c.418]

    Во многих случаях можно приготовить концентрированный раствор интересующего нас соединения и затем разбавить его до требуемой концентрации. Выполнение такого простого приема, однако, может стать проблематичным, если необходимо приготовить раствор, содержащий исследуемое соединение в следовых концентрациях в растворителе, в котором оно малорастворимо та1кая ситуация характерна, налример, для определения большинства галогенированных пестицидов в воде. В таких случаях для получения насыщенных растворов приходится очень долго встряхивать или перемешивать смесь растворителя с твердым веществом. Альтернативный способ заключается в осаждении растворяемого вещества на силикагеле путем испарения его раствора в другом растворителе (например, в гек-сане) в присутствии носителя. Затем через колонку с силикагелем, содержащим нанесенное на него вещество, пропускают воду благодаря большой удельной [поверхности силикагеля, вода быстрее насыщается растворяемым веществом. Этот метод был предложен для приготовления стандартных эталонных образцов водных растворов полициклических ароматических углеБОДородов [64] и стандартного эталонного материала для определения полихлорбифенилов [70]. При приготовлении стандартных растворов пестицидов растворитель должен обладать низкой летучестью (как, например, 1,2,4-триметилпентаи [c.57]

    При выборе растворителей необходимо прежде всего руководствоваться термодинамическим сродством в системе полимер — растворитель и летучестью растворителя. От сродства компонентов системы зависит скорость растворения пленкообразователя, стабильность и реологические свойства растворов или дисперсий и в определенной степени структура и1войства покрытий. Летучесть растворителя сказывается на технологических свойствах лакокрасочных материалов [c.5]

    Во многих случаях желательно использование достаточно летучих растворителей. Это необходимо в основном 1) при препаративном выделении веществ 2) прн работе с транспортно-ионизационным детектором 3) в тонкослойной и бумажной хроматографии, когда проявляющий реактив может реагировать с компонентами системы растворителей. Однако чрезмерно высокая летучесть создает определенные неудобства в работе. Такие низкокипящие растворители, как пентан и диэтиловый эфир, могут образовывать пузырьки в колонке и в детекторе. В тонкослойной и бумажной хроматографии применение систем растворителей с компонентами, обладающими слишком большим давлением пара, обычно сопряжено с низкой воспроизводимостью. В разд. 162 приведены сведения о температуре кипения при 760 мм рт. ст. и давлении насыщенных паров растворителей при 20 °С. Последние значения полезно сопоставить с ПДК — предельно допустимой концентрацией токсичных веществ в воздухе рабочих помещений — для принятия необходимых мер по технике безопасности. ПДК соответствуют Санитарным нормам проектирования промышленных предприятий СН 245-71 (Стройиздат, 1972). Данные о набухаемости твердых фаз в различных раствори-, телях приведены в соответствующих разделах. Эти данные имеют большое значение при работе с нежесткими гелями и ионообменными смолами набухание должно обеспечивать достаточную проницаемость твердой фазы, но чрезмерная набухаемость сильно затрудняет работу с колонками. [c.382]

    В ПГХ, так же как и в других методах, целесообразно применение метода внутреннего стандарта. Однако прямое использование известных вариантов внутреннего стандарта в ПГХ невозможно, главным образом, из-за деструкции стандарта, летучести обычно используемых стандартов и, возможно, их влияния на процесс пиролиза исследуемого вещества и т. д. Способ применения внутреннего стандарта в ПГХ онисан в работе [73]. В этом методе к раствору исследуемого полимера добавляют определенное количество полимера-стандарта (в растворе), после удаления растворителя проводят пиролиз смеси и рассчитывают значения площадей характеристических пиков исследуемой полимерной системы по отношению к площади одного из пиков стандар- [c.106]

    Как уже упоминалось, следует калибровать эбуллиометры и приборы для криоскопических измерений при помощи веществ с известными молекулярными весами, а не пользоваться опубликованными или рассчитанными величинами эбуллиоскопической или криоскопической постоянных. При выборе вещества в качестве эталонного для определения молекулярного веса необходимо учитывать следующее. Помимо очевидноготребования достаточной растворимости в выбранных растворителях, эталонное вещество должно сравнительно легко получаться в очень чистом состоянии, а его молекулы не должны ни ассоциироваться, ни диссоциировать в условиях проведения измерений кроме того, надо иметь возможность получать точные его характеристики. Необходимо, чтобы эталонное вещество для эбуллиоскопии имело ничтожную летучесть в кипящем растворителе, а эталон для криоскопии не должен образовывать твердых растворов с затвердевшим растворителем. [c.173]

