Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства растворов Типы растворов. Основные определения

    Большие трудности представляет собой расчет жидкой фазы. Современное состояние теории растворов позволяет предсказывать свойства только некоторых типов растворов. В основном же изучение свойств растворов идет по пути экспериментального исследования для получения эмпирических зависимостей по минимуму экспериментальных данных. Определение указанных зависимостей выполняется в форме корреляций коэффициентов активности от физических свойств системы. При определении зависимости коэффициентов активности от свойств системы при постоянных давлении и температуре используется уравнение Гиббса — Дюгема  [c.23]


    Большие трудности представляет собой расчет жидкой фазы. Современное состояние теории растворов позволяет предсказывать свойства только некоторых типов растворов. Б основном же изучение свойств растворов идет по пути экспериментального исследования для получения эмпирических зависимостей по минимуму экспериментальных данных. Определение указанных зависимостей выполняется в форме корреляций коэффициентов активности от физических свойств системы. [c.25]

    Рассмотренные выше погрешности являются основными. Они определяются только природой растворов и зависят главным образом от их электрофизических свойств, являющихся в свою очередь функцией частоты поля. Другие погрешности могут зависеть от различных факторов (например, от типа аппаратуры, метода определения и т. д.), они общеизвестны и здесь не обсуждаются. [c.115]

    Шай и Надь [187], исходя из представления о том, что при адсорбции из растворов на поверхности адсорбента образуется мономолекулярный слой адсорбирующегося компонента, предложили метод определения удельной поверхности из изотерм относительной адсорбции жидких смесей на поверхности раздела твердое тело — жидкость. Экспериментальная проверка этого представления показала хорошие результаты на поверхности раздела как твердое тело — жидкость, так и жидкость — пар. Это подтверждает далеко идущую аналогию в свойствах обоих типов разделяющей поверхности. Шай и Надь установили пять основных типов изотермы относительной адсорбции, существующих на поверхности раздела как жидкость — пар, так и твердое тело — двухкомпонентная жидкость (разумеется, если молекулярная адсорбция не осложнена хемосорбцией или значительной ассоциацией молекул). [c.99]

    Основное внимание в этой главе будет уделено разработке общих положений координационной модели и применению их для объяснения поведения неводных растворителей. В первую очередь мы остановимся на методах установления координации и определения типов ионов и молекул, присутствующих в растворе, и затем рассмотрим энергетику взаимодействия между растворителем и растворенным веществом и каким образом устанавливается состав раствора в различных растворителях. В заключение рассмотрим поведение растворенного вещества в нескольких типичных координирующих растворителях для определения качественной связи между типами ионов и молекул в растворе (составом раствора) и главными свойствами растворителя. Насколько возможно, будут представлены данные, позволяющие оценить существенные параметры растворителя. [c.205]


    Предложены уравнения кривых титрования кислот, оснований и солей, в которых учитывается неполная диссоциация солей [90, 299, 300]. Пй основе этих уравнений изучены [301—303] условия кондуктометрического титрования кислот, оснований и солей в водно-диоксановой среде [45% (масс.) диоксана]. Кислотные и основные свойства электролитов в этом растворителе по сравнению с водой ослабляются. Среднее значение рКс солей равно 1. Эквивалентные электропроводности всех ионов снижаются. Однако подвижности водородных гидроксильных ионов еще имеют аномально высокие значения по сравнению с другими ионами и равны соответственно 145,2 и 62,2 [303]. Построены теоретические кривые титрования кислот различной силы (р/(ц 1 —13) сильным основанием (р/Сь=1) при р/(с = 1. Установлены типы кондуктометрических кривых титрования и показана возможность определения в 0,05 н. растворах всех кислот, имеющих рКа 12. Изучены условия титрования 0,05 н. растворов кислот различной силы [c.197]

