Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Данные по скорости и равновесию

    Это обстоятельство можно использовать для разработки точного метода определения констант скорости реакций. Предположим вначале, что реакция начинается с чистого вещества А. В различные моменты времени определяется состав реагирующей смеси, который наносится на диаграмму тина рис. У.7. Проведя касательную к нути реакции в точке Е, мы можем сделать вывод, что точка Л должна лежать на прямолинейном пути реакцип. Пусть точка О соответствует смеси веществ А и С в пропорции 4 1. Начав реакцию с этого состава, мы снова получим криволинейный путь реакцни, однако теперь в нашем распоряжении будет больше данных о ходе реакции вблизи равновесия, что позволит нам сделать более точное предположение (Е) об исходном составе (М), приводящем к прямолинейному пути реакции. После нескольких подобных проб (некоторые из них могут дать и перелет — точку С) мы найдем точное положение точки М л [c.109]


    Каким образом катализатор может влиять на химическую реакцию Если принять, что катализатор в заметной степени при реакции не расходуется, то термодинамически можно показать, что его роль в реакции не заключается в изменении точки равновесия, а сводится к ускорению достижения равновесия. Однако в большинстве химических систем имеются метастабильные состояния, обладающие свободной энергией, промежуточной между свободной энергией реагирующих веществ и состоянием равновесия. Мы можем приписать специфичность катализатора его свойству увеличивать скорость достижения одного из таких промежуточных состояний, а не общему ускорению в направлении достижения состояния с наименьшей энергией. Так как катализатор влияет на скорость реакции и не влияет на состояние равновесия, невозможно дать общее кинетическое описание поведения катализаторов. Болес полно проанализировать поведение катализатора можно, только зная конкретный механизм, по которому протекает данная реакция. Однако целесообразно провести классификацию катализаторов по строению и связанному с ним действию катализаторов на тип реакций, протекающих по данному механизму. Для твердых тел обычно принимают следующую классификацию  [c.531]

    Выражение (1.33) представляет собой формулу аддитивности диффузионных и химических торможений процесса. Очевидно, что она корректна при условии квазистационарности процесса и при выполнении условий (1.27), т. е. прп наличии равновесия на границах раздела фаз. К сожалению, возмон ность использования формулы (1.33) ограничивается лишь тем простейшим частным случаем, для которого эта формула была получена, так как если порядок реакции по переходящему компоненту отличается от 1 или если процесс существенно нестационарен, уже не удается провести разделение переменных величин и выразить общее сопротивление процессу в виде суммы отдельных сопротивлений. Поэтому, сравнивая константы скоростей отдельных стадий процесса, можно выделить из них лимитирующую и дать четкое определение области протекания только при указанных ограничениях. [c.20]

    Химическая кинетика исследует протекание реакции во времени. С помощью химической кинетики можно выяснить закономерности, в соответствии с которыми устанавливается состояние химического равновесия, а теоретический анализ зависимости скорости реакции от времени может дать полезную информацию о промежуточных стадиях реакции. [c.147]


    Если же энергия активации стадии разряда — ионизации относительно мала и константа скорости превышает м/с, то поляризационные кривые, измеренные при помощи обычного полярографического метода, практически полностью определяются закономерностями массопереноса и не могут дать количественной информации о кинетике стадии разряда — ионизации. В этих условиях для изучения стадии разряда — ионизации используют так называемые релаксационные методы, основанные на том, что электрохимическую систему выводят из состояния равновесия при помощи импульсов напряжения или тока, а затем следят за ее релаксацией обратно в равновесное или в новое стационарное состояние. [c.229]

    При выборе материала авторы стремились дать проверенные описания опытов по всем главным разделам курса общей химии, интересующим современного химика по термохимии, скорости химических реакций, химическому равновесию, комплексообразованию и т. п., по химии неметаллов и металлов главных и дополнительных подгрупп периодической системы элементов Д. И. Менделеева. [c.6]

    В настоящее время полного объяснения приведенных опытных данных дать не представляется возможным. Ясно, что здесь имеет место сложное влияние давления как на равновесие реакций, так и на их скорости. [c.188]

