Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ПОЛИМЕРОВ Особенности реакции полимеров

    Образующиеся в процессе полимеризации макромолекулы могут претерпевать различные химические превращения непосредственно в ходе своего образования. Изучение этих, так называемых, вторичных реакций, протекающих при синтезе полимера с участием образующихся макромолекул, представляется весьма важным для выяснения детального механизма полимеризации и для управления процессом синтеза полимера с целью получения материала с необходимыми свойствами. Исследование реакций макромолекул в ходе их образования позволяет объяснить ряд особенностей кинетики процессов синтеза полимеров. Эти реакции в значительной степени, а иногда и решающим образом определяют структуру полимера, молекулярно-весовое распределение, распределение неоднородных последовательностей в сополимере и концевых групп в гомополимере. [c.7]


    В разделе Химические превращения полимеров ставилась задача оттенить, с одной стороны, то общее, что характерно для органических высокомолекулярных и низкомолекулярных соединений, и, с другой стороны, показать особенности химических реакций, связанные с большой величиной молекул высокомолекулярных соединений. [c.7]

    Даже незначительные химические превращения при нагружении полимеров могут существенно повлиять на их свойства например, разрыв только одной связи в середине цепи, состоящей из 10000 звеньев, вызывает снижение молекулярной массы полиэтилена на 70, тысяч. Научное направление, которое изучает химические превращения полимеров под действием механических сил, называют механохимией. Отличительной особенностью механохимических реакций, является отрицательный температурный коэффициент. Механохимические процессы оказывают максимальное воздействие на полимеры с более высокой молекулярной массой [32].  [c.410]

    У полисахаридов, как у всех полимеров, в реакциях мономерных звеньев и, в частности, функциональных групп характерно дробное поведение. Наименьшей реагирующей частицей в таких реакциях служит не вся макромолекула в целом, как у НМС, а отдельное звено - остаток моносахарида. Поэтому у полимеров результат оценивают как среднюю степень химического превращения. Эта особенность наиболее важное значение имеет при получении производных целлюлозы (см. 16.2). [c.281]

    Рассмотренные во введении особенности макромолекулярных реакций, обусловленные полимерной природой реагентов, в сильной степени осложняют не только теоретическое описание химических превращений полимеров, но и экспериментальное исследование их кинетики и механизма. Различные аспекты этой проблемы анализируются в работах [1—4]. [c.165]

    К числу химических превращений, которые могут быть изучены с помощью ДТА, относятся процессы полимеризации и химические реакции в полимерах. К химическим реакциям относятся как процессы взаимодействия полимера с полимером и полимера с химическими соединениями, так и различные превращения в макромолекулярных веществах, вызванные воздействием внешней энергии в виде, например, излучения или тепла. Химические реакции могут включать процессы окисления, вулканизации, сшивания, отверждения и т. д. Используя метод ДТА, можно изучать воздействие излучений на полимеры, особенно если эти процессы сопровождаются изменением кристалличности. Сочетание метода ДТА с термогравиметрическим анализом дает возможность весьма успешно проводить изучение процессов термической деструкции. В последнее время для этой цели совместно с ДТА применяют газовую хроматографию. [c.325]


    В то же время были очевидны и преимущества способа, основанного на химических превращениях полимеров, в результате которых к ним присоединяются редокс-группы. Эти преимущества особенно заметны при оценке выходов, емкости и стоимости редокс-полимеров. Высказывались опасения, что ограниченная растворимость, побочные реакции и сшивание могут быть причиной [c.23]

    В начале обсуждения необходимо отметить, что химические превращения полимеров редко протекают с количественным выходом в связи с изменением растворимости компонентов реакции и соответствующего изменения доступности функциональных групп при увеличении степени завершенности процесса. Как следствие этого продукт реакции содержит обычно в одной и той же макромолекуле как непрореагировавшие группы, так и группы, вступившие в реакцию, а также группировки, образовавшиеся в результате взаимодействий соседних групп. Это обстоятельство особенно характерно для реакций, протекающих в гетерогенных системах, [c.74]