    К модификациям несовершенного типа относятся аморфизированные кристаллические структуры, основные типы модификаций с искажениями, смешанные кристаллические модификации. При увеличении разницы в длине цепей смешиваемых молекул образуются гетерофазные системы, свойства которых отличаются от твердых растворов. На характерную особенность н-парафинов при фазовых переходах, проявляющуюся в модификационных превращениях кристаллической структуры в твердой фазе указывали авторы работ [156, 157]. Исследованиями установлено, что на кинетику кристаллизации сложной смеси парафинов доминирующее влияние оказывают индивидуальные нормальные парафины строго определенной молекулярной массы. При изучении бинарной смеси нормальных парафинов [158] было показано, что образование той или иной кристаллической модификации сложным образом определяется молекулярной массой и концентрацией смешиваемых компонентов, причем в процессе смешения образуются также промежуточные модификации смешанного типа. Изучались модификационные переходы в парафиновых смесях в растворах [159], а также в присутствии поверхностно-активных веществ [160, 161]. [c.143]

    Ниже на примере исследования магнитного сплава типа тиконал будут показаны некоторые возможности дифракционных методов [24—26]. Магнитожесткие сплавы типа тиконал являются одним из основных материалов для изготовления постоянных магнитов в радиотехнической и электронной промышленности. Оптимальные магнитные свойства сплавы тиконал приобретают после специальной термической обработки на определенной стадии распада пересыщенного твердого раствора ). [c.168]

    Один из способов нахождения молекулярной массы полимеров основан на количественном определении концевых функциональных групп. В полимерах такого типа, как полиуретан и ароматические полиамиды, наибольшую трудность представляет определение концевых аминогрупп, обладающих слабыми основными свойствами. Прямое титрование этих групп значительно осложняется в разбавленных растворах. [c.111]

    Основная заслуга в основании коллоидной химии принадлежит Т. Грэму, об исследованиях которого (фосфорные кислоты) уже говорилось. Занимаясь определениями осмотического давления различных растворов, Грэм сконструировал осмометр, состоящий из подвешенного в испытуемом растворителе (воде) колокола с отверстиями вверху (обрезанная верхняя часть склянки для жидких продуктов). Снизу колокол был затянут пергаментной бумагой. Этот прибор Грэм назвал диализатором, и с его помощью изучал осмотические свойства различных растворов, в том числе растворов желатины. Название коллоид (хо .) а— клей ) Грэм ввел в 1861 г. Он писал Так как желатина представляет собой особый тип веществ, было предложено обозначать вещества этого типа названием коллоиды и трактовать о такой форме агрегации, как о коллоидном состоянии материи. Противоположным коллоидному является кристаллическое состояние материи. Вещества, принадлежащие к данной форме состояния материи, следует обозначить названием кристаллоиды... Коллоиды представляют собой динамическое состояние материи, кристаллоиды — ста-тическое. Коллоиды обладают энергией...  [c.446]

    Второй основной тип систем — высокомолекулярные системы — соответствует второму структурному типу укрупнения частиц, ведущему к образованию цепных макромолекул. Они дают при смешении с растворителями молекулярные растворы, подобные обычным растворам низкомолекулярных веществ, но с очень длинными цепными молекулами. Такие растворы относятся к однофазным (гомогенным) системам, как и растворы сахара или мочевины, они образуются самопроизвольно, потому что сам процесс растворения идет с уменьшением свободной энергии и не требует наличия стабилизаторов. Растворы оказываются вполне устойчивыми, независимо от длительности их существования. Они являются молекулярными, термодинамически равновесными и поэтому обратимыми системами. Точно так же обратим, например, 10%-ный раствор сахара при 20° С, всегда обладающий определенными свойствами независимо от пути его получения. Таким образом, ко второму типу коллоидных систем относятся термодинамически обратимые молекулярные гомогенные системы. [c.14]