    С первого взгляда может показаться, что чрезвычайно малое изменение давления пара исключает какую-либо возможность его экспериментального определения. Несмотря на это, был разработан оригинальный метод, который позволяет оценивать молекулярные веса вплоть до значений, равных нескольким тысячам, по методу, использующему разность давления пара раствора и чистого растворителя. При этом методе, называемом обычно методом термоэлектрической осмометрии Хилла — Болдса, капли раствора и растворителя выдерживают в пространстве, заполненном насыщенными парами растворителя. По мере конденсации растворителя на капле раствора эта капля подогревается за счет выделения скрытой теплоты плавления до тех пор, пока не будет достигнуто стационарное состояние, при котором нагревание уравновешивается потерями тепла за счет проводимости. При использовании термисторов для измерения перепада температур капель растворителя и раствора и тщательном оформлении эксперимента могут быть измерены с хорошей воспроизводимостью перепады температур порядка 10- ° [406]. Соотношение этого температурного дифференциала и молярпости растворенного вещества увеличивается с летучестью растворителя [407]. Если потери на проводимость незначительны, капля раствора будет нагреваться до тех пор, пока парциальное давление растворителя не станет равным парциальному давлению капли чистого растворителя при более низкой температуре. Тогда температурный перепад будет равен перепаду, предсказываемому согласно теории повышения температуры кипения. Хигуши и др. [408] показали, что можно вплотную приблизиться к этому идеальному положению. [c.143]

    Определение молекулярной массы этими методами, равно как и методом измерения тепловых эффектов конденсации (ИТЭК), основано иа законе Рауля, а именно летучесть компонента идеального раствора пропорциональна его мольной доле в растворе. Отсюда, для растворов нелетучих веществ в летучем растворителе относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества [c.143]

    Метод Рудлоффа [24] с использованием перйодата и перманганата нашел применение с теми или иными изменениями для определения положения двойных связей в молекуле путем окислительного расщепления по двойным связям и последующего ГХ-анализа образующихся продуктов. Продукты представляют собой карбоновые кислоты их обычно определяют в форме соответствующих метиловых эфиров. Для количественного выделения эфиров моно-и дикарбоновых кислот от С4 и выше Кюммель [25] проводил непрерывную экстракцию этих кислот, омылял их в процессе удаления растворителя и разделял метиловые эфиры, образовавшиеся из соответствующих солей (без концентрирования), методом ГХ с программированием температуры. Утверждалось, что такой метод позволяет преодолеть трудности, связанные с выделением короткоцепочечных кислот, для которых характерна высокая летучесть и значительная растворимость в воде. Имеется и несколько других аналогичных методов, которые обеспечивают количественное выделение всех образующихся кислот, за исключением короткоцепочечных [26, 27]. В еще одной модификации метода Рудлоффа [28 в водный раствор кислот добавляют гидроокись тетраметиламмония. Порцию полученного раствора помещают в специальный зонд, высушивают при температуре 100 °С и вводят в газовый хроматограф метиловые эфиры образуются в этом анализе при нагреве в результате контакта зонда с образцом с горячей поверхностью (выше 250 °С) входного устройства хроматографа. [c.222]

    Одним из таких методов является экстрактивная ректификация, результаты изучения которой приведены в настоящей статье. Изучение эффективности отдельных растворителей с целью применения их для экстрактив-1НОЙ ректификации проводилось путем определения коэффициентов летучести н-гептана относительно бензола в присутствии растворятелей или их водных растворов. [c.31]

    Если некоторые смеси не могут быть успешно разделены обычной ректификацией из-за малой относительной летучести или из-за наличия гомогенного азеотропа, то для эффективного разделения можно использовать методы экстрактивной или азеотропной ректификации. В этих процессах разделяющий агент добавляется в колонну и изменяет в благоприятную сторону величину относительной летучести для компонентов исходной смеси. Наиболее часто в качестЬе разделяющего агента используются полярные органические растворители или вода. Эти соединения эффективны, так как их присутствие увеличивает неидеальность одного из компонентов питания больше, чем другого. Для соответствующего выбора подходящего агента, а также для определения или проверки равновесных характеристик системы в присутствии агента, необходимо знать принципы поведения неидеальных растворов (стр. 320—338). [c.368]