    При любых химических превращениях полимеров вследствие легкости окислительной и термической деструкции макромолекул снижается молекулярный вес полимера, а также образуются новые функциональные группы и изменяется структура в отдельных звеньях его цепи. Интенсивность окислительной деструкции возрастает, если реакция проводится в растворе с перемешиванием особенно при нагревании, так как при этом облегчается доступ кислорода к макромолекулам. В связи с этим химические превращения полимеров желательно проводить в течение короткого времени в атмосфере инертного газа при возможно более низких температурах. [c.457]

    Сегрегация и ее воздействие на химические превращения и процессы переноса особенно проявляются в системах с повышенной вязкостью, а также там, где реакции протекают с высокими скоростями. Образование молекулярных агрегатов характерно для многих процессов получения высокомолекулярных соединений. Так, сложной совокупностью физико-химических явлений отличается гетерофазная полимеризация, при которой образующийся полимер выделяется из первоначально гомогенной системы в виде новой конденсированной фазы с соответствующими морфологическими особенностями и возможным протеканием элементарных реакций в нескольких фазах [12, 13]. Примером может служить полимеризация винилхлорида, которая протекает в три стадии вначале процесс идет в гомогенной мономерной фазе на второй (наиболее продолжительной) стадии полимеризация протекает в двух фазах — мономерной и полимер-мономерной, а на третьей стадии — вновь в одной фазе (полимер-мономерной). При этом процесс сопровождается потоками массы и тепла в глобулярных образованиях (полимерных частицах), размеры которых увеличиваются в ходе реакции за счет поступления реагентов из сплошной мономерной фазы. [c.26]

    Десять лет, прошедших с момента выхода в свет второго издания книги, отмечены дальнейшим развитием химии высокомолекулярных соединений. Изучены механизмы некоторых реакций синтеза полимеров, выявлены новые свойства и возможности уже известных полимеров, синтезирован ряд новых полимеров. Интенсивно развивалась химия карбоцепных полимеров, получаемых путем термического разложения органических полимеров. Замечательны успехи химии биологически активных полимеров — биополимеров. Все это нашло отражение в новом издании книги. Пересмотрены и дополнены новыми данными все разделы, посвященные методам синтеза полимеров особенно это коснулось ионной полимеризации, полимеризации, инициированной ион-радикалами и переносом электрона, и циклополимеризации. В главе Превращение циклов в линейные полимеры заново написан раздел Ионная полимеризация циклов . Новыми данными пополнен раздел Химические превращения полимеров . Значительно расширена последняя часть книги Краткие сведения об отдельных представителях высокомолекулярных соединений . Здесь особое внимание уделено термостойким полимерам, которые приобрели чрезвычайно важное техническое значение и химия которых особенно успешно развивалась и совершенствовалась. В этом издании значительно большее внимание по сравнению с предыдущим уделено успехам в синтезе биологически активных полимеров белков и нуклеиновых кислот. Из нового издания книги исключен раздел Основы физикохимии высокомолекулярных соединений , так как в настоящее время имеется ряд книг, специально посвященных этим вопросам. [c.10]

    Химические превращения лигнина в соответствии с принятой для полимеров классификацией подразделяют на две фуппы реакции мономерных звеньев и макромолекулярные реакции. При этом у лигнина особенно ярко выражено характерное свойство полимеров - одновременное протекание реакций нескольких типов, в том числе и конкурирующих. В реакциях мономерных звеньев - фенилпропановых единиц - изменяется химический состав лигнина, но не изменяются его пространственная структура (сетчатая в случае природного лигнина или разветвленная у растворимых препаратов) и число звеньев. Эти реакции у лигнина подразделяют на три типа реакции функциональных групп реакции бензольного кольца реакции внутримолекулярных химических превращений. [c.423]


