Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частота внутреннего колебания электронных колебаний

    Формулируя в самом общем виде, можно сказать, что причина образования молекулы из двух атомов заключается в понижении полной энергии при сближении атомов. Эта энергия в основном представляет собой энергию электронов колебательная и вращательная энергия молекулы, хотя и имеет иногда заметную абсолютную величину, мала по сравнению с электронной энергией. Мы обсудим этот вопрос позднее более подробно, но сейчас примем, что изменение энергии при образовании молекулы из атомов обусловлено главным образом изменением электронной энергии . В дальнейшем будет показано, что именно электронная энергия играет основную роль почти во всех молекулярных явлениях. Например, тот факт, что водород существует в виде двухатомных частиц Нг, а не трехатомных Нз, можно объяснить тем, что полная энергия Нз больше, чем сумма энергий Нг и Н. Аналогично этому в молекуле воды валентный угол НОН равен 104,5°, а длина каждой связи ОН составляет 0,96 А потому, что именно при этих значениях внутренних координат полная энергия молекулы минимальна. Удовлетворительная теория валентности должна показать, как электронная энергия зависит от этих координат. Следовательно, мы должны не только определить равновесную конфигурацию, но также и обсудить, как изменяется энергия при отклонении молекулы от равновесной конфигурации. Это позволит найти упругую силу при любой деформации и тем самым получить все сведения, необходимые для вычисления частот нормальных колебаний. По этой причине нельзя отделять теорию валентности от теории инфракрасных спектров и спектров комбинационного [c.19]


    В то время как для газообразных веществ знание спектра внутренних электронных колебательных и вращательных переходов достаточно для расчета термодинамических функций с точностью, превышающей точность прямых измерений, для адсорбированных веществ аналогичная задача значительно сложнее. Для вычисления суммы по состояниям и расчета термодинамических функций адсорбированных молекул в общем случае необходимо знать следующее 1) изменение частот внутренних колебаний адсорбированных молекул 2) возмущение твердого тела 3) частоты колебаний адсорбированных молекул относительно адсорбционного центра 4) частоты либрационных колебаний адсорбированных молекул 5) вклад, обусловленный энергетической неоднородностью адсорбционных центров, и 6) вклад, обусловленный взаимодействием адсорбированных молекул друг с другом [74]. [c.146]

    Причина этого противоречия состоит, вероятно, в том, что изотопный эффект растворителя в значительной степени связан с изменениями частот либрационных колебаний молекул растворителя во внутренней гидратной оболочке. Эти частоты не учитываются достаточно строго как в рассматриваемой трактовке, так и в других теориях электронного перехода. Вопрос об изменениях частот либрационных колебаний при переходе от Н2О к ОаО и их отношении к изотопному эффекту растворителя подробно рассматривался Свэном и Бадером [69] (см. гл. II). К сожалению, эта проблема является очень сложной, и строгое применение теории к реакциям электронного перехода является в настоящее время невозможным. Есть основание утверждать, что изменение частоты либрации только на несколько см достаточно для объяснения увеличения энергии активации процесса на 1 ккал при переходе от Н2О к ВгО поэтому нет причин сомневаться, что наблюдаемый [c.48]

    Нередко величины наблюдаемых сдвигов частот валентных колебаний молекул доноров при координации используются в качестве относительной меры прочности ДА-связей в рядах комплексов [712, 715, 718, 727, 741, 750, 764, 7651. Однако оценка силы донорно-акцепторного взаимодействия только по смещению частот колебаний является лишь весьма грубым приближением. На положение колебательных полос поглощения существенное влияние могут оказывать факторы, не имеющие прямого отношения к изменению электронного строения молекул донора в результате переноса заряда при координации. Так, повышение частоты колебаний может быть вызвано только кинематическим эффектом взаимодействия валентных колебаний донора и колебаний ДА-связей одинаковых типов симметрии [35, 7001. Кроме того, появление дополнительной связи может изменить внутреннее силовое поле молекулы донора и как следствие этого привести к изменению частот колебаний [700]. [c.152]


    В трактовке дифракции рентгеновских лучей кристаллами белка н его изоморфных производных предполагается, что принадлежащие атомам электроны являются свободными и в таком состоянии приводятся в вынужденные колебания с частотой со, равной частоте первичного рентгеновского излучения Амплитуда нормального, упругого рассеяния [/°(0)] зависит от брэгговского угла (0), определяющего направление в пространстве дифрагированного луча, но не зависит от длины волны (X). В общем случае это предположение некорректно, поскольку электроны в атомах не являются свободными, а взаимодействуют, особенно эффективно на внутренних К- и -орбиталях, с ядром и друг с другом. В классической теории рассеивающие атомные центры рассматриваются наборами дипольных осцилляторов, имеющих собственные частоты колебаний (0)5), которые равны частотам поглощаемого атомом электромагнитного излучения. Когда частота падающей волны значительно отличается от частот собственных колебаний электронов (о) > 0) или ш a)J), интенсивность дифрагированного луча практически полностью определяется нормальным рассеянием, и поэтому поглощением обычно пренебрегают, т.е. считают 0)5 = 0. Однако если частота рентгеновского излучения становится сопоставимой с частотами собственных колебаний электронов (со со ), возникает резонанс, изменяющий амплитуду и фазу рассеяния. Имеет место аномальное рассеяние. [c.157]

    Успехи в изучении строения молекул и развитие квантовой статистической физики привели к созданию нового метода расчета термодинамических функций и, в частности, химических равновесий. Этот метод дает возможность вычислять значения внутренней энергии (сверх нулевой), энтропии и теплоемкости газообразных веществ в широком интервале температур (до 4000— 6000 °С), исходя из величин энергий всех квантованных состояний молекулы, связанных с ее вращением, колебаниями, электронным возбуждением и другими видами движения. Для вычисления энергии каждого из состояний молекулы необходимо знать молекулярные параметры моменты инерции, основные частоты колебания, уровни электронного возбуждения и др. Эти величины находятся главным образом путем изучения и расшифровки молекулярных спектров. Вычисление же термодинамических величин проводится методами квантовой статистической физики. Здесь будут кратко изложены основы статистического метода расчета термодинамических функций. [c.327]

    Это явление типично для микромира. Рассмотрим, например, атомную модель Бора. Согласно этой модели, электроны вращаются вокруг ядра только по определенным орбитам. Они могут иметь лишь определенные дискретные значения энергии. Энергия, освобождающаяся при переходе электрона с внешней орбиты (с большей энергией) на внутреннюю (с меньшей энергией), излучается в виде электромагнитного колебания. Частота этого колебания зависит от разности энергий обоих уровней (орбит)  [c.9]

    При электронном ударе возможен и другой механизм перегруппировки, сходный со статистическим механизмом диссоциации. Состоит он в том, что нужная конформация не существует в исходной молекуле, а образуется в молекулярном ионе. Если возбужденный молекулярный ион не распался за время сек, то, как уже указывалось, он ведет себя как колебательно-возбужденная молекула в газе при высокой температуре. В такой молекуле происходит внутреннее вращение вокруг многих связей и конформация молекулы быстро меняется. Время одной перестройки конформации 10 —10 12 сек, а время между перестройками гораздо больше и сильно зависит от энергии возбуждения. Это время требуется для того, чтобы на одной из степеней свободы внутреннего вращения случайно собралась энергия, достаточная для изменения конформации, т. е. превосходящая барьер внутреннего вращения. Известно, что если конформация не является предпочтительной, то вероятность ее осуществления тем меньше, чем больше атомов вовлекается в перестройку [25]. И, наконец, сама по себе частота перехода колебательной энергии в энергию внутреннего вращения заметно меньше, чем частота обмена энергий валентных колебаний. [c.16]

    В предыдущем разделе и при всех наших манипуляциях с уравнениями (3.2) и (3.3) взаимодействие IP с соседними молекулами растворителя не учитывалось. Однако зависимость межионной частоты колебаний Lid в ТГФ от давления больше напоминает то, что характерно для решеточной моды, чем для внутреннего колебания. Это означает, что ионная пара не находится в полости среды, а молекулы растворителя, контактирующие с ионами и находящиеся вдали от них, также участвуют в колебаниях [156]. Все IP должны рассматриваться как сольватированные ионные пары. Два чувствительных метода — сверхтонкое расщепление линий в спектрах ЭПР анион-радикалов под действием ядер катионов и электронные спектры мезомерных анионов - часто вскрывают зависимость взаимодействия катиона с анионом от растворителя и температуры, на величину которого влияет способность ионов сольватироваться растворителем. Термины рыхлая и тесная были применены в качестве характеристики интенсивности взаимодействия катиона с анионом, мерой которой вначале служила константа сверхтонкого расщепления, а затем, уже в более общем смысле для указания на перемещение вдоль абсциссы рис. 3.2 (влево — тесная, вправо - рыхлая). [c.549]


    Рассмотрим один электронный переход. При экспериментальном изучении спектров поглощения и кругового дихроизма было обнаружено, что топкая структура полос, обусловленная внутренними колебаниями атомов в молекуле, как правило, выражена очень слабо, и поэтому можно не учитывать колебательные состояния системы. Помимо знака эффекта, круговой дихроизм характеризуется частотой максимума кривой, интегральной интенсивностью, шириной полосы циркулярно-дихроичного поглощения или комбинациями этих трех параметров. Для теории особый интерес представляют сила диполя Ок- [c.269]

    Одна из теорий, которая правильно описывает многие оптические свойства материальной среды, основана на том, что молекулы или кристаллы представляются в виде совокупности гармонических осцилляторов. Следует различать по крайней мере два типа таких осцилляторов один соответствует движению электронов, другой — движению ядер (или, точнее, ядер и электронов внутренних оболочек, образующих остов атомов). Собственные частоты шо ядерных осцилляторов намного (скажем, в 10 или 100 раз) меньше частот колебаний электронных осцилляторов. На этой разнице основано приближение Борна — Оппенгеймера (гл. 3, 1). [c.147]

    Отношение электронных сумм по состояниям почти всегда < 1. Так как колебательные суммы по состояниям обычно лежат в пределах от 1 до 10, а вращательные суммы по состояниям составляют 10—100 на вращательную степень свободы, то рлв по порядку величины будет лежать в пределах от 1 до 10- в зависимости от сложности Л и В и жесткости переходного состояния АВ. Жесткость эта имеет особое значение, поскольку среди 2>п — 7 внутренних колебаний АВ мы находим 1 почти свободное вращение Л по отношению к В вокруг оси Л — В и до 4 маятниковых колебаний Л и В по отношению к оси Л — В. Если частота их невелика, соответствующие им колебательные суммы пд [c.92]

    Известно, что вопрос о природе водородной связи еще не выяснен окончательно. До недавнего времени считалось, что водородная связь обусловлена простым электростатическим притяжением диполей или остаточных зарядов взаимодействующих групп и для своего объяснения не требует учета квантовых свойств электронов [179]. Эта точка зрения подверглась справедливой критике в работах Н. Д. Соколова [244], отметившего, в частности, несостоятельность простой электростатической модели в объяснении основного спектроскопического проявления водородной связи — смещения частоты валентных колебаний группы ОН в сторону меньших частот. На основе квантово-механического расчета системы А — Н---В им было показано, что при образовании водородной связи происходит значительное перераспределение электронной плотности электроотрицательного атома В, приводящее к образованию донорно-акцепторной связи. Из этого расчета следует, что способность атома водорода к образованию комплексов с водородной связью обусловлена отсутствием у него внутренних электронов и сравнительно высоким значением его потенциала ионизации. [c.189]

    На УУН плотность продукта измеряется в динамике с помощью автоматических плотномеров. Наибольшее распространение получили вибрационные плотномеры, принцип работы которых основан на зависимости между параметрами упругих колебаний трубки, заполненной жидкостью, или помещенного в ней тела, и плотностью жидкости. Наибольшую точность, надежность имеют вибрационные частотные плотномеры, в которых измеряют функционально связанную с шютностью жидкости частоту (период) собственных колебаний резонатора, представляющего собой вместе с системой возбуждения и обратной связи, электромеханический генератор. Частота колебаний такого генератора зависит только от параметров резонатора (формы, размеров, жесткости, массы резонатора и жидкости в нем) [7,8]. Резонатор может иметь одну или две параллельных трубки (рис.3.5). Резонатор / выполняется в виде трубки, которая через упругие элементы (силь-фоны) 2 соединяется с подводящим и отводящим трубопроводами. Трубка изготавливается из специального сплава с низким коэффициентом термического расширения. Внутренняя поверхность для исключения отложений отполирована. Частота колебаний трубки измеряется с помощью приемной катушки 4 и подается в электронный преобразователь 5. В последние годы на УУН в основном используются датчики плотности фирмы 8о1аЛгоп типа 7835 с однотрубным резонатором. Зависимость между частотой датчика (периодом колебаний) и плотностью жидкости выражается уравнением. [c.55]

    При частотах питающего напряжения ниже нескольких сотен герц характеристики периодического разряда мало отличаются от соответствующих характеристик разряда постоянного тока. Правда, при этом в начале каждого полупериода может происходить новый пробой. Действительно, на низкой частоте после обращения внешнего поля в нуль заряды могут успеть рекомбинировать раньше, чем поле вновь в достаточной степени вырастет, причем разряд будет гаснуть дважды в период. Чем выше частота, тем меньшая доля зарядов успевает рекомбинировать за время существования недостаточного для поддержания разряда поля. Поэтому потенциал повторного зажигания разряда падает с ростом частоты. При частоте выше нескольких килогерц состояние разряда, как целого, почти не успевает измениться за полупериод и степень ионизации остается практически постоянной. С дальнейшим ростом частоты амплитуда колебаний электронов становится много меньше расстояния между электродами. Процессы на электродах перестают играть роль. Появляется возможность возбуждения разряда не только в реакторах с внутренними электродами, но и (при диэлектрическом корпусе реактора) с помощью наружных электродов или индуктора. При индукционном возбуждении разряда возбуждающее поле максимально у стенок разрядной трубки. Это оказывает влияние на условия баланса электронов и тем самым — на локальные и усредненные характеристики плазмы 16]. Однако надежные экспериментальные данные, позволяющие корректно сравнить свойства плазмы индукционного разряда и разряда постоянного тока, нам не известны. [c.342]

    Например, недавно для контроля элементов электронной техники и небольших деталей приборов разработан метод, названный фотоакустическим. Ультразвуковые колебания в ОК возбуждают импульсами лазера, а принимают небольшим пьезоэлементом на частоту порядка 1 МГц, приклеенным в какой-либо точке объекта. Сканирование поверхности ОК лучом лазера синхронизировано с разверткой экрана дисплея. В точках поверхности, где имеются какие-либо аномалии (поверхностные или подповерхностные дефекты, внутренние напряжения, повышенная шероховатость), интенсивность возбуждаемых ультразвуковых колебаний меняется, что вызывает изменение яркости свечения или цвета изображения на экране дисплея. Например, гребешки рисок от механической обработки фиксируются как увеличение сигнала, а впадины — как уменьшение. Дефекты ослабляют сигнал. [c.265]

    Для вычисления теплоемкости, внутренней энергии, энтропии и других термодинамических свойств необходимо знать такие молекулярные параметры, как моменты инерции, частоты колебаний, уровни энергии электронного возбуждения, которые определяют величины энергий всех квантованных состояний молекулы. Большинство моле- [c.118]

    Такая трубка впаивается в термостат (рис. 31.5). Общая длина трубки составляет 2—3 см, внутренний диаметр 1 мм. Используя электронную измерительную систему, сравнивают частоты колебаний трубки и эталонного кварца (1 МГц). Денситометр данного типа можно использовать для оценки незначительных изменений концентрации растворенного вещества и небольщих изменений объема. Он очень полезен при исследовании полимеров. [c.146]

    Сложность связи частот и интенсивностей колебательного спектра с внутренними параметрами молекул (см. главу II) затрудняет установление по спектру тех частей молекул адсорбата, которые осуществляют основное специфическое взаимодействие с поверхностью. Поэтому наиболее полная информация о механизме взаимодействий может быть получена при анализе спектров ряда адсорбированных молекул с постепенным усложнением их строения, содержащих при этом определенную функциональную группу, способную к специфическому взаимодействию с поверхностью. При этом наибольший интерес представляет анализ характеристических колебаний. С целью определения типа структурного элемента молекулы, участвующего в локальном специфическом взаимодействии с соответствующим структурным элементом поверхности, и установления изменения электронной структуры молекулы при адсорбции целесообразно производить анализ спектра этих структурных элементов на основе теории колебательных спектров (см. главу II). К настоящему времени уже накоплен материал, который делает возможным установление некоторых закономерностей в изменении спектра при адсорбции и исследование связи этих изменений с характером возмущения молекул и механизмом адсорбции. [c.220]

    Таким образом, в чистых фотохимически окрашенных кристаллах щелочно-галоидных соединений свечение обусловлено рекомбинацией электронов и положительных дырок, а при введении в кристалл активирующей примеси энергия рекомбинации электронов и дырок может быть трансформирована в энергию возбуждения центров свечения. Поэтому послесвечение этих фосфоров можно рассматривать как особый вид сенсибилизованной люминесценции. Подобное предположение было высказано впервые Дж. Франком в 1948 году [344]. По идее Франка электрон и дырка во время рекомбинации представляют собой резонатор переменной частоты. Благодаря внутренней конверсии потенциальная энергия системы электрон -f- дырка превращается в колебания решетки, и когда колебательная энергия последней достигает уровня, находящегося в резонансе с энергией возбуждения активатора, становится возможным переход активирующей примеси в возбужденное состоя- [c.247]

    Электрические свойства. Кристаллы с ионной связью являются плохими проводниками электричества и тепла переходя в раствор или расплав, они хорошо проводят электрический ток. Под действием света у некоторых кристаллов удается наблюдать внутренний фотоэффект, заключающийся в том, что электроны, выбитые из электронных оболочек, остаются внутри криста,пла, вследствие чего возникает электрический ток. Однако для большинства ионных кристаллов этот эффект недостижим, так как для его получения требуются источники света с большой частотой колебаний. Особенными свойствами обладают ионные кристаллы с дефектами в структуре. Если в структуре не все узлы заняты ионами, то катионы имеют возможность свободного перемещения в пределах кристаллической решетки. Проводимость такого кристалла ненормально высока. [c.169]

    Следует отметить, что при настоящем состоянии наших знаний молекулярные спектры в видимой и ультрафиолетовой области, связанные с наличием электронных переходов, исследованы сравнительно мало. Имеющийся материал относится главным образом к двухатомным молекулам, для которых эта область спектроскопии представляет вполне определенную ценность. Что же касается многоатомных молекул, в частности органических, то главные сведения об их структуре мы получаем из колебательных спектров, спектров комбинационного рассеяния и инфракрасного поглощения. Здесь молекулярная спектроскопия дает в наши руки многочисленные возможности делать заключения об особенностях молекулярной структуры. Число собственных колебаний молекулы, т. е. число ее внутренних (колебательных) степеней свободы, связано с числом N атомов в молекуле и определяется выражением ЗУУ — 6 (для линейных молекул Ш—5). Но вследствие симметрии молекулы частоты некоторых колебаний могут совпадать между собой, так что число определяемых на опыте различных собственных колебаний данной молекулы определяет характер ее симметрии. В этих изысканиях типа симметрии молекулы важную роль, наряду с числом различных колебаний, играют данные об пнтенсивности и особенно о поляризации линий комбинационного рассеяния. Частоты собственных колебаний служат для определения силовых постоянных, характеризующих молекулу установление тех или иных характеристических частот может иногда служить для решения вопроса о существовании в составе молекулы определенных молекулярных группировок. Немаловажные данные о некоторых структурных особенностях молекулы могут дать наблюдения аномально больших интенсивностей некоторых линий молекулярного спектра. Наконец данные о форме и ширине линий могут оказаться параметрами, связанными с определенными структурными элементами молекулы и поэтому пригодными для использования в качестве характеристических параметров, в совокупности с интенсивностью, поляризацией и частотой [c.3]

    Физическая химия имеет дело с количественными законами химии, и поэтому одной из ее основных задач является детальное описание состояния любого вида атомов, ионов и молекул. Эта часть физической химии значительно более нолио рассматривается в специальном разделе, посвященном атомам и ионам, здесь же мы остановимся на некоторых общих результатах, полученных в молекулярной химии. В качестве примера рассмотрим пятиатомную молекулу бромистого метила, которая, как это доказывается в органической химии, имеет формулу СНдВг и является тетраэдром с атомом углерода, расположенным в центре. Данные физической химии свидетельствуют о том, что расстояние ме>кду ядрами атомов углерода и водорода составляет 1,094 10" см, а между ядрами атомов углерода и брома — 1,936-Ю см. Кроме того, найдено, что угол между направлениями связей С—Н и С—Вг на 2°38 больше, чем у правильного тетраэдра. Измерены также частоты девяти внутренних колебаний и оиределена энергия, необходимая как для растяжения, так и для разрыва межатомных связей. Для этой молекулы приближенно определено эффективное число электронов, участвующих в дисперсии света, и найдена частота их колебаний. С помощью этих данных можно вычислить силы [c.11]

    Согласно рассмотренным нэми постулатам переход электрона с более далекой от ядра орбиты на более близкую влечет за собой испускание лучистой энергии. Для электронов внутре.чних орбит длины волн такого излучения в несколько тысяч раз меньше, чем длины волн видимого света, т. е. это излучение будет представлять собой рентгеновские лучи. В зависимости от строения атома возникают колебания той или иной частоты, т. е. каждый элемент имеет свой спектр. Таким образом, рентгеновские лучи, которые, как известно, одинаковы по природе со световыми лучами, все же отличаются от них местам своего возникновения в атоме в то время как световые лучи возникают при переходах электронов во внешних слоях атома с одной орбиты на другую, рентгеновские лучи возникают в глубине атома во внутренних электронных оболочках. Это различие в происхождении имеет своим следствием и различия в некоторых свойствах световых и рентгеновских спектров. [c.78]

    В этой конфигурации все четыре атома лежат в одной плоскости. Ориентации, весьма близкие к этой конфигурации, наблюдаются в кристаллогидратах, например в случае MgS04 - 4Н О, в котором углы Mg -О—Н равны 116 и 124° вместо 127°, как следует ожидать для 3 [66]. В случаях, когда удается проанализировать различные вклады в релаксацию протонов в водном растворе парамагнитных ионов С ", расстояние М — Н, которое требуется для объяснения наблюдаемого протон-электронного спинового взаимодействия, соответствует модели 3, например, для Мп2+ 2,8 А [92]. Структура 3 с внутренним вращением молекулы воды вокруг оси С — О согласуется с большим вкладом катионов в эффект понижения диэлектрической проницаемости воды в присутствии солей [410]. Именно такое предположение о структуре связанной воды приводит к значениям h, представленным в 7-м столбце табл. 2.8. Единственное противоречие со структурой 3 (и 1) состоит в том, что химический сдвиг 170 сильнее зависит от природы аниона, чем от структуры катиона. Эти сдвиги можно объяснить, исходя из 3 (или 1) с помощью механизмов, включающих перераспределение связей О - Н или короткодействующие силы отталкивания между ионом и молекулой воды [16]. Характер связей С + — О в структуре 3 обсуждается в разд. З.Г и 6. При изучении спектров комбинационного рассеяния водных растворов солей металлов низкочастотные линии отнесены по целому ряду причин к симметричным валентным колебаниям связи С -О [436], что требует некоторой степени ковалентности связи С+ —О [434]. Анализ частот этих колебаний методом нормальных координат позволяет расположить катионы в ряд по убыванию силовых постоянных и степени ковалентности [622]  [c.254]

    Рассмотрим сначала спектры, полученные в области больших длин волн (рис. 4.66 и 4.76). На этих спектрах отчетливо проявляется пик, ответственный за порог поглощения, наблюдавшийся в более ранних исследованиях. Этот пик, как указано выше, является актиничным. Он имеет тонкую структуру, более легко разрешающуюся у азидов с тетрагональной, чем с ромбоэдрической структурой. Вполне возможно, что в азиде натрия ион, ответственный за этот пик, более прочно связан со своим окружением. Величина расщепления пика, равная 1044 сл , не характерна для основного состояния иона азида, для которого следует ожидать [100] активных инфракрасных частот с волновыми числами 645 и 2070 см . Это расщепление может быть, однако, отнесено к колебаниям электронно-возбужденного иона азида. Такое поглощение обусловлено образованием локализованного экситона. Хотя это и говорит о том, что такой экситон должен рассматриваться как внутренний переход, это не значит, что возбуждение не может передаваться по кристаллу с помощью, например, такого механизма как резонансное дипольное взаимодействие [17]. Следует напомнить в связи с этим, что волновые функции Ванье представляют собою лишь линейные комбинации функций Блоха [101]. Такая подвижность экситона предполагается авторами для большинства механизмов, описывающих фоторазложение и процессы окрашивания. [c.143]

    Пропорциональность барьера Уо квадрату крутильной частоты (У.55) указывает на его большую чувствительность к изменению агрегатного состояния вещества. Это хорошо иллюстрируется на примере частот крутильных колебаний и высоты двукратных барьеров внутреннего вращения в бензальдегиде и его пара-заыещен-ных (табл. Х1.1). Приведенные данные показывают также, что высота барьера зависит не только от стерических и электронных эффектов ближайшего окружения связи, вокруг которой происходит вращение, но и от распределения электронной плотности по всей молекуле, так как в ряду приведенных соединений меняется только заместитель X в лара-положении, не оказывающий какого-либо стерического влияния на поворот альдегидной группы относительно бензольного кольца  [c.241]

    Наряду с прямыми спектроскопическими проявлениями водородной связи в области валентных колебаний группы О—Н и в низкочастотной области, известны многочисленные случаи влияния этой связи на внутренние колебания взаимодействующих молекул. Вследствие относительно большой энергии водородной связи изменяются силовые постоянные связей, лежащих вблизи центров взаимодействия, что приводит к изменению частот и расщеплению линий. Особенно сильно изменяются снловые постоянные, если центр взаимодействия входит в л-электронную систему. В этом отношении представляют большой интерес изменения в спектрах комбинационного рассеяния пиридина, который является наиболее сильным из известных акцепторов протонов. [c.363]

    Интересующие нас квантовые системы, как мы видели, обладают свойством изменять частоту излучения, вообще трансформировать энергию. Их внутренняя энергия складывается из электронной и вибрационной (тепловой) энергии, причем запас ее может пополняться или уменьщаться при взаимодействии, с излучением и с соприкасающимися веществами — другими квантовыми системами. Изменение уровня электронной энергии сопровождается изменением уровня вибрационной энергии и, наоборот, увеличение или уменьшение запаса последней влечет за собой соответствующее изменение электронной энергии. Дело в том, что упругие силы, действующие между атомами, зависят от энергетического состояния электронов в то же время шругие колебания атомов деформируют электронные оболочки, т. е. изменяют уровень энергии электронов. Другими словами, в твердом веществе существует электронно-фононное взаимодействие, причем передача и трансформация энергии происходят путем столкновения электронов с фононами. Представляя собой систему большого числа взаимосвязанных вибраторов, твердое вещество имеет сплошные спектры поглощения. Благодаря этому соударение с твердым телом возбужденных молекул или комплексов, в частности продуктов экзотермических реакций, позволяет им освобождаться от избыточной энергии, прежде чем наступает их диссоциация. Твердое тело может вместе с тем легко передавать из своих запасов дополнительную энергию адсорбированным молекулам или атомам и таким путем активировать их, что при определенных условиях позволяет ему служить катализатором химических реакций. [c.132]

    Хуже изучены инфразвуки, которые приеутетвуют во всех шумах (атмосферы, моря, леса, городского движения, работающих моторов и др.). Так как звук тем меньше задерживается средой, сквозь которую он проходит, чем ниже его частота, инфразвуки (в отличие от ультразвуков) распространяются на громадные расстояния. Например, улавливая возникающие при трении волн о воздух инфразвуки с частотами 8—13 гц, морские животные заранее узнают о приближении шторма. Уже создан электронный прибор, работающий на том же принципе. Делаются также успешные попытки использовать инфразвуки для медицинского прозвучивания человеческого тела. Вместе с тем выяснилось, что инфразвуки повышенной мощности (особенно в области 6-ь9 гц) оказывают вредное влияние на организм. Обусловлено это их резонансным наложением на собственные колебания внутренних органов человека. Особенно опасна частота 7 гц, так как она совпадает с частотой а-ритма биотоков мозга. [c.591]

    Поляризуемость двухатомной молекулы (например, Нг) анизотропна электроны, образующие связь, легче смещаются в поле, направленном вдоль молекулы, чем в поперечном. Молекулы, попадая в поле излучения частоты V, оказываются в переменном электрическом поле, и, следовательно, наведенный дипольный момент осциллирует с частотой V. Осциллирующий диполь излучает с частотой падающего излучения, что объясняет природу рэлеевского рассеяния. Если в молекуле одновременно реализуются внутренние движения, оказывающие периодическое влияние на поляризуемость, то диполь будет испытывать дополнительные осцилляции с периодичностью этих движений (vкoл), а это значит, что наряду с возбуждающей частотой V должны появиться компоненты с частотой V Vкoл. Однако следует отметить, что для проявления комбинационного рассеяния молекулярное вращение или колебание должно вызывать изменение какой-либо составляющей поляризуемости молекулы. Поэтому, если молекула имеет низкую симметрию или совсем ее не имеет, не приходится задумываться, какие типы ее колебаний будут активны в комбинационном рассеянии обычно активными считаются все колебания. Все типы колебаний в тетраэдрической молекуле приводят к изменениям и дипольного момента, и поляризуемости следовательно, все они активны как в ИК-, так и в КР-спектрах, что [c.771]

    Скорость мономолекулярного распада ионов зависит от запаса их внутренней энергии. Молекулярные ионы, образующиеся при действии ионизирующих излучений на молекулы, в общем случае оказываются в колебательно- и электронно-возбужденных состояниях. Возникновение колебательного возбуждения иона связано с изменением характеристик колебаний молекулы (межъядерного равно(весного расстояния, частоты колебаний) при электронном переходе. Наиболее эффективно колебательное возбуждение ионов происходит ири удалении а-электронов, которые вносят наибольший вклад в энергию химической связи менее эффективно — в случае я-электронов и еще менее эффективно — при удалении /г-электронов гетероатомов, непосредственно не принимающих участия в химической связи. Заселенность колебательных уровней иона в основном или электронно-возбужденно1м состояниях зависит от механизма ионизации. Автоионизация обычно приводит к заселению более высоких колебательных уровней иона, чем прямая ионизация [8, 9]. Другим источником колебательного возбуждения [c.87]

    В более ранних работах соединение стержня с корпусом ячейки осуществлялось с помощью гибких стеклянных мембран.) Неподвижный электрод 1 посредством стерженька 2 соединен с воль-фрамовыл стержнем 2", который можно поворачивать в стеклянной рамке. Этот стержень проходил сквозь боковую часть спая из ковара 4 к запаянному в стекло брусочку магнитного манипулятора. Для предупреждения выскальзывания этого подшипника из его держателей использовался кольцевой молибденовый ограничитель 8. Действием на манипулятор маленького магнита можно устанавливать пластину 1 в двух положениях, 3 ж 3 (фиксируемых ограничителями, торчащими из стеклянной рамки). Электрический контакт между пластиной и внаем, расположенным выше 7, осуществляется с помощью пружины из тонкой никелевой проволоки. В положении 3 пластину 1 можно подвергнуть электронной бомбардировке из бокового отростка 6. (Электронная пушка состоит из спиральной вольфрамовой нити (диаметром 0,3 мм), заключенной в цилиндр из Мо. Нагрев до 2600К достигается за счет эмиссии электронов при 40 мА и 12—15 кВ. На цилиндр необходимо подать напряжение 120—170 В, чтобы распределить поток электронов равномерно по пластине.) Вибрирующий электрод 1 можно очищать с помощью помещенной под ним такой же электронной пушки. Исследуемое вещество напыляется на пластину 1, находящуюся в положении 3, из напыляющего источника 6. Таким же образом из напылителя 6" на отсчетную пластину наносится пленка из золота. Электронные пушки 6 можно повторно использовать для отжига. После тщательного отжига и электронного нагрева удается достигнуть остаточного давления 8-10" мм рт. ст. даже при нагретых пластинках. Вся ячейка с подготовленными к измерениям поверхностями жестко закрепляется в заземленном металлическом ящике, внутренний экран заземляется, затем па выведенную часть 2 с генератора передаточным стержнем подаются механические колебания резонансной частоты (220 Гц) при этом неподвижный электрод снова находится в положении 3. В этих условиях помехи от генератора сведены к минимуму. Сигнал подается на осциллограф через двухкаскадный усилитель со входным сопротивлением 10 Ом. Как и в методе Миньоле, значение КРП получают на последовательно включенном потенциометре, показания которого по величине равны КРП в нулевой точке. В работе [76] описана также до некоторой степени похожая установка с горизонтальным, а не вертикальным перемещением неподвижного электрода, позволяющим напылять пленки. В этой установке прямой колеба-тельЕгый привод не использовался, а частота колебаний была, видимо, низкой. [c.134]


Смотреть страницы где упоминается термин Частота внутреннего колебания электронных колебаний: [c.584]    [c.314]    [c.584]    [c.37]    [c.561]    [c.561]    [c.242]    [c.652]    [c.27]    [c.620]    [c.194]    [c.389]    [c.393]    [c.176]   
Физическая химия Книга 2 (1962) -- [ c.115 , c.345 ]




ПОИСК





Смотрите так же термины и статьи:

Частота колебаний

Электронные колебания, частота



© 2024 chem21.info Реклама на сайте