    Методики непосредственного разбавления широко применяются при определении свинца в нефтепродуктах цри ААС, благодаря их простоте и быстроте гфоведения. Химический состав анализируемых фракций определяет выбор растворителя. Если для легких нефтепродуктов имеется широкий ассортимент растворителей, то для тяжелых фракций выбор ограничен. Растворитель должен отвечать следующим требованиям давать стабильное яебветящееся пламя обеспечивать высокое отношение сигнала к помехе иметь низкие летучесть, токсичность и стоимость. Взаимосвязанными факторами, влияющими на чувствительность и точность опреяеления, являются кратность разбавления образцов нефтепродуктов и вязкость полученных растворов. На практике кратность разбавления выбирают от 1 2 до 1 100. Вязкость раствора должна быть близкой к вязкости эталонного раствора. Различие в вязкости приводит к ошибочным результатам. [c.20]

    Несмотря на важность названного критерия для выбора коллектора и условий его применения, эта характеристика является недостаточной. Необходимо также учитывать последующие этапы работы, в частности операции окончательного переведения микропримеси в раствор, а также влияние коллектора на фотометрическое определение. В ряде работ указывается преимущество органических коллекторов таким коллектором при осаждении оксихинолинатов металлов может быть избыток самого осадителя—оксихинолина. То же относится иногда к аналитическим концентратам, полученным путем экстракции. Однако несмотря на полное осаждение определяемой примеси с органическим коллектором, нередко наблюдаются значительные потери ее при последующей обработке. При выпаривании растворителя или при сожжении органического остатка минеральные компоненты остаются ничем не связанными механически в результате определяемая микропримесь теряется в виде аэрозоля [3]. Следует иметь в виду также летучесть некоторых хелатов. Учитывая возможность потерь, иногда применяют мокрое сожжение выпариванием со смесью азотной и серной кислот, с хлорной кислотой, со смесью серной кислоты и перекиси водорода и др. При удалении органического растворителя часто рекомендуют выпаривать его под слоем серной кислоты или раствора ЭДТА, или щавелевой кислоты. С другой стороны, при мокром сожжении возможно загрязнение примесями реактивов или из стенок сосуда. [c.157]

    Вследствие малой летучести или вообще невозможности перевести в парообразное состояние многие органические соединения большое значение приобрели во второй половине XIX в. физико-химические методы определения молекулярных весов, основанные на результатах описанных выше исследований. Важнейший из них — криоскопический метод определения молекулярных весов — был введен в практику Бекманом (1888) и основан на законе Рауля (1882), согласно которому мольное понижение точки замерзания приблизительно постоянно для разбавленных растворов различных веществ в одном и том же растворителе. От работ Рауля (1887) берет начало также тонометрический метод. Определение молекулярных весов основано в нем на том, что давление пара раствора по сравнению с чистым растворителем понин ается в зависимости от молярной концентрации растворенного вещества . Некоторые чисто практические неудобства применения этого метода в лаборатории побудили Бекмана (1889) разработать так называемый эбулиосконический метод [c.293]

    Надо с самого начала иметь в виду, что уравнение 41 в сочетании с приведенными выше соображениями касательно связи между летучестью и силами ассоциации требует, чтобы между этими силами и уменьшением свободной энергии, сопровождающим процесс растворения, имелся известный параллелизм. Уравнение не налагает такого же условия и на теплоты растворения, однако наш опыт в отношении энергий связи заставляет ожидать параллелизма и здесь. Далее, в связи с вопросом о том, может ли теория дать нам возможность предвидеть, каковы будут тенденции у сил ассоциа-дии, мы, естественно, ожидаем, что проявление донорных и акцепторных свойств окажется самым главным фактором, тогда как ассоциация диполей займет лишь второе место. Если в качестве растворяемого вещества взять кислоту, то тогда, согласно определениям, данным нами силе кислот и основности растворителей в соответствии с уравнением 13, летучесть растворе1шого вещества, а следовательно, его свободная энергия, должна уменьшаться по мере увеллчения силы кислоты и (или) основности растворителя. Если растворяемое вещество не является кислотой, но тем не менее является акцептором, то мы можем думать, что и здесь сохранит свою силу та же самая зависимость, т. е. мы можем ожидать, что относительные донорные свойства растворителей не будут зависеть от того, какой мы взяли акцептор. Льюис [3] высказал сомнение в возможности существования такой простой монотонной зависимости для донорных (или акцепторных) свойств. Однако работы Коха [84] показывают, что одна и та же зависимость основности растворителей может служить для объяснения наблюдаемых изменений активности как в случае иона серебра, так и в случае иона водорода. Часть полученных им результатов воспроизводится в табл. 13, в которой растворители расположены в порядке уменьшающихся основностей, определенных по отношению к водородным ионам, а коэффициент активности сольватации соответствует переходу ионов серебра из вакуума в раствор. Его ход параллелен ходу АР сольватации. Отсутствие какой-либо зависимости между значениями диэлектрической постоянной и служит подтве рждением того, что в тех случаях, когда проявляются донорные и акцепторные свойства, диэлектрическая постоянная играет определенно второстепенную роль. [c.395]