    В настоящее время в экстракционной практике не находят применение (за редким исключением) чистые растворители (экстрагенты) типа простых эфиров, спиртов, кетонов и др., обладающие низкой экстракционной способностью. Обычно используются органические соединения (нейтральной,кислой или основной природы), с высокими экстракционными свойствами, которые в силу своих физических и химических особенностей разбавляются так называемыми инертными разбавителями до приемлемых в технологии концентраций. Таким образом, уже вследствие производственной необходимости реальные системы неэлектролитов оказываются как минимум трехкомпонентным и (экстрагент — разбавитель — экстрагируемое вещество), причем природа разбавителя обычно оказывает существенное влияние на технологические параметры экстракционного процесса. Обсуждая процессы, протекающие в органической фазе при экстракции, Розен [217, 218] ограничивается рассмотрением случая, когда диэлектрическая проницаемость смешанного органического растворителя мала и диссоциация экстрагируемых соединений в фазе экстрагента не имеет практического значения (например, системы ТБФ — предельные углеводороды в определенной мере приближаются к подобным смесям, причем тем, сильнее, чем ниже концентрация ТБФ). Только подобные системы можно с полным правом назвать системами неэлектролитов и применить к ним соответствующую теорию растворов. [c.44]

    Щелочные ооли некоторых жирных кислот с прямой цепью образуют интересные гели, имеющие большое промышленное значение. Соли кислот с короткой цепью воднорастворимы и ведут себя как нормальные кристаллоидные электролиты. Аномальные свойства обычных мыл появляются только при содержании в цепи более восьми а леродных атомов, увеличиваясь с длиной цепи. Типичным представителем мыл является пальмитат натрия. При низких температурах (0°С) он относительно нерастворим, но очень хорошо растворяется при 100° С. В разбавленных водных растворах его поведение нормально данные о понижении упругости пара и электропроводности говорят об отсутствии или малой степени молекулярной ассоциации соли и о высокой степени электролитической диссоциации (хотя и несколько более низкой, чем у других солей этого типа). При высоких концентрациях и понижение упругости пара и электропроводность ненормально низки в некоторой узкой области концентраций понижение упругости пара уменьшается с увеличением концентрации. Очевидно, что в концентрированных растворах молекулы мыла в высокой степени ассоциированы, образуя так называемые мицеллы коллоидных размеров. Некоторые из этих мицелл заряжены, но в значительной степени они состоят из нейтрального мыла. Выше 70°С эти коллоидные растворы устойчивы, но если температура падает ниже этого предела, то из растворов постепенно выпадает творожистый осадок, образованный фибриллами, состоящими в основном из сильно гидратированного нейтрального мыла. При дальнейшем понижении температуры весь концентрированный раствор превращается в мутную творолшстую массу, в которой промежутки между частицами заполнены остатком раствора мыла или его гелем. При температуре 0 С все мыло находится в состоянии творожистого осадка, концентрация же его во внешней жидкости очень мала. В этой области температур растворы в определенных условиях могут быть получены и в форме гелей, которые в отличие от относительно мутных творожистых осадков прозрачны и однородны. [c.246]

    В книге излагаются теоретические и экспериментальные основы кондуктометрического и хронокондуктометрического методов анализа. Описываются методы определения индивидуальных соединений и методы анализа многокомпонентных смесей, приводятся кондуктометрические кривые титрования электролитов, проявляющих кислотно-основные свойства в водных растворах. Даны критерии применимости кондуктометрического метода для определений, основанных на использовании реакций различных типов. Описывается аппаратура и техника кондуито.четрических измерений. [c.2]

    Ионоселективные электроды привлекают внимание химиков-аналитиков тем, что с их помощью можно решать задачи прецизионного определения содержания основных компонентов и микропримесей в объектах самого различного состава. Для аналитических целей разработано большое число электродов различных типов и назначений, это направление и в настоящее время интенсивно развивается. В опубликованных в нашей стране монографиях по ионоселективным электродам подробно изложена теория действия йоноселективных электродов, разработанная применительно к мембранным системам различных типов, а также рассмотрены факторы, определяющие селективность мембран на основе твердых ионообменников и жидких ионитов, описано изготовление и применение различных электродов с твердыми и жидкими мембранами, проведено критическое сравнение их аналитических характеристик, применение ионоселективных электродов в органическом анализе и для изучения термодинамических свойств растворов-электролитов и кинетики некоторых реакций. [c.4]

    ПАВ (естественные или присадки) растворяются в углеводородных средах, затем при определенной концентрации образуют димерные ассоциа-ты (квадруполи), многомерