Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование каталитической активности и кинетики каталитических реакций

    Существенно, в каких целях проводится оценка активности и селективности катализатора. При создании новых катализаторов полная информация получается в виде зависимости активности и селективности от режимных параметров в определенном интервале степеней превращения. Выявление таких зависимостей приближается к исследованию формальной кинетики каталитической реакции. Естественно, что, располагая данными о кинетике, можно рассчитать активность и селективность катализатора при различных режимах и величинах зерна катализатора. Размеры зерна катализатора могут влиять на активность и селективность, так как связаны с процессами внутреннего массопереноса. [c.361]


    Общим для подавляющего большинства химиков, приступивших к исследованиям каталитических органических реакций в начале нашего столетия, является своего рода синтез достижений органической химии и первых успехов в области кинетики реакций. Если катализ Сабатье, как говорилось выше, в основном представляет собою продолжение классического органического синтеза лишь с введением твердых, преимущественно металлических катализаторов и паровой фазы реагентов, то катализ Ипатьева представляет уже сложное взаимодействие чисто химических и физико-химических факторов при осуществлении реакций. Ипатьев часто использовал кинетические данные и множество количественных характеристик изучаемых процессов. Кинетика реакций служила отправным пунктом в оценке активности катализаторов в работах Зелинского и Фокина. Орлов был в такой же степени органиком, как и физико-химиком кинетика реакций у него была не только средством изучения катализа, но и объектом самостоятельного исследования. В этом отношении его работы по своему общему характеру, а иногда и по направлению были аналогичны работам таких выдающихся физико-химиков, последователей и учеников Оствальда, как Бредиг и Боденштейн. Своими разработками в области физической химии эти ученые часто глубоко проникали также и в область катализа органических соединений [c.56]

    ИССЛЕДОВАНИЕ КАТАЛИТИЧЕСКОЙ АКТИВНОСТИ И КИНЕТИКИ КАТАЛИТИЧЕСКИХ РЕАКЦИЙ [c.131]

    Кинетика каталитических реакций в потоке (или что то же самое в динамических условиях) была предметом многочисленных исследований. Значительная часть их изложена в доступной форме в монографии Иоффе и Письмена [104]. Наше изложение основано на группе работ лаборатории,, в которых рассматривается не только кинетика в условиях стационарного потока, но закономерности установления стационарности и влияние на кинетику в потоке изменения активности катализаторов. Разберем простейший случай шихты, каталитические свойства которой можно считать постоянными во времени. Основное влияние динамики нри этом упрощении проявляется достаточно хорошо. Будем рассматривать каталитическую реакцию А - В -> С которая может быть явно обратимой или практически необратимой. Отправное кинетическое уравнение для баланса реагирующего вещества А (или В) имеет следующий вид  [c.76]


    Исследование скорости дегидрирования -бутана проточно-циркуляционным методом. Этот метод изучения кинетики каталитических реакций в нашей стране применяется очень широко. Неудивительно, что он использован и для исследования скорости дегидрирования бутана. Из-за изменяющейся активности катализатора необходимо было кроме циркуляции продуктов ввести и циркуляцию катализатора, что потребовало разработки оригинальных конструкций [196, 197]. [c.81]

    О характере связей, возникающих при хемосорбции активных частиц данного сорта на конкретном кристалле. Метод адсорбционной люминесценции, несомненно, найдет применение для исследования и ряда других вопросов катализа и, в частности, кинетики каталитических реакций. [c.177]

    Уже в самом начале исследований газовых реакций, происходящих на поверхности твердых тел, было установлено, что каталитическая активность обусловлена явлениями адсорбции. Поэтому для приближенного рассмотрения кинетики таких реакций целесообразно использовать уравнения изотермы Лангмюра (XV.2) и (XV.3). [c.409]

    В реальных каталитических процессах эти условия чаще всего нарушаются процессами переноса (диффузии) вещества и теплоты, а также изменением размера и химического состава поверхности. Исследование вопроса о влиянии диффузии и теплопередачи на наблюдаемые количественные характеристики гетерогеннокаталитической реакции являются предметом ряда специальных монографий [7, 14, 15] здесь мы рассмотрим лишь диффузионные ограничения (или ограничения со стороны массообмена), особенно резко искажающие кинетику каталитических процессов и часто существенно влияющие на такие характеристики катализаторов, как активность и избирательность действия. [c.84]

    Представления об энергетической неоднородности поверхности катализатора были использованы М. И. Темкиным при изучении кинетики многих каталитических реакций и особенно синтеза аммиака. Разработанная им теория объясняет наблюдаемые на опыте дробные порядки реакций. Для процесса синтеза аммиака М. И. Темкин вывел общепринятое в настоящее время кинетическое уравнение, при помощи которого можно объяснить результаты более ранних исследований, а также и поздних исследований, не получивших до этого определенного истолкования. М. И. Темкин установил, что при синтезе аммиака на железном катализаторе единственным адсорбирующимся газом является азот и скорость реакции определяется скоростью его адсорбции. При выводе уравнения было учтено, что активные центры отличаются своими энергетическими характеристиками и на разных активных центрах адсорбция идет с различной скоростью. Упомянутое выше уравнение для скорости синтеза аммиака, находящееся в прекрасном согласии с опытом, имеет вид  [c.278]

    Исследование температурной зависимости конверсии пиперилена на Na-формах цеолитов показало различие их активностей (рис. 1.26). Как видно из рисунка, на цеолитах NaA и NaM гидрирование пиперилена начинается При температуре 60 °С и реакция практически полностью завершается при 160-180 °С. В то же время цеолиты X, Y, эрионит менее активны в гидрировании пиперилена реакция начинается при температурах 120-140 °С и При 200-200 °С достигается 60%-ная конверсия исходного углеводорода. Таким образом, наиболее активными катализаторами гидрирования этого диенового углеводорода являются Na-формы цеолитов А и морденит. Менее активны цеолиты X, У и эрионит. Такой ряд активности не совпадает с последовательностью изменения каталитической активности Na-форм цеолитов в гидрировании олефиновых углеводородов (2-метилбутен-2, циклогексен), когда максимальной активностью обладал NaY. а NaA и NaM были менее активны (см. разд. 1.1), Причина этого, возможно, связана с различным влиянием диффузии молекул реагентов во внутрикристаллических каналах цеолитов на кинетику процессов. [c.42]

    При исследовании кинетики реакции синтеза аммиа .а на железе, нанесенном на алюмогель, получено, что максимальная удельная каталитическая активность имеет место при Л т, = 6,1 10 , а максимальная общая активность при Л т.х = 8,8-10 Определите число атомов, входящих в активный ансамбль, и число областей миграции [c.460]

    Кинетика реакции разложения метана на никелевом катализаторе. Каталитическое разложение метана на элементы является очень интересным объектом исследования кинетики гетерогеннокаталитических реакций. Своеобразие этой реакции состоит в том, что один из ее продуктов (углерод) накапливается на активной поверхности катализатора, влияя на его активность. Скорость реакции и отложения углерода связаны стехиометрическим соотношением, что облегчает изучение механизма отравления катализаторов отложившимся углеродом. Исследования кинетики разложения метана на никелевом, кобальтовом и железном катализаторах показали, что отложение углерода снижает их активность лишь на первом этапе науглероживания [53]. На втором этапе этого процесса отсутствует какое-либо влияние отложений углерода на активность катализаторов. В связи с этим было принято, что на активной (металлической) поверхности катализатора имеются активные каталитические центры, блокирующиеся и не блокирующиеся отложившимся углеродом АКЦ-1 и АКЦ-2. В этом случае число свободных (действующих) АКЦ-2 остается постоянным, а количество таких АКЦ-1 уменьшается в результате блокирования их углеродом по следующему закону  [c.107]


    Для получения информации о кинетике каталитического процесса необходимы знания состава газа и температуры на каталитической поверхности. Во многих случаях применение адиабатического интегрального реактора или импульсного микрореактора дает возможность обойтись без таких исходных данных. Другие реакторы применимы до известной степени для изотермического интегрального реактора — необходимо предварительное создание модели соответствующего процесса, а дифференциальные могут быть оценены непосредственно. Информация о кинетике процесса полезна не только в фундаментальных исследованиях механизма реакции и каталитической активности хорошо идентифицированных каталитических поверхностей, но также при проектировании реакторов и оптимизации процесса. Знание кинетических характеристик может сильно упростить разработку модели процесса, а также уменьшить количество данных, необходимых для адекватного описания процесса. [c.104]

    Уже в 1931 г. было предположено [15], что медленной стадией при разложении аммиака может быть десорбция атомов азота. В последующем десятилетии очень детальное изучение синтеза и разложения аммиака в условиях, применяемых в промышленности, и в особенности работы, проведенные под руководством Темкина, Брунауэра и Эммета, Франкенбурга и X. С. Тэйлора, показали, что скорость адсорбции азота определяет скорость синтеза, а скорость его десорбции — скорость разложения аммиака. Недавно опубликованы превосходные обзоры [16, 17] этих исследований, в которых обращено большое внимание на разнообразие методов, использованных для получения данных по кинетике названных реакций. Для доказательства того, что поверхностные реакции протекают быстро, были использованы меченые атомы [18. Измерение поверхности катализаторов [19] сделало возможным более прямое сопоставление скоростей реакций на различных катализаторах. Было проведено также тщательное сравнение [20—22] скоростей адсорбции со скоростями реакций. При изучении хемосорбции частиц каждого типа на основе полученных результатов были проверены различные изотермы. Массивные катализаторы и их поверхности исследовали рентгенографически, пытаясь связать [16] каталитическую активность с кристаллической структурой . Рентгенографию и измерение величины удельной поверх- [c.244]

    Первые указания, касающиеся подбора катализаторов, смогла дать теория промежуточных соединений. Она считала, что, например, при гидрогенизации этилена над никелем сначала образуется гидрид никеля, который, взаимодействуя с этиленом, образует продукт гидрогенизации этан. Аналогично при дегидратации спирта над окисью алюминия сначала с выделением воды образуется алкоголят алюминия, который далее распадается, образуя продукт реакции — этилен. Однако исследования, проведенные в нашей лаборатории совместно с Б. В. Ерофеевым [2], показали, что гидрид никеля, который был получен и свойства которого были исследованы, совсем не обладает свойствами, постулируемыми теорией промежуточных соединений. Мы также изучили совместно с В. В. Щекиным [3] кинетику распада этилата алюминия, который получили по методу В. Е. Тищенко, и нашли, что он совсем не дает продуктов реакции, требуемых теорией промежуточных соединений именно, вместо этилена из него образуется этиловый эфир, причем алкоголят разлагается при более высокой температуре, чем происходит каталитическая реакция образования этилена из спирта. Недавно совместно с Г. В. Исагулянцем и другими соавторами [4] мы, пользуясь радиохимическим методом, сравнили скорость образования этилена 1) непосредственно из этилового спирта и 2) через этилен. При этом оказалось, что идут обе реакции, причем при высокой температуре преобладает первая из них. Значительным недостатком теории промежуточных соединений является предполагаемое образование промежуточного соединения только с одним реагирующим веществом, например при гидрогенизации — только с водородом. Главным же недостатком теории промежуточных соединений является то, что она рассматривает фазовые промежуточные соединения и совершенно неспособна объяснить чрезвычайной чувствительности активности и избирательности катализаторов от их способа приготовления, от их генезиса. Так, например, окись тория, если ее, как обычно, получать прокаливанием нитрата, служит типичным катализатором дегидратации спиртов, однако если окись тория осадить аммиаком, то она является катализатором дегидрогенизации. Этот вопрос был недавно подробно изучен в нашей лаборатории (А. А. Толстопятова [5]). [c.7]

    Задача подбора оптимального катализатора для какого-либо технологического процесса включает в себя исследование кинетики реакции на данном катализаторе. Между тем лабораторные способы кинетического исследования предполагают, как правило, работу при относительно малых степенях превращения, в безградиентных системах и тому подобных искусственных условиях, сильно отличающихся от производственных. С другой стороны, известно, что каталитическая реакция слагается из последовательности процессов, включающей стадии адсорбции и десорбции и собственно химическую реакцию, протекающую во многих случаях на неоднородной поверхности. В различных условиях проведения реакции могут работать различные группы участков, различающиеся по адсорбционной и каталитической активности [1—5]. Соответственно должна меняться и кинетика реакции поэтому при выборе методов лабораторного исследования необходимо учитывать факторы, связанные с неоднородностью. [c.132]

    Исследование гидратации пропилена при повышенном давлении проводилось в основном с целью проверки результатов, полученных при изучении кинетики этой реакции нри давлениях, не превышающих атмосферное, в статических условиях [1]. В обоих случаях в качестве катализатора использовалась фосфорная кислота. При исследовании кинетики гидратации пропилена в статических условиях мы, использовав метод 12] устранения диффузионных ограничений путем нанесения кислоты тонким слоем на стеклянные трубки, определили абсолютную (максимальную) активность фосфорной кислоты для реакции, которую можно характеризовать константой скорости А,. Величина практически не зависящая от начального давления пропилена, резко меняется с изменением начального давления воды. Это обусловлено тем, что упругость паров воды над кислотой и концентрация кислоты, а следовательно, и ее каталитическая активность тесно связаны. Показано, что при 117,5  [c.549]

    В любом исследовании крекинга кумола, проведенном при температуре выше 400° над промышленным катализатором крекинга ередпеи каталитической активности е величиной зерен около 1 мм И.ЛП больше (т. е. проведенном в условиях, обычно применяющихся в практике исследований с интегральным реактором) и ири наличии чистого исходного кумола, почти всегда диффузия будет лимитировать скорость реакции. В отсутствие диффузионного торможения другим фактором, мешающим установлению истинного кинетического уравнения, является почти обязательное присутствие в кумоле ингибиторов, которые снижают скорость реакции и, конечно, изменяют кинетику. Это следует из данных о влиянии диффузии (ем. табл. 4) и о действии ингибиторов 1иа кинетику крекинга кумола. [c.328]

    В лаборатории органического катализа проводятся работы по изучению механизма и кинетики каталитических реакций работы по накоплению материалов для развития мультиплетной теории работы по определению кинетическим методом энергий связей реагирующих атомов с атомами катализаторов исследованию структуры катализаторов и изучению влияния ее на активность катализаторов работы по изучению механизма образования угля на поверхности катализаторов работы по [c.227]

    Некоторым ограничением для широкого использования этого пути при исследованиях истинной кинетики каталитических реакций на пористых контактах является то обстоятельство, что при быстром протекании реакций на больших кусках катализатора, т. е. с малой величиной внешней поверхности по отношению к объему куска, может уже начать сказываться влияние внешней диффузии, и тогда уравнение Зельдовича утратит свою точность. Второе затруднение — приготовление большого куска катализатора с одинаковой активностью по его глубине. В процессах формирования и приработки контактов также сказывается влияние макрофакторов, которое может привести к различию в активности внутренней поверхности контакта разной доступности .  [c.152]

    Возьмем такой пример. Ученый собирается проделать фундаментальное исследование определенной гетерогенно-каталитической реакции в газовой фазе пусть реакция проводится в очень малом масштабе (чтобы обеспечить отсутствие градиента температуры) при низкой степени превращения и использовании очищенных реагентов. Конечно, для исследования кинетики все это может быть вполне допустимо, но прежде чем углубиться в эти изыскания, следует хорошенько удостовериться в том, что ни одно из этих упрощений не перечеркивает самого существа реальной проблемы. А что если на практике эта реакция будет протекать в аппарате диаметром не менее двух дюймов и длиной в несколько футов (умыш-ленно исключим из рассмотрения аппараты с кипящим споем и адиабатические реакторы) Не возникнут ли при этом явления местного перегрева, радикальным образом влияюпще на ход реакции или на свойства катализатора Не приведут ли более высокие степени превращения, соответствующие реальным условиям, к получению побочных продуктов, воздействующих на катализатор Короче говоря, одинаково ли ведет себя катализатор при высоких и низких степенях превращения Не будут ли газы, которые предполагается использовать в производственных условиях, содержать незначительные примеси, способные повлиять на характер получаемых продуктов или на активность катализатора  [c.64]

    При таком объяснении подразумевается, что вдоль линии С СА лимитирующим процессом является адсорбция Ог, скорость которой в свою очередь определяется скоростью возникновения соответствующих дефектов поверхности. Поэтому вдоль линии АВ реакцию будет лимитировать, по-видимому, скорость десорбции Ог. Это подтверждается проведенными недавно Мяс-никовым исследованиями по изучению каталитической активности и полупроводниковых свойств пленок 2пО [Изв. АН СССР, сер. физич., 21, 192 (1957) ЖФХ, 31, 1721 (1957)]. В этих работах показано, что в интервале 250—600° энергия активации для адсорбции Ог составляет 8 ккал/моль, а для десорбции — 23 ккал/моль, что прекрасно согласуется с нашими результатами. Линия КСК, очевидно, представляет собственно обменную реакцию. Конечно, и в этом случае кажущаяся энергия активации может зависеть от изменений концентрации активных адсорбированных частиц или концентрации реакционноспособных поверхностных частиц с ростом температуры. С другой стороны, тот или иной из иллюстрированных рис. 4 процессов, лимитирующих скорость реакции, может являться процессом установления равновесия между различными типами адсорбированных частиц, до некоторой степени аналогичным тому, который недавно предположили Томпкинс и Гандри [41] для Нг на N1. Однако на основании этой концепции невозможно убедительно объяснить все детали кинетики. [c.257]

    Начало детальному, глубокому изучению механизма и кинетики превращений углеводородов на алюмосиликатных катализаторах было положено работами А. В. Фроста и сотр. [163]. Нотом это направление исследований продолжено Г. М. Панченковым, К. В. Топчиевой и др. [164]. В этих работах установлено, в частности, что различия в каталитической активности разных алюмосиликатов определяются содержанием в них гидроалюмината, имеющего состав 30% АЬОз + 70% SiO2 и обладающего максимальной активностью. Энергия же активации реакций не зависит от состава катализаторов, что указывает на однотипность их активных центров. [c.50]

    Выбор способа проведения каталитического гидрооблагораживання в условиях лабораторной или пилотной установки в значйтельной мере зависит от того, какова цель исследования - поиск новых катализаторов, изучение кинетики основных реакций, испытание катализаторов, выбранных для промьшленной реализации, изучение дезактивации его. Чтобы оценить эффектипность катализатора, необходимо знать его активность и селективность, а также продолжительность его работы при получении продукта с заданными основными показателями качества. (Определение последней характеристики является наиболее длительной, трудоемкой и дорогой операцией и ее, как правило, проводят после завершения всех исследований в относительно кратковременных опытах. [c.90]

    Несомненный интерес представляет цикл работ Со-морджая и сотр. [174—177] по исследованию кинетики различных реакций (в том числе дегидроциклизации) на монокристаллах металлов (Р1, 1г, N1, Ag) с одновременным определением структуры и состава поверхности методом дифракции медленных электронов и Оже-спект-роскопии. Показано, что атомные ступеньки на поверхности монокристалла Р1 являются активными центрами процессов разрыва связей С—Н и Н—Н. Зависимость скоростей реакций дегидрирования и гидрогенолиза циклогексана и циклогексена от структуры поверхности Р1 свидетельствует о существовании изломов и выступов на атомных ступеньках. Такие дефекты структуры являются особенно активными центрами процесса расщепления С—С-связей. Установлено, что активная поверхность Р1 в процессе реакции покрывается слоем углеродистых отложений свойства этого слоя существенно влияют на скорость и распределение продуктов каталитических реакций. Показано, что дегидрирование циклогексана до циклогексена не зависит от структуры поверхности (структурно-нечувствительная реакция). В то же время дегидрирование циклогексена и гидрогенолиз циклогексана являются структурно-чувствительными реакциями. Полученные результаты позволили расширить классификацию реакций, зависящих от первичной структуры поверхности катализатора и от вторичных изменений поверхности, возникающих в процессе реакции. При проведении реакций на монокристаллах 1г показано, что ступенчатая поверхность 1г в 3—5 раз более активна в [c.252]

    Дальнейшее развитие учения о катализе шло как по пути накопления экспериментальных данных, разработки способов приготовления активных катализаторов, открытия и изучения новых каталитических процессов, внедрения катализа в химическую промышленность, так и по пути развития теории гетерогенного катализа. Однако успехи теоретиков были значительно более скромными, чем успехи экспериментаторов. И это не случайно. Хотя принципиальной разницы между каталитическими и некаталитическими процессами нет, и те и другие подчиняются основным законам химической кинетики, в обоих случаях система реагирующих веществ проходит через некоторое особое, обладающее повышенной энергией активное состояние, в гетерогенных каталитических реакциях наблюдаются специфические особенности. Прежде всего появляется твердое тело, от свойств и состояния которого существенно зависят все явления в целом. Поэтому не случайно, что успехи теории гетерогенного катализа неразрывно связаны с развитием теории твердого тела. Поскольку процесс идет иа поверхности, знание строения поверхности катализатора оказывается решающим для развития теории катализа. Отсюда вытекает тесна я связь развития теории катализа с развитием экспериментального и теоретического изучения адсорбционных явлений. Сложность кетероген-ных процессов, присущие им специфические черты, приводят к тому, что теоретические исследования в этой области не завершилась еще построением теоретических концепций, на базе которых можно было бы обобщить имеющийся фактический ма-териал. Пока можно только говорить о наличии нескольких теорий, в первом приближении обобщающих те или иные экс- периментальные данные. [c.294]

    В ранних работах [16 17] для изучения кинетики изомеризации н-олефинов применяли статический метод. Позднее стали использовать проточный [18] и проточно-циркуляционный [19] методы. Последние два метода наиболее эффективны тогда, когда время реакции невелико, когда возникновение побочных продуктов зависит от времени контакта реагентов с катализатором и когда необходимо ограничить реакционную зону только длиной слоя катализатора. Большинство непрерывных промышленных процессов осуществляется в контактных системах проточного типа. Однако для исследования реакций всеми перечисленными методами необходимы большие количества реагентов, что не всегда удобно в лабораторной практике. В последние годы для изучения ряда каталитических реакций с успехом применяются импульсные установки [20—23]. Преимуществами этих установок являются использование небольших количеств катализатора и исследуемь1х веществ, а также малое время контакта катализатора с углеводородами. Кроме того, импульсный метод позволяет проводить опыты при высокой активности свежего катализатора. [c.45]

    Особенно большое промышленное значение имеет гетерогенный катализ. Уже в самом начале исследований кинетики газовых реакций, происходящих на поверхности твердых катализаторов, было установлено, что каталитическая активность обусловлена явлениями адсорбции. Для приближенного рассмотрения кинетики подобных реакций целесообразно использовать уже упоминавшееся уравнение изотермы Лангмюра. Это уравнение устанавливает связь между степенью заполнения (9) поверхности катализатора молекулами реагирующего вещества и парциальным давлением этого веп1ества в газовой фазе р  [c.277]

    Методы электрохимии могз т быгь использованы для анализа и синтеза органических соединений, установления или подтверждения структуры, исследования природы каталитической активности, изучения промежуточных продуктов, генерирования хс-милюминесценции, исследования механизма процессов переноса электрона, изучения связи между структурой и электрохимической активностью, инициирования полимеризации, синтеза катализаторов и их компонентов, процессов деструкции, изучения биологических окислительно-восстановительных систем и т. д., а также для исследования кинетики, механизмов реакций, солевых эффектов, сольватации, влияния электрического поля на химические реакдии и в ряде других областей науки. Поэтому весьма отрадно, что нашелся целый ряд исследователей, которые решили направить свои усилия на развитие органической электрохимии [1] Объединение усилий больгиого числа специалистов сделало возможным достижение успеха одновременно на многих направлениях. Благодаря тому, что данная область химии находится иа стыке нескольких паук, большинство [c.21]

    Идеальный адсорбированный слой. Основные предположения. В рамках теории идеального адсорбированного слоя Ленгмюра [35] учитывается детальный механизм протекания гетерогенных каталитических реакций на поверхности. При этом предполагается, что адсорбция частиц ограничивается одним слоем. Основными допугцениями этой теории являются также на поверхности имеется конечное и не изменяюш,ееся в ходе процесса число активных мест, каждое из которых может адсорбировать одну частицу места энергетически равноценны и одинаково доступны для адсорбции между адсорбированными частицами отсутствует какое-либо физическое взаимное влияние, приводягцее к изменению характера и прочности адсорбционной связи кинетика реакций в идеальных адсорбированных слоях определяется законом действующих поверхностей. При исследовании аэродинамического нагрева обычно предполагается, что каталитические реакции протекают стационарно. [c.17]

    Метод конверсии метана и его гомологов с целью получения водорода широко применяется в промышленности [1—2]. В последнее время возрос интерес к изучению кинетики и механизма этой реакции. Используются никелевые катализаторы — как дисперсные (на носителях) [3—5], так и фольги [6]. Исследований на чистометаллических пористых контактах практически не проводили. В настоящей работе впервые исследована каталитическая активность спеченного никеля и его композиций с никелем Ренея в реакции конверсии природного газа с водяным паром. [c.30]

    Однако использование проточно-циркуляционных систем для определения активности катализаторов не всегда удобно, в особенности, если требуются длительные испытания катализаторов из-за сложного конструктивного оформления, связанного с использованием движущихся поршней, термосифонов. Этот метод напболее удобен п перспективеч для изучения кинетики гетерогенных каталитических реакций. Поэтому для исследования газовых реакций применяются простые проточные реакторы, содержащие слой зерен катализатора. [c.94]

    В связи с тем что при спектроскопических исследованиях адсорбции и каталитических превращений желательна высокая чистота поверхности металла, в лаборатории молекулярной спектроскопии химического факультета МГУ с 1954 г. ведется работа с планками палладия, получаемыми возгонкой в высоком вакууме. Достоинством этой методики является также возможность получать слой металла жела,емой толщины. Было показано [4, 5, 6], что пленки палладия, возогнанные в вакууме 5- Ш мм рт. ст. на стенки стеклянного или кварцевого сосуда, каталитически активны по отношению к реакциям перераспределения водорода в циклогексадиене-1,3 и циклогексене. а также изомеризации аллилбензола в пропенилбензол. Каталитической активностью обладают, хотя и не в одинаковой мере, как непрозрачные зеркальные слои, так и невидимые простым глазом пленки палладия. Найдены условия получения зеркальных слоев палладия с достаточно стабильной каталитической активностью, что дало возможность изучить кинетику перечисленных реакций. Разработана методика исследова- шя кинетики каталитических превращений на металлах по ультрафиолетовому или инфракрасному спектру поглощения реагирующих паров [5]. Катализаторами служили пленки палладия на стенках оптической кюветы-реактора или нагреваемые током проволоки. Если одно из веществ, участвующих в каталитической реакции, обладает в некотором интервале частот более высоким коэффициентом погашения, чем остальные, то о кинетике реакции можно судить по кривой зависимости оптической плот-но-сти смеси реагентов от времени. Такие кривые для реакций с временем полупревращения от десятков секунд до десятков часов можно записывать автоматически, установив на нужную область частот монохроматор ЗМР-2 или инфракрасный спектрометр ИКС-2, перед входной щелью которого находится кювета-реактор. Для перечисленных [c.61]

    Сопоставление результатов изучения кинетики превращения 1,3-циклогексадиена и исследования адсорбции паров бензола на пленках палладия показывает, что более 70% поверхности пленок не обладает каталитической активностью, так как активность пленок от опыта к опыту сохраняется, а большая часть образующегося при реакции бензола не может быть удалена с поверхности катализатора откачкой в интервалах между опытами. Каталитичеоки активные центры расположены на участках поверхности с умеренным адсорбционным потенциалом, где имеет место обратимая адсорбция бензола. Указанная часть поверхности неоднородна по отношению к адсорбции и, вероятно, неоднородна по каталитической активности, на что указывают изложенные кинетические закономерности. [c.70]

    В более ранних работах [1—6, 9, 11] при изучении влияния химлческого состава синтетических алюмосиликатов с практически одинаковой величиной доступной поверх-, ности на каталитическую активность были получены интересные данные о природе активных центров этих катализаторов. Применяя метод селективного отравления, было показано, что алюмосиликатные катализаторы обладают активными центрами двух видов кислотные центры, обусловленные наличием водорода в алюмосиликатном комплексе, и окисные центры — их активность обусловлена наличием поверхностных гидроксильных гр пп, связанных с алюминием. С первым видом активных центров связаны реакции углеводородов (крекинг, перераспределение водорода, полимеризация, алкилирование и др.), со вторым видом —реакции дегидратации спиртов и эфиров. Подтверждением этих представлений явились исследования К. В. Топчиевой и К- Юн-пина [7, 8, 10, 12—15]. В результате детального изучения кинетики дегидратации спирта и простого эфира на окиси алюминия и алюмосиликатах, а также адсорбции паров метиловогб спирта ими была выдвинута схема дегидратации на этих катализаторах  [c.301]

    Гипотезе о том, что бензол при гидрогенизации находится во внешнем, вандерваальсовом слое, противоречат важные факты. Во-первых, как известно, гидрогенизация олефинов идет через полу-гидрированную форму, в которой атомы С соприкасаются с металлом нет оснований предполагать, что гидрогенизация бензола не проходит через аналогичные формы. Во-вторых,теплота ваидервааль-совой адсорбции явно недостаточна для химического возбуждения молекулы бензола. В-третьих, гипотеза Селвуда не учитывает того, что каталитически активна не вся адсорбирующая поверхност никеля, а лишь небольшая ее часть. Поэтому требуется дальнейшее исследование, чтобы согласовать данные магнитных пзмеиений с этими фактами. Механизм гидрирования бензола более сложен, чем полагает гипотеза Селвуда. Кинетика реакции гидрогенизации- и дейтерообмена на никеле полнее всего описывается плоскостным, секстетным расположением бензола на поверхности, несущей два вида активных центров, из которых одни преимущественно активируют водород, а другие — бензол [A.A. Баланд и и. ЖОХ, [c.35]

    Как теперь установлено [64], энергия активации реакции гомогенного окисления двуокиси серы превышает 50 ккал/моль. Поэтому в отсутствие катализатора эта реакция практически не идет. При применении катализаторов энергия активации Е заметно снижается при применении Р1-катализаторов Е = 1 ккал моль У-катализаторов Е = 21,5 ккал1молъ и окисножелезных Е = 36 ккал/моль. Каталитическую активность, как изгблтпо, характеризуют величиной константы скорости реакции, вычксляемой при помощи кинетического уравнения. Таким образом, исследование кинетики каталитического процесса имеет большое значение в изучении его механизма. [c.143]

    При изучении реакций гидрогенизации Вавоном, Лебедевым, Залькиндом, Казанским и другими были открыты закономерности, связывающие степень и скорость гидрогенизации не только с природой катализаторов, но и с химическим строением исходных продуктов (см. [3]). Рогинским было открыто явление предварительного газового промотирования катализаторов водородом (стр. 227). Сокольский, Эйкен, Фрейдлин, Ринеккер, Воеводский и другие исследовали металловодородный характер Катализаторов избирательного действия (стр. 272, 280). Эти исследования многие работы в области кинетики каталитической гидрогенизации были направлены на выяснение механизма реакций и в иервую очередь на выявление особой роли поверхности твердых катализаторов, С которой связывала сь и активность, и избирательность их действия. Одним из резуль- [c.102]

    Этот метод - наиболее старый и часто применявшийся ранее 5/. Для определения активности катализатора, а также для исследования кинетики гетерогенных каталитических процессов в замкнутый объем реакционного пространства в контакт с катализатором вводят реакционную смесь. При заданных условиях опыта (состав реакционной смеси, температура, давление) наблюдают изменение окорости процесса во времени. Этим методом удобно исследовать реакции, протеканщие с изшнением количества молекул. Течение реакции при этом может наблюдаться по измененгш давления в системе, Для тех случаев, когда в результате реакции число молекул не изменяется, для наблюдения ва скоростью процесса можно применять более сложные методы контроля кинетики, например, оптические (интерферометр) или спектроскопические, отбирать пробы и определять aнaJштичe ки или на хроматографе. [c.189]

    При исследовании кинетики каталитических процессов и активности хшталйзаторов необходимо определение концентраций исходных веществ и продуктов реакции. [c.229]

    Исследованию димеризации олефинов, в особенности бутиленов, в присутствии серной и фосфорной кислот посвящено болыиое число работ не кинетического характера. Из этих работ невозможно сделать какие-либо выводы о кинетике процесса (порядок реакции, энергия активации), а также нельзя оценить истинные каталитические активности кислот л])н различных концентрациях. [c.491]

    Исследование кинетики гидрата]щи олефинов и дегидратации спирта в присутствии фосфорной кислоты в значительной степени осложняется тем, что вода является и реагентом и составной частью катализатора. Это приводит к тому, что как нри изменении начальных давлений реагентов, так и в ходе процесса может меняться каталитическая активность кислоты. Например, вступление воды в реакп ию при гидратации пропилепа должно приводить к увеличению концентрации кислоты.. Однако расчет показывает, что в условиях проведения опытов (4,5 г НдРО , свободный объем реакционной колбы — 1,97 л), благодаря малой степени превращения, количество воды, вступающей в реакцию при гидратации пропилепа, мало по сравнению с количеством ее, содержащимся в кислоте, и концентрация кислоты меняется в ходе опыта пе более, чем на 1%.В этом случае дифференциальное уравнение для скорости образования сиирта [c.591]


Смотреть страницы где упоминается термин Исследование каталитической активности и кинетики каталитических реакций: [c.589]    [c.101]    [c.132]    [c.31]    [c.458]    [c.120]    [c.178]    [c.234]   
Смотреть главы в:

Применение газовой хроматографии для определения физико-химических свойств веществ -> Исследование каталитической активности и кинетики каталитических реакций




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая

Исследование кинетики

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Реакции каталитические

Реакция исследование



© 2025 chem21.info Реклама на сайте