    Поскольку синтез Р-дикетонатов металлов в практическом анализе чаш,е всего проводят экстракцией при определенном pH водных растворов определяемого иона неводными растворами р-дикетона, эта особенность Н—ГФА является большим неудобством. Синтез же в безводных условиях, описанный Мошье-ром и Сиверсом [21], практически используется редко. Кроме того, чрезмерно высокая летучесть сопряжена с возможными потерями комплекса при подготовительных аналитических операциях, и разделение пиков комплекса и растворителя при газовой хроматографии затрудняется. Вероятно, поэтому в конце 1960-х годов интерес хроматографистов к гексафторацетилаце-тону снизился. [c.16]

    Лернер и др. [389] также показали, что размер капель зависит от вида растворителя, а изменение чувствительности определения микропримесей находится в прямой связи с дисперсностью аэрозоля. Кроме того, по их мнению, а также авторов работ [388, 390—392], органические растворители увеличивают летучесть и изменяют вязкость раствора, вследствие чего изменяется передача элемента и растворителя в пламя. В некоторых из этих работ высказывается также точка зрения, что органические растворители являются дополнительным горючим, оказывают [c.189]

    Чувствительность растворного метода зависит от давления паров мономера, т. е. относительной летучести мономера, его растворимости в растворителе и концентрации полимера в растворе. Таким образом менее летучие мономеры, такие, как, например, стироот, нельзя определить с той же чувствительностью, что и более летучие типа винилхлорида. Чтобы увеличить равновесную концентрацию мономера в газовой фазе, можно уменьшить растворимость мономера, изменяя состав фазы растворителя. Для этой цели используют растворители, смешивающиеся с применяемым для растворения полимера растворителем и кипящие при температуре не ниже 100 °С. Так, по данным работы [287], из нескольких испытанных растворителей, наиболее эффективной добавкой оказалась вода, добавление которой к раствору полимера дает резкое увеличение чувствительности метода (табл. IV. 5). Поскольку при парофазном анализе для определения остаточных мономеров используют ДИП, то применение воды для уменьшения растворимости мономера имеет и то преимущество, что ДИП ее не чувствует и таким образом не вносится дополнительных осложнений в анализ. [c.266]

    Часто применяемые этиловый и изопропиловый спирты обладают слишком большой летучестью, что ограничивает их применение только для случаев, когда для анализа достаточно пропустить небольшие объемы воздуха. Для поглощения фосфорорганических ОВ и последующего определения их по реакции Шёнеманна пригодны (2-метилпентадиол-2,4) и циклогексанол Если же индикацию фосфорорганических ОВ осуществляют биохимическим методом, то следует пользоваться водным спиртом или водным раствором таких веществ, которые совместимы с сывороткой крови лошади. При обнаружении фосфорорганических ОВ по продуктам их разложения — фосфат- и фтор-ионам (зарин, зоман) или фосфат- и цианид-ионам (табун) — в качестве растворителя используют 2%-ную щелочь. [c.255]


Смотреть страницы где упоминается термин Растворите и и Определение летучести растворителей: [c.4]    [c.40]    [c.116]    [c.189]    [c.551]    [c.296]    [c.363]   
Смотреть главы в:

Лабораторный практикум по техническому анализу и контролю производств лакокрасочных мат -> Растворите и и Определение летучести растворителей




ПОИСК





Смотрите так же термины и статьи:

Летучесть

Летучесть определение



© 2025 chem21.info Реклама на сайте