    В химии целлюлозы, как и у других полимеров, если исходить из особенностей протекания у них химических реакций, отличающих эти реакции от реакций низкомолекулярных соединений, используемая терминология приобретает определенный условный характер. Под химической реакцией понимают взаимодействие функциональных групп полимера (спиртовых групп у целлюлозы) и связей между мономерными звеньями в цепях (гликозидных связей в цепях целлюлозы) с конкретными химическими реагентами. Образование из полимера с помощью химических реакций другого полимера или других продуктов называют химическим превращением. Основные химические превращения целлюлозы - образование искусственных полимеров, т.е. производных целлюлозы, и реакции деструкции. Обработку исходного полимера (целлюлозы) определенными химическими реагентами в конкретных условиях с целью химического превращения, например, получения необходимого производного, называют химическим процессом (процесс нитрования, процесс ацетилирования и т.д.). [c.546]

    Основная особенность реакций деструкции, связанных с превращениями заместителей, заключается в том, что заместители в основной цепи полимера каким-то образом модифицируются, либо частично или полностью отщепляются. В результате такого процесса изменяется химическая природа элементарного звена макромолекулы. Если при такого рода процессе образуются летучие продукты, то они также заметно отличаются по химическому строению от соответствующего мономера. [c.19]

    В реакциях получения полимеров в качестве исходных соединений используются обычно летучие вещества, а в некоторых реакциях (например, в реакциях поликонденсации) выделяются летучие продукты [1]. Присутствие полимера в реакционной смеси, как правило, не является препятствием для использования газо-хроматографического метода. Методы определения летучих продуктов в полимерных системах подробно разработаны (см. главу IV). Поэтому газо-хроматографические методы могут быть использованы непосредственно для определения кинетики реакции по изменению концентраций расходуемых мономеров или образующихся продуктов. В связи с особенностями применения газо-хроматографических методов для изучения кинетических закономерностей реакций образования или превращения макромолекул в зависимости от типа реакции представлялось целесообразным рассмотреть применение газовой хроматографии для изучения реакций полимеризации (сонолимеризации), ноликонденсации и некоторых химических превращений макромолекул. [c.82]

    Успехи в области синтеза перекисных соединений, а также легкость их химических превращений обусловили широкое применение органических перекисей в различных отраслях химической промышленности. Они применяются в процессах полимеризации, теломеризации, вулканизации, отверждения полимеров, образуются в качестве промежуточных продуктов при производстве кислородсодержащих соединений (особенно фенола и ацетона), используются как добавки к моторному топливу. Расширенное практическое использование в свою очередь способствовало развитию исследований теоретического характера по синтезу и химическим реакциям органических перекисей..  [c.9]

    Природа и особенности элементарных процессов радиационной химии полимеров могут быть поняты лишь на основе их сопоставления с элементарными реакциями, протекающими в ходе радиационно-химических превращений более простых систем, близких по своей химической природе к полимерным. В связи с этим в настоящем докладе сделана попытка единого рассмотрения элементарных процессов, протекающих при действии [c.188]

    Последние достижения в области химической кинетики и реакционной способности органических соединений и полимеров позволили более обстоятельно рассмотреть классические разделы химии каучуков и резин — вулканизацию и старение, а также сравнительно новый материал о радиационно-химических и механохимических превращениях эластомеров. Особое внимание при изложении этих разделов уделяется специфическим особенностям реакций в полимерной матрице, кинетическим и энергетическим критериям при оценке вероятностей конкурирующих химических превращений. [c.7]

    Деформация валентных углов и увеличение межатомных расстояний, происходящие одновременно, очевидно, оказывают взаимное влияние, их следствия суммируются, и общий эффект, находящий отражение в активации молекулярной цепи и повышении ее уязвимости к действию химических реагентов, будет связан с особенностями строения полимера и реагента, участвующих в реакции механически активированного химического обрыва. Естественно предположить, что никакой химической специфики этот вид активации не вносит, и поэтому происходят только своеобразно активируемые, но типичные реакции для данного вещества при его химической деструкции. Выше уже отмечалось , что при ударных высокочастотных воздействиях могут возникать промежуточные активные состояния, характеризуемые ослаблением многих связей, и не только в основной цепи, что приводит к повышению их реакционной способности. В результате последующих превращений могут возникать свободные радикалы и без обрыва цепей. [c.36]

    В блочных полимерах диэлектрический метод может быть применен при решении самых разнообразных задач при исследовании структуры. Сюда относится исследование кинетики реакций в цепях, если в ходе химического превращения происходит изменение полярности или подвижности групп, дающих вклад в поляризацию, оценка степени пространственного сшивания макроцепей и критерии завершенности реакций, определение дефектности структуры и наличия примесей, информация о морфологических особенностях полимерных композиций и т. п. [c.164]

    Разрыв макромолекулы поликонденсационных полимеров происходит, как правило, по наиболее слабой связи или наиболее реакционноспособным участкам цепи, а среди однотипных связей или реакционноспособных групп — по закону случая. Дальнейшие химические превращения в системе зависят от особенностей строения, диффузионных и кинетических факторов и прежде всего от скоростей и энергий активации конкурирующих и последовательных сопряженных реакций, а также от условий термического воздействия (толщины и величины образца, скорости нагревания, скорости удаления летучих продуктов, давления кислорода или других газов и т. д.). [c.99]

    Полимераналогичное протекание реакций превращения в полимерах имело и имеет решающее значение для доказательства наличия макромолекул и для установления их строения. Однако очень многие превращения, особенно в технике, сопровождаются изменением (обычно уменьшением) степени полимеризации исходных макромолекул. Целью этих реакций (см. стр. 107) является изменение свойств продуктов или получение продуктов другого состава. Так, например, переводя целлюлозу в ее производные, можно получить устойчивые растворимые соединения (см. стр. 115). Реакции, протекающие с уменьшением молекулярного веса полимера, имеют значение для характеристики макромолекул лишь в том отношении, что они часто представляют собой единственный путь получения растворимых соединений, что является необходимым для использования большинства методов исследования полимеров. Следует учитывать и проверять возможность изменения степени полимеризации и структуры высокомолекулярных соединений при их химических превращениях влияние химических превращений на строение макромолекул можно изучать только на выделенных соединениях известного строения. [c.187]

    Пиролиз целлюлозы сопровождается сложными физико-химическими превращениями, протекающими по различным механизмам. На ранних стадиях термообработки главную роль играют гетеролитические реакции. С повышением температуры все больший вклад начинают вносить гомолитические реакции. Целлюлоза представляет собой гетероциклический полимер, обогащенный относительно лабильными к тепловому воздействию гидроксильными группами это дополнительно усложняет изучение ее распада. В результате многочисленных исследований накоплен обширный экспериментальный материал, установлен ряд бесспорных фактов, однако их трактовка в большинстве случаев затруднена, а в связи со сложностью и многообразием протекающих процессов особенно большие трудности возникают при попытках представить термическую деструкцию целлюлозы в виде конкретных уравнений. [c.279]

    Пиролиз целлюлозы сопровождается сложными физико-хими-ческими процессами. Под влиянием теплового воздействия происходят структурные превращения, снижение СП, многочисленные параллельно и последовательно протекающие реакции, приводящие к образованию разнообразных промежуточных и конечных продуктов. Термическая деструкция относится к числу наиболее сложных и недостаточно изученных превращений полимеров. Целлюлоза представляет собой гетероциклический полимер, обогащенный относительно лабильными к тепловым воздействиям гидроксильными группами это вносит дополнительные трудности при изучении закономерностей ее термического распада. В результате многочисленных исследований накоплен обширный экспериментальный материал, установлен ряд бесспорных фактов, однако их трактовка в большинстве случаев затруднена в связи со сложностью и многообразием протекающих процессов. Особенно большие трудности встречаются при попытках представить термическую деструкцию целлюлозы в виде конкретных химических реакций. Как обычно, в подобных случаях существуют различные гипотезы и точки зрения, которые авторы пытаются увязать с экспериментальными данными. Дать точное химическое описание термической деструкции целлюлозы, видимо, вообще невозможно. При современном состоянии этой проблемы установление основных типов реакций, позволяющих хотя бы качественно объяснить наблюдаемые закономерности, следует рассматривать как один из важных этапов развития этого раздела химии целлюлозы. Механизм деструкции, как указывалось ранее, зависит от структуры целлюлозы, характера среды, наличия катализаторов, условий нагрева и других факторов. [c.74]