    Пока невозможно дать полный и исчерпывающий ответ на этот вопрос. Однако в результате рассмотрения экспериментального материала можно сделать ряд качественных обобщений Более того, теория позволяет предсказать во многих случаях не только качественно, но в значительной мере и количественно изменение химического равновесия и скорости реакций в значительном интервале давлений. [c.6]

    Применение динамического метода построения диаграмм состояния для силикатных систем ограничено тем, что скорость достижения равновесия в этих системах часто мала и высоковязкие силикатные расплавы весьма склонны к переохлаждению. В связи с этим метод построения кривых охлаждения для силикатных систем может дать искаженные результаты. В этом отношении метод построения кривых нагревания, когда кривые строятся не при охлаждении расплава, а при нагревании твердой смеси компонентов, дает более достоверные результаты, поскольку при этом исключается влияние обычного в силикатных системах переохлаждения. Однако в общем случае более приемлемым и, как правило, обычно применяемым методом построения диаграмм состояния силикатных систем является статический метод (метод закалки). [c.283]

    Для изучения быстрых реакций, к которым относится реакция дегидратации метиленгликоля, обычные кинетические методы, основанные на последовательном отборе и анализе проб реакционной смеси, практически неприменимы, так как время завершения таких реакций (равновесие, полная конверсия реагента) несоизмеримо мало в сравнении со временем, требующимся для отбора и обработки даже минимального числа проб. Однако в последние десятилетия разработан целый комплекс методов исследования кинетики быстрых реакций [227]. Основным принципом большинства этих методов в применении к обратимым равновесным превращениям является изучение системы при движении последней не к состоянию равновесия, что имеет место, например, при смешении реагентов или внесении катализатора, а наоборот, при движении от состояния равновесия . Наиболее простой и наглядный прием — выведение из равновесной системы одного из продуктов путем химического связывания, отгонки и т. п. Очевидно, что если скорость вывода продукта выше скорости самого исследуемого превращения, то наблюдение (желательно, инструментальное) за каким-либо подходящим физико-химическим свойством системы может дать необходимые данные для на- [c.86]

    До сих пор константы для реакции роста и обрыва цепи были получены только в виде отношений. То же положение мы встречаем для мономерных радикалов из-за трудности измерения концентраций радикалов отношение констант скоростей получить легче, чем сами константы. Но все же такие абсолютные значения могут быть определены, хотя методы определения довольно трудны. Детально их рассматривать не будем. Вкратце можио сказать, что измерение скорости и степени полимеризации при динамическом равновесии не может дать абсолютных значений Кобр или Кр. Так можио получить лишь дополнительный параметр, а именно время жизни радикала, т. е. весь отрезок времени от начала образования радикальной цепи до ее деструкции. Продолжительность жизни растущей цепи равна концентрации радикалов, деленной на скорость деструкции  [c.233]

    Центр тяжести площади под кривой имеет, таким образом, определенный физический смысл. В общем случае центр тяжести отличается от величины, которая в статистике называется модусом и характеризует, например, точку перегиба интегральной кривой распределения (фронтальная кривая) или максимум дифференциальной кривой распределения (кривая проявительной хроматографии), причем модусу нельзя дать простую физическую интерпретацию. Положение центра тяжести не зависит от кинетических постоянных в области, где Вр пренебрежимо мало, и поэтому не зависит также от скорости, с которой устанавливается в колонке равновесие. [c.447]


    Следует также подчеркнуть, что диаграмма применима только для равновесных условий. Например, в экспериментальных установках выбор меди при 500 С для очистки газов от кислорода может показаться сомнительным. При 500°С соответствующее равновесное давление кислорода составляет 10" атм. Более низкие температуры могут дать более низкие потенциалы, но только при уменьшении скорости потока (или при использовании каталитической меди) в противном случае состав газа будет более далеким от равновесия, и кислородный потенциал его будет выше. Температуры вьппе 500°С предпочтительны с учетом кинетики реакции, но за счет более высокого равновесного кислородного потенциала. Эксперимент показывает, что температура 500°С является оптимальной. Можно также отметить, что медь часто предпочитают другим металлам (кремнию или магнию) и по другим причинам. Она доступна и легко подвергается регенерации (т. е. восстановлению оксида) путем обработки водородом кроме того, очень низкие значения кислородного потенциала все равно нельзя сохранить в газовом потоке из-за неизбежной негерметичности аппаратуры. [c.131]

    С полной определенностью можно заключить, что в этих ус-ловиях распад Н О в основном определяется реакцией HjO -> —>0Н + Н. Как ив других случаях, вода при этом распадается не полностью и вследствие установления равновесия по окончании реакции остается некоторое количество воды. При низких температурах даже при наинизших концентрациях воды первичная реакция в небольшой степени сопровождается вторичными реакциями с другой стороны, постоянная времени применявшегося приемника инфракрасного излучения была недостаточно мала для того, чтобы можно было проводить надежные измерения при температурах выше 4000° К поэтому для константы скорости мономолекулярного распада воды в области низких давлений можно дать только предварительную формулу [c.158]

    Систему называют термодинамически устойчивой, если ее свободная энергия ниже, т. е. более отрицательна, чем сумма свободных энергий продуктов реакции, протекающей в системе (рис. 1.1). На основании значений свободных энергий можно оценить, сколько форм (две или более) из присутствующих в смеси будут взаимодействовать друг с другом и до какого предела. Однако это возможно только в том случае, когда свободные энергии определены при исследовании равновесий (см. разд. 1.10). В то же время исследование равновесий само по себе не может дать какой-либо информации о скорости реакции, так как для протекания реакции необходимо выполнение двух условий а) изменение свободной энергии должно быть благоприятным б) для реакции должен быть возможен маршрут с достаточно низкой энергией активации, при котором скорость реакции была бы измеримой. . [c.17]

    Метод Лэнгмюра (метод испарения с открытой поверхности). По этому методу [78—80] для расчета давления пара необходимо определить скорость испарения вещества с открытой поверхности в вакуум. Теоретическое рассмотрение процесса сублимации с точки зрения физики твердого тела и поверхностных явлений при отрыве молекулы от кристалла до настоящего времени не может дать строгих количественных соотношений для описания этого процесса. При получении количественных соотношений для процесса парообразования исходят из того, что условием равновесия фаз конденсат—пар является равенство количества испаряющихся и конденсирующихся молекул в единицу времени, т.е. равенство скоростей испарения и конденсации. Для процесса конденсации расчеты проводят на основе кинетической теории газов как для процесса соударения газа со стенкой. [c.67]

    Расчетные значения подобных кинетических изотопных эффектов для разных моделей переходного комплекса во многих случаях оказываются существенно различными. В таких случаях экспериментальное измерение величин этих эффектов делается эффективным диагностическим средством. Было бы, однако, полезным в этом кратком введении указать на одно неизбежное ограничение метода, которое характерно также для всех способов измерения скоростей реакций как абсолютных, так и относительных. Поскольку наиболее удачные и, по-видимому, довольно правильные теории скоростей реакций связывают последние с термодинамическим равновесием между переходным комплексом и реагирующими веществами и параметр времени вводится самым общим и формальным способом, любые измерения скорости могут дать лишь значения свободной энергии переходного комплекса. В более сложной реакции главную роль играет тот переходный комплекс, который соответствует лимитирующей стадии, однако сделать какие-либо заключения о механизме его образования, например на основании предшествующих быстрых стадий реакций, в принципе невозможно. Поэтому не всегда можно получить сведения о всех процессах, происходящих даже в самой лимитирующей стадии. Так, например, в некоторых случаях процесс разрыва связи может только начаться в переходном состоянии и тем не менее завершиться в той же стадии реакции. Максимум потенциальной энергии может быть достигнут в самый начальный период в результате поступления энергии из других источников. Наличие заметного изотопного эффекта никогда нельзя считать подтверждением того, что подобная связь рвется в лимитирующей стадии. Эти соображения следует учитывать, в противном случае выводы могут быть неправильными. [c.11]

    К сожалению, дать единое определение к. п. д. реактора, которое включало бы все показатели, зависящие от точности соблюдения оптимальных условий (скорость, выход, степень превращения), слишком сложно уже хотя бы потому, что одно и то же отклонение от оптимальных условий по-разному отражается на разных показателях. Например, повышение температуры увеличивает скорость реакции, но в случае сложных реакций может одновременно вызвать снижение выхода. Кроме того, оно вызывает и смещение равновесия обратимых реакций — положительное для эндотермических и отрицательное для экзотермических реакций. Поэтому при определении к. п. д. приходится ограничиваться влиянием условий реакции [c.16]

    Грин и Рой [6] демонстрировали этот эффект на примере элюирования метана при 25° С из колонки с активированным древесным углем при скорости потока 70 см /мин. Полученные ими результаты, приведенные в табл. УП1-6, показывают, что адсорбент, находящийся в равновесии с газом-носителем, может дать сильно пониженную теплоту адсорбции и пониженное удерживание для любого исследуемого вещества. [c.186]

    В главе II было показано, что данные по адсорбционному равновесию могут быть представлены в форме изотерм, изобар и изостер. Теория, дающая полное описание изотермы адсорбции, с тем же успехом может дать описание изобары и изостеры, так как семейство изотерм адсорбции может быть всегда представлено графически в виде семейства изобар или изостер. Это и было сделано нами на рис. 3, 11 и 15 по данным Титова [1] для адсорбции аммиака на угле. В главе II было также показано, что дифференциальные теплоты адсорбции могут быть вычислены из изотерм адсорбции по уравнению Клаузиуса — Клапейрона. Таким образом, теория изотермы адсорбции с полным правом может рассматриваться как теория адсорбционного равновесия. В то же время изотерма адсорбции не может дать никаких сведений о скорости адсорбции кинетика адсорбции представляет собой совершенно самостоятельную область. Вопрос [c.81]

    После того как установится нормальная производительность колонны, что определяется по величине перепада давления, колонна работает при ]юлном рефлюксе в течение 30—45 часов, чтобы дать установиться равновесию в ректифицирующей части. После установления равновесия первоначальное положение металлического регулятора А1 и стеклянного 1 лапана А5 на регуляторе флегмового числа изменяется с учетом времени падения одной капли на счетчике капель АЮ.При этом одну каплю углеводородов бензиновой фракции принимают равной 0,04 мл. Регулировка этой скорости до заданной величины производится, следовательно, на основании фактического увеличения объема жидкости в приемнике Е14. [c.53]

    А. Связь между скоростью реакции и свободной энергией. Скорость реакции вблизи равновесия. Движуш,ей силой химической реакции в изотермических условиях является разность свободных энергий реагентов и продуктов реакции. В равновесии эта разность равна нулю. Хотя это обстоятельство ничего не говорит о том, будет ли происходить реакция, оно показывает, что если реакция будет осуш,ествляться, то она пойдет п направлении понижения свободной энергии системы. Поэтому ваншо выяснить, может ли термодинамика дать какую-нибудь связь между скоростью и изменением свободной энергии. Подобное исследование было проведено Пригожиным с сотрудниками [251, расширено Майнсом с сотрудниками [24] и привело к следун щим результатам. (Вывод, приведенный здесь, отличается от предлогкенного этими авторами, и результаты имеют более обш,ий вид.) [c.71]

    В данной книге не проводится детального анализа пламен, но ряд упрощающих предположений позволит дать оценку скорости горения или скорости распространения пламени и пользоваться этим понятием в дальнейшем. Например, можно считать, чтв устойчивое пламя, имеющее форму хорошо выраженной поверхности, является результатом равпомерного потока реагентов в зону пламени, где состояние равновесия достигается за счет равной и противоположно направленной скорости горения. Далее можно предположить, что единственно важное с точки зрения стабильности пламени направление горения расположено под прямым углом к фронту пламени и что для [c.48]

    Измерение скорости уноса представляет значительные технические трудности, и ее значение обычно определяется в условиях равновесия, где она равна и противоположна скорости осаждения, рассчитанной но уравнению (121). Большинстпо зависимостей характеризуется сильным разбросом и представляется в размерном виде. Попытка дать корреляцию в безразмерном виде сделана в [42] (рис. 23). [c.198]

    Пример 22. Равновесие реакции 2502 + Оа 230з установилось при следующих концентрациях веществ (моль/л) [ЗОа = 0,1 [Оа = 0,05 [80 ] = 0,9. Рассчитать, как изменится скорость прямой и обратной реакции, если уменьшить объем, занимаемый газами, в 2 раза. Сместится ли при этом равновесие Ответ дать.на основании расчета. [c.18]

    Широко цитируя литературу в тексте н снабжая задачи отсылками на литературу, мы надеялись предоставить студентам удобный повод для углубленного знакомства с научной литературой. Многочисленные цифровые данные включены с той целью, чтобы кроме качественного нонимания ролн заместителей и других структзфных особенностей, важных для органических реакций, студент мог получить дополнительно некоторое представление и о величинах таких эффектов. Значительная часть подобного материала представлена в виде схем и таблиц, с минимальными комментариями. Однако большая часть органической химии не поддается интерпретации с одной точки зрения. Часто в противоположных направлениях действует несколько факторов, влияющих иа скорость реакции, положение равновесия, или. на то и другое одновре-мепно, и поэтому нельзя дать последовательно корректную интерпретацию путем анализа численных данных. Необходимо также проявлять известную осторожность при попытках логического объяснения небольших различий в скоростях реакций или положениях равновесий. Мы рекомендуем преподавателям и студентам использовать приведенные э этой книге схемы и таблицы в качестве рабочей основы для дальнейшего обсуждения. [c.9]

    Поскольку константа скорости, 7]-постоянная времени, общая скорость релаксации складывается из скоростей по двум переходам. Если РГз и не равны нулю, то в общую скорость релаксации ядра /, очевидно, будет давать вклад разность заселенностей ядра з. Эго опровергает сделанное при определении предположение о том, что скорость изменения макроскопической намагниченности одного типа ядер зависит только от его собственного отклонения от равновесия и не связана с намагниченностью других ядер. Следовательно, в миого-спиновых системах простое измерение может не дать корректной информации. Это довольно важное замечание, ио оио не относится к нашей дискуссии (более подробное изложение см. в книге Ноггла и Ширмера [2], гл. 1, разд. О, Е и С). [c.149]

    Относительными количественными характеристиками МЦЭ катионных форм Н2П могут выступать скорости их образования и диссоциации (к и к 1) или константы равновесия процесса диссоциации. К сожалению, имеются лишь немногочисленные данные по кинетике протонирования и депротонирования порфиринов, отнесенные к суммарным процессам (например, Н4П2+ — Н2П + 2Н+) [94-97]. Обширные данные по термодинамике процессов диссоциации катионных форм, суммированные в [90], также не могут дать ответа на вопрос о количественной мере МЦЭ, поскольку большинство указанных исследований были направлены на выяснение природы электронных (а не структурных) факторов стабилизации катионных частиц. Для ряда соединений с нарастающей ароматичностью структуры Н2П (1) < [c.356]

    Такой порядок абсолютной величины АСобщ процесса свертывания был найден экспериментально для большого числа белков, содержащих около 150 остатков [413]. Для оценки АСобщ привлекались скорости водородного обмена в состояниях N и К [414— 416], калориметрические данные процесса деструктурирования цепн, данные, полученные из кривых денатурации (см. обзор в [413]), а также константы равновесия К между нативной и случайной конформациями, найденные при иммунологических исследованиях [418]. Поскольку величина АС дщ мала, любые энергетические расчеты, преследующие цель установления корреляции между ковалентной и геометрической структурами белка, должны быть исключительно точными, чтобы дать значимые результаты. Поскольку невалентные связывающие силы в белке поняты еще ие достаточно, достичь такую точность пока еще трудно (гл. 3). Нужно отметить также, что константа равновесия очень чувствительна к температурным изменениям. [c.180]

    Левая часть имеет размерность козффициента диффузии и уравнение в целом напоминает уравнение диффузии Эйнштейна. Поэтому А можно рассматривать как положительное или отрицательное смещение вещества относительно максимума полосы, вызванное диффузией. В самом деле, расширение полосы при хроматографии можно рассматривать как диффузионную задачу [2, 33], причем такая трактовка ближе к физической реальности, чем рассмотренная нами выше модель. В случае газовой хроматографии удается, например, определенные осложнения (неравномерность упаковки, продольная диффузия, замедленное установление равновесия) рассматривать отдельно и учитывать вклад каждого из них в суммарный зффект, который можно непосредственно связать с величиной Н [11, 16, 23, 34—36] и таким образом дать Н молекулярно-кинетическую трактовку Обсуждение всех точек зрения, существующих в зто л отношении в хроматографии, выходит за рамки настоящей главы. Нам хотелось бы в заключение указать, что при проведении и анализе хроматографических процессов никоим образом не следует игнорировать фактор времени он выступает не только в скорости перемещения вещества и фронта, но и в явлении расширения полосы. Формально простая связь между зтими величинами существует только при равномерном движении растворителя. [c.102]

    Как ТОЛЬКО весь нижекипящий компонент будет удален и температура конденсатора достигнет точки кипения следующего компонента, станет возможен отбор дестиллята при этом давление в колонке не будет падать и не потребуется дальнейшего увеличения температуры конденсатора. Скорость отбора продукта при этом можно увеличивать до тех пор, пока изменение давления в колонке не укажет вновь, что компонент отобран почти полностью. В тех случаях, когда в образце присутствуют лишь небольшие или совсем ничтожные количества нижекипящих углеводородов, необходимо дать колонке работать при полном орошении 30—60 мин. перед тем, как начать отбор дестиллята. Это обеспечивает установление нужной температуры и равновесия между компонентами до того, как будет начато трудно протекающее разделение. [c.359]

    Итак, в качестве примера рассмотрим систему водный раствор поливинилового спирта (ПВС) —осадитель. Рассмотрение ее интересно еще и потому, что в процессе перехода от аморфного равновесия к кристаллическому возникают системы, в которых скорость перехода исключительно мала и которые можно рассматривать как образцы аморфного равновесия. Кроме того, на этой системе можно проследить многие разновидности форм выделения богатой полимером фазы, включая л идкост-пое расслоение, студнеобразование и отделение различных осадков. Именно поэтому представляется целесообразным дать подробное описание указанной системы, а не ограничиваться только теми экспериментальными данными, которые относятся собственно к переходу от аморфного равновесия к кристаллическому. [c.100]

    Релаксационный механизм 2, который наиболее часто встречается в непроводящих твердых телах, зависит от числа неспаренных электронов в веществе, в большинстве случаев обусловленного присутствием парамагнитных ионов в кристалле. Однако иногда механизм релаксации может быть связан и с наличием центров окраски. Магнитный момент электрона, будучи в 10 раз больше магнитного момента ядра, создает около себя большие переменные магнитные поля и вызывает быструю релаксацию ядерного спина у рядом расположенных ядер. Переменное поле обусловлено малым временем спин-решеточной релаксации электрона в изоляторах (Г] электрона а 10 — 10 сек) за счет спин-орбитальной связи электрона с решеткой (раздел П1,А, 2). Ядра, удаленные на 10 или более ангстрем от электронного спина, мало подвергаются действию его магнитного поля, так как оно уменьшается с расстоянием пропорционально 1/гЗ. Однако и эти ядра в присутствии электронного спина релаксируют быстрее за счет диффузии ядерного спина. Ядра, удаленные от неспаренного электрона, являются горячими в том смысле, что в присутствии сильного радиочастотного поля они окажутся дальше от термического равновесия, чем ядерные спины, близкие к примесному центру, и, следовательно, суммарная спиновая поляризация будет смещена к примесному центру за счет диполь-дипольного взаимодействия при одновременных спиновых переходах между одинаковыми спинами и без изменения суммарной энергии. Скорость такой диффузии спинов пропорциональна 1/Т2. Количественное выражение для времени ядерной релаксации, включающее величины концентрации примеси, времени релаксации электронного спина и времени ядерной спин-спиновой релаксации было получено Ху-цишвили [57] достаточно строгим способом для малых концентраций примеси. Несколько сот частей парамагнитных примесей на миллион могут дать времена релаксации в пределах от 10- до 10"3 сек при комнатной температуре. [c.26]

    Исследование зародышеобразования и его подавления захватом олигомеров, впервые описанное Фитчем и Тзаи, было рассмотрено нами для получения соотношений, соответствующих различным механизмам полимеризации и допускающих модификацию теории с учетом влияния стабилизатора. Предложены аргументы, свидетельствующие в пользу рассмотрения захвата олигомеров не как диффузионного процесса, а как равновесия. По мере роста олигомеров последнее сдвигается в сторону образования частиц это позволило нам предложить альтернативные уравнения. Однако оба подхода чрезмерно упрощены в реальном процессе, вероятно, происходит постепенный переход от равновесия к диффузии по мере роста каждого олигомера. При очень низких степенях полимеризации уравнения, основанные на диффузии с необратимым захватом, значительно переоценивают вероятность захвата, в то время как при высоких степенях полимеризации скорость роста и уменьшение растворимости олигомеров, вытекающие из равновесной модели, соответствуют большей скорости захвата, чем это допускает диффузия. Полного теоретического исследования этой сложной модели мы не предлагаем. Вполне вероятно, что та или другая из упрощенных моделей, основанных на диффузии или равновесии, может дать вполне хорошее приближение к практическим системам, в зависимости от условий, характеристик растворимости полимера и, в частности, от значения Р пороговой степени полимеризации для зародышеобразования. Возможно, что равновесие играет более важную роль в углеводородных разбавителях, чем в водных дисперсионных системах, изученных Фитчем с сотр. Такие вопросы могут быть разрешены только посредством экспериментальных исследований, при тщательном соблюдении условий, обеспечивающих постоянство растворяющей способности среды полученные к настоящему времени ограниченные данные не позволяют сделать определенных выводов, в частности, вследствие формального сходства уравнения поверхностного равновесия и. уравнения Фитча и Тзаи, зависящих одинаковым образом от общей площади поверхности частиц. [c.195]

    Можно, однако, дать иное объяснение уменьшению константы скорости с ростом температуры. Тримолекулярные реакции можно рассматривать как двухстадийные бимолекулярные. Первая стадия протекает быстро с установление.м разновеси>., вторая — значительно медленнее. С ростом температуры скорость каждой из этих реакций увеличивается. Одновременно с этим равновесие в первой стадии смещается в сторону разложения промежуточного соединения, что приводит к уменьшению экспериментальной константы скорости с температурой. [c.85]

    Следует отметить, что многие проводившиеся до сих пор работы по кинетике дегидрогенизации циклогексана и его производных не могли дать представления о механизме этой реакции хотя бы потому, что кинетика реакции дегидрогенизации не сопоставлялась с кинетикой возможных промежуточных реакций диспропорционирования. Кроме того, реакция дегидрогенизации проводилась в той области температур, в которой реакция, по условиям равновесия, не могла итти до конца, между тем скорость обратной реакции не учитывалась. [c.236]

    Вода является довольно сильным основанием и будет принимать протоны от сильной протонной кислоты с образовапием гидксо-ниевых ионов, следовательно в разбавленной водной системе нельзя изучать кислоты, более сильные, чем ион гидроксопия. Несмотря на это, был проведен ряд исследований каталитической кислотности в водных системах. Применявшиеся методы состояли в титровании гидроокисями щелочных металлов [25, 56, 147—150], выделении кислоты из катализаторов посредством ионного обмена и ее последующего определения [22, 151—153], измерении количества углекислоты, выделяющейся из раствора бикарбоната, и исследовании скорости инверсии тростникового сахара [22, 103]. Хотя эти методы, особенно в первых работах по определению кислотности катализаторов крекипга, дали ценные сведения о химическом поведении и кислой природе катализаторов, их нельзя рекомендовать для измерения кислотности на поверхностях сильно дегидрирующих катализаторов крекинга [22, 88, 147]. Хэнсфорд [88] считает, что адсорбция гидроокиси щелочного металла в большей степепи является мерой удельной поверхности, чем кислотности катализатора. Это в действительности было бы так, если бы адсорбция измерялась по величине pH. Но вместе с тем титрование очень слабым раствором гидроокиси при величине рИ, близкой к нейтральной, могло бы дать полезные сведения, подобные тем, которые получаются при измерениях ионного обмена. Мы уже видели, что измерения ионного обмена могут дать некоторые сведения о кислотности поверхности прокаленных катализаторов. Как показал Планк [152], измерение величины ионного обмена с применением ацетата аммония дает результаты, очень хорошо согласующиеся с крекирующей способностью катализатора. Холм и др. [154] установили, что существует превосходное соответствие между каталитической активностью катализатора реакции полимеризации пропилена и величиной ионного обмена с ацетатом аммония. Последующие исследователи предлагали ввести индекс кислотной силы, основанный на константе равновесия реакции обмена. Значение этой константы равновесия также было рассмотрено Планком [118], который показал, что ее величина находится в соответствии с рКо в диапазоне 3,2- 3,6 для гидратированной в воде алюмосиликатной кислоты. [c.78]

    При фенилировании дегидробензола в жидком аммиаке (стр. 63 и стр. 89) нуклеофильный субстрат В сталкивается с конкурентом — основным растворителем, который присутствует в большой концентрации. Результаты этой конкуренции находят свое отражение в относительных выходах продуктов арилирования АгВ и АгКНг или, менее надежно, в абсолютном выходе АгВ. Так, предпочтительно осуществляется второе и третье фенилирование аммиака в ди- и трифениламин поэтому реакция с субстратом В не останавливается на монофенилиро-вании, что усложняет рассмотрение. Более того, накоплению большого числа значений скоростей присоединения мешает отсутствие знания равновесия кислота — основание и, наконец, неизвестно, присоединяются ли к дегидробензолу аммиак или амид калия, или и тот и другой. Таким образом, имеющиеся малочисленные данные могут дать только качественную последовательность. Способность ВН-соединений действовать в качестве акцепторов дегидробензола уменьшается в рядах [c.101]

    Мне кажется, что здесь мы имеем аналогичное явление прн химической реакции. Остается только один вопрос — знает ли кто-нибудь, с какой быстротой устанавливается это внутреннее равновесие в случае НР Если сказанное справедливо, то можно дать подобное же объяснение для трифторхлорида, но я никогда не видел этого вещества и не знаю его свойств. Можно, конечно, этот случай изучить, варьируя условия, например изменяя скорость потока, и попытаться найти минимальное ВЭТТ тем же способом, каким всегда проверялось уравнение Ван Деемтера при различных скоростях потока. По-видимому, подобные исследования авторами не проводились, вместе с тем они могли бы дать интересные результаты. [c.496]

    Еслт теперь дать возможность системе взаимодействовать с системой "г со скоростью ИТ , то спиновая энергия будет переходить от S-1 к S2 до тех пор, пока не установится их взаимное равновесие. Образец теперь будет характеризоваться температурами [c.378]

    Обычно связи с — Н в высокой степени устойчивы к атаке основных агентов однако удаление водорода, расположенного в а-положении но отношению к карбонильной группе, приводит к образованию существенно стабилизированного аниона, в котором значительная часть отрицательного заряда сосредоточивается на кислороде. В результате водородные атомы в а-положении приобретают кислый характер (протонную подвижность) и могут быть удалены в виде протонов. В отличие от диссоциации многих слабых кислот (например СНзСОгН, Н3ВО3, НР и др.) подвижный протон, связанный с углеродом, удаляется медленно, и скорость установления равновесия между кетоном и его енолят-анионом (I) мала. Это означает, разумеется, что поскольку удаление протона от углерода происходит медленно, то и обратная реакция также должна быть медленной . В результате енолят-анион имеет достаточно времени, чтобы присоединить протон по кислороду и дать, таким образом, енол (этот процесс происходит по крайней мере в 10 раз быстрее, чем превращение в кетон) [c.420]

    Можно предположить, что все упомянутые выше процессы включают обратимые химические реакции, которые достигают равновесия, т. е. такого состояния, при котором уже нет видимого течения реакции. При заданных условиях химическое равновесие характеризуется постоянным отнашение М активностей продуктов реакции и исходных реагирующих веществ это отношение называется термодинамической константой равновесия реакции. Существует соответствующая ей концентрационная константа. Если эта величина известна, то можно рассчитать состав данной реакционной смеси. В дополнение к термодинамике часто необходимо также изучать кинетику реакции, включая механизм процесса и скорости всех реакций, протекающих в системе. Таким образом, исследование кинетики может дать информацию, необходимую для [c.122]


Смотреть страницы где упоминается термин Данные по скорости и равновесию: [c.258]    [c.582]    [c.10]    [c.33]    [c.524]   
Смотреть главы в:

Фонтанирующий слой -> Данные по скорости и равновесию




ПОИСК





Смотрите так же термины и статьи:

Скорость и равновесие



© 2024 chem21.info Реклама на сайте