    Деструкция полимеров. Химические реакции элементарных звеньев высокомолекулярных соединений часто осложнены побочными реакциями деструкции макромолекул. Строго говоря, полимераналогичные превращения возможны только в особых условиях, полностью исключающих деструкцию макромолекулы. В обычных условиях реакции элементарных звеньев сопровождаются частичной деструкцией, особенно реакции гетероцепных полимеров. Но и карбоцепные полимеры, которые содержат в цепи углерод-углеродпую связь, обладающую малой реакционной способностью, также часто деструктируются при химических превращениях. Поэтому к полимераналогичным превращениям условно относят и такие реакции полимеров, при которых протекает частичная деструкция макромолекулы, но не она определяет конечный результат реакции. [c.222]

    Химические свойства и химические превращения полимеров. Химические реакции, не приводящие к изменению степени полимеризации макромолекул поли-мераналогичные превращения и внутримолекулярные превращения. Особенности реакционной способности функциональных групп макромолекул влияние локального окружения, конфигурации, конформации макромолекул и нагвчолекулярной структуры полимера концентрационные и электростатические эффекты. [c.383]

    Табулированы и обсуждены имеющиеся данные по физическим и химическим свойствам полимеров изобутилена. Рассмотрены химические свойства и превращения олиго- и полиизобутиленов, которые подразделены на превращения концевых групп двойных связей (реакция присоединения и расщепления) звеньев основной цепи, боковых метильных групп (заместител ьные реакции) и распад основной цепи (деградация, деполимеризация, сшивка). В ряду различных воздействий на полимер проанализированы химические, физические и высокоэнергетические методы воздействия (реагенты и окислители, механохимия, ультразвук, плазма тлеющего разряда, ионизирующие излучения и др.). Особенно выделены направленные превращения полимеров изобутилена, открывающие пути технического применения полимеров изобутилена (каталитическое ионное гидрирование, алкилироваьше фенолов и аминофенолов, каталитическая деполимеризация и некоторые другие). Суммированы аналитические характеристики полиизобутилена спектроскопические (ИК, ЯМР) данные, касающиеся основной цепи и дефектов структуры вязкостные, реологические и молекулярно-массовые параметры их взаимосвязь и методы определения (фракционирование, озонолиз, гель-проникающая хроматография и др.). Совокупное сочетание различных методов обеспечивает высокую степень надежности полученной информации, касающейся аналитических характеристик полиизобутилена. [c.379]

    А. А. Берлин с сотрудниками обнаружили очень интересный вид меха-но-химических превращений полимеров. Было показано, что при замораживании растворов полимеров возникающие давления настолько велики (в особенности в водных растворах), что вызывают механическую деструкцию материала, которую авторы назвали криолизо.ч. В результате криолиза образуются макрорадикалы, способные при оттаивании ко всем реакциям свободных радикалов. [c.64]

    Применительно к реакциям с участием макромолекул метод Монте-Карло особенно полезен в тех случаях, когда продукты этих процессов не могут быть описаны каким-либо известным процессом условного движения по макромолекулам, например цепью Маркова в линейных сополимерах или ветвящимся случайным процессом в разветвленных полимерах. Для расчета статистических характеристик подобных немарковских процессов метод Монте-Карло может стать единственно возможным. Он позволяет провести прямое математическое моделирование на ЭВМ конкретных хиншческих реакций макромолекул, минуя вывод и решение соответствующих этим реакциям кинетических уравнений, которые либо чересчур сложны, либо вообще не могут быть написаны в обозримом виде. Метод Монте-Карло уже нашел применение для расчетов статистических характеристик продуктов ряда процессов получения и химического превращения полимеров, но его возможности в этой области еще далеко не исчерпаны. [c.67]

    Особенность реакций полимераналогичных превращений заключается в том, что протекают они неполностью, возможны побочные процессы, на которые влияют физические и химические факторы, строение и структура макроцепей и др. При этом образуются смеси различных макромолекул, однороднорь полимера-пленкообразователя нарущается, что может отрицательно сказаться на физико-механических и защитных свойствах покрытия. Следует также учитывать, что часто полимераналогичные превращения протекают в жестких условиях, в которых возможна деструкция макроцепей. [c.78]

    Приведенные элементарные реакции механохимического процесса типичны для любой цепной свободнорадикальной реакции. Однако особенности каждой стадии дают возможность выделить механохимию как самостоятельный раздел химических превращений полимеров. [c.75]

    Задолго до возникновения химии высокомолекулярных соединений как науки большое практическое значение имели процессы химической переработки полимеров, особенно природных (целлюлоза, белки, каучук). После того как в начале 30-х годов XX в. были разработаны методы синтеза полимеров, исследователи приступили к изучению химических превращений искусственных высокомолекулярных веществ. Если на первом этапе преследовалась только цель использования химических реакций для установления строения полимеров, то впоследствии продукты химической переработки этих веществ приобретают самостоятельное значение для производства пластических масс, лаков, синтетических волокон, ионитов и т. д. Сюда относятся хлорирование поливинилхлорида и каучука, гидролиз поливинилацетата в поливиниловый спирт, синтез из последнего поливинил-ацеталей, сульфирование, нитрование и хлорметилирование сополимеров стирола в производстве ионитов и т. д. [c.454]

    Причиной химических превращений полимеров может быть накопление упругой энергии вследствие растяжения макромолекул. Однако во многих случаях эти превращения вызываются одновременным воздействием нескольких факторов. Например, при переработке полимеров при повышенных температурах под влиянием тепла, кислорода и механических воздействий развиваются конкурирующие химические реакции. Для того чтобы отличить механохимические реакции от реакций других типов, можно использовать табл. 1.1. Отличительной особенностью механохимических реакций является отрицательный температурный коэффициент увеличение температуры при постоянном напряжении (или, точнее, при постоянной скорости сдвига) приводит к изменениям скорости процесса, нетипичным для химических реакций, т. е. энергия активации механохимической реакции оказывается отрицательной. Результаты исследований термической и окислительной деструкции затронуты в данной книге лишь незначительно и только в связи с механохимическими реакциями. Книги Джеллинека [375], Грасси [293] и Рейча и Стивала [632] остаются превосходными источниками информации по некоторым другим видам деструкции полимеров. [c.13]

    Любые химические превращения полимерных соединений имеют много общего с реакциями низкомолекулярных соединений, содержащих те же функциональные группы. Однако вследствие макромолекулярной структуры полимерных веществ химические превращения их отличаются определенным своеобразием. Первая особенность заключается в легкости термической и окислительной деструкции макромолекул полимеров. Эти явления сопровождаются уменьшением молекулярного веса полимера и образованием 1ЮВЫХ функциональных групп в отдельных звеньях цепей. Окис-1ительная деструкция становится более интенсивной, если полимер находится в растворе (особенно при нагревании такого раствора), поскольку доступ кислорода к отдельным макромолеку-. 1ам в этом случае облегчается. Поэтому химические превращения полимеров следует проводить только при возможно более низкой температуре и возможно быстрее, чтобы уменьшить термическую п окислительную деструкцию цепей макромолекул. Окислительная деструкция,, протекающая в большей или меньшей степени мри любых химических превращениях полимеров, изменяет структуру некоторых звеньев макромолекул. Выделить из состава полимера отдельные продукты окислительной деструкции невозможно, так как они соединены ковалентными связями с соседними звеньями макромолекул. [c.170]

    Третья особенность заключается в многообразии структуры макромолекул. В большинстве полимеров каждое звено цепи содержит функциональные группы, расположение которых может быть весьма хаотичным. Наряду с сочетанием голова к хвосту имеются сочетания голова к голове) или хвост к хвосту . Вследствие этого некоторые функциональные группы находятся при двух соседних углеродных атомах, в других звеньях функциональные группы находятся по отношению друг к другу в положе-тнш 1—4. По [ифункциональность макромолекул и возможность близкого взаимного расположения функциональных групп вызы-нает многочисленные побочные реакции, протекающие одновременно с основным процессом химического превращения. К числу таких побочных процессов относится возможное внутримолеку-. 1ярное взаимодействие функциональных групп, часто приводящее к образованию циклических структур или ненасыщенных связей, а также межмолекулярные реакции, вызывающие появление поперечных мостиков между цепями макромолекул. [c.171]

    В процессах химических превращений иолимеров следует избегать применения высоких температур, концентрированых кис-. ют и щелочей, а тем более окислителей. Полимераналогичные превращения рекомендуется проводить в атмосфере азота. Эти предосторожности необходимы для уменьшения возможности про-гекания процессов деструкции, которые могут привести к разрыву макромолекулярных цепей (т, е. к снижению их среднего молекулярного веса), к появлению новых разветвлений (т. е. к изменению структуры цепей) и, наконец, к различным нежелательным побочным процессам в результате вторичных реакций между функциональными группами. Особенно интенсивно развиваются процессы окислительной деструкции г[ри химических превращениях предварительно растворенных полимеров. Растворение полимера облегчает доступ к отдельным звеньям цепей не только для реагирующих веществ, но и для кислорода, в результате оба процесса становятся конкурирующими. С повышением температуры реакционной смеси, увеличением интеис ивности перемешивания и при введении даже очень небольшого количества окислителей усиливается деструктируюш,ее влияние кислорода. [c.172]

    Процессы с независимым питанием (или неограниченным составом питания) — это процессы, протекающие с одним или многими видами сырья, в которых относительные выхода продуктов реакции при изменении состава сырья не меняются. Подобные процессы в химической технологии, особенно при переработке нефти, встречаются довольно часто. К их числу можно отнести совместное крекирование газойля некоторых нефтей с высшими полимерами, полученными в процессе синтеза додецилена. При этом относительные выхода конечных продуктов не меняются при изменении соотношения между ними или даже в случае отсутствия одного из них. Аналогичные процессы наблюдаются и при некоторых химических превращениях индивидуальных веществ как в промышленности органического синтеза, так и в производстве неорганических веществ. [c.35]

    Процессы полимеризации и поликонденсации в умеренно замороженных растворах соответствующих мономеров при температурах не ниже, чем несколько десятков градусов от точки замерзания системы, изучены значительно в меньшей степени, чем протекающая при низких и сверхнизких температурах полимеризация витрифицированных или кристаллических мономеров. Характерной особенностью реакций в неглубоко замороженных растворах является то, что такие системы гетерогенны, они состоят как минимум из двух фаз, а химические превращения происходят в незамороженных включениях -так называемой незамерзшей жидкой микрофазе, где криоконцентрирование растворенных веществ очень часто благоприятствует протеканию реакций. Для полимеризации ненасыщенных мономеров в области температур, где возможно существование жидкой микрофазы, в которой концентрируются мономеры, инициаторы и образующийся полимер, температурные зависимости скорости реакции, выхода и молекулярной массы полимерных продуктов, как правило, имеют экстремальный характер. [c.68]

    В последние годы начато промышленное осуществление ряда радиационных химико-технологических процессов. К таким процессам относятся в первую очередь реакции органического синтеза, протекающие по цепному (или близкому к цепному) механизму и инициируемые излучением хлорирование, сульфирование, окисление, присоединение по двойной связи и т. п. Освоенным в промышленности процессом является, например, синтез бромистого этила прямым присоединением НВг к этилену при действии у-лучей. Особо важной отраслью промышленной радиационной химии являются разнообразные превращения полимеров, в особенности Е /лканизация каучуков. Промышленностью освоена радиационная полимеризация этилена и прямое получение полиэтиленовых пленок и изделий сшиванием макролюлекул, т. е. образованием химических связей между ними при действии излучений. Радиационно-терми-ческая вулканизация изделий из каучука, в частности шин, является перспективным процессом, так как улучшается качество продукции. При радиационно-химических превращениях изменяются свойства и структура полимеров, что используется техникой для улучшения технологических показателей. [c.281]

    Ацетилен является одним из важнейших полупродуктов современного промышленного органического синтеза. Возможность получения ацетилена из угля (через карбид кальция) и из нефти (окислительным пиролизом метана) обеспечивает ему важную роль и в химической промышленности стран, ориентирующихся на каменноугольное сырье, и в странах с развитой нефтехимической промышленностью. Первым процессом тяжелого органического синтеза с применением ацетилена было осуществленное в начале XX века производство уксусного альдегида (и уксусной кислоты) по методу Кучерова. В 1930-х и начале 1940-х гг. в результате детальных исследований советских (Фаворский, Назаров, Шостаковский), немецких (Реппе) и американских (Ньюланд) химиков был открыт и доведен до промышленного использования ряд интересных реакций ацетилена и его производных. Теперь из ацетилена могут быть получены такие важнейшие мономеры как дивинил, хлоропрен и изопрен, которые применяются для производства основных видов синтетического каучука, и не менее важные мономеры, образующие некаучукоподобные полимеры с самыми разнообразными свойствами. Из числа последних необходимо упомянуть винилхлорид, простые и сложные виниловые эфиры, акриловую кислоту и ее эфиры, винилэтинилкарбинолы. Приготовляемые из тих полимеры находят широкое и многообразное применение в качестве пластмасс, органического стекла, присадок к смазочным маслам, синтетических клеев и медицинских препаратов. Среди многочисленных реакций ацетилена особенно интересны превращения с участием ацетиленового водорода, связанного с sp-гибридизованным углеродным атомом. Относящиеся сюда реакции нашли столь широкое применение, что практическое знакомство с ними необходимо для всех химиков-органиков. [c.40]

    Химические превращения подобных полимеров ограничиваются реакциями замещения водорода и разрыва С—С- и С—Н-СЕязей. Такие реакции, как отщепление воды, галоидоводородов, двуокиси углерода и других низкомолекулярных веществ, разумеется, не протекают, так как полимерная углеводородная молекула не содержит лабильных заместителей. Рассматриваемые высокомолекулярные углеводороды имеют насыщенный характер если в их макромолекулах и может находиться очень небольшое количество карбонилсодержащих или ненасыщенных звеньев, то лишь в связи с особенностями процесса их синтеза, переработки или эксплуатации. Такие полимеры отличаются весьма высокой стабильностью в условиях длительного хранения в отсутствие света при комнатной температуре. Однако в результате нагревания на воздухе или под действием солнечного света в отсутствие стабилизаторов происходит их быстрое старение, сопровождающееся резким ухудшением механических и электрических свойств. [c.175]


Смотреть страницы где упоминается термин ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ПОЛИМЕРОВ Особенности реакции полимеров: [c.211]    [c.341]    [c.609]    [c.43]    [c.69]    [c.11]    [c.158]   
Смотреть главы в:

Основы химии высокомолекулярных соединений -> ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ПОЛИМЕРОВ Особенности реакции полимеров




ПОИСК





Смотрите так же термины и статьи:

Особенности химических реакции полимеров

Полимеры химическая

Превращения химические

Реакции полимеров



© 2025 chem21.info Реклама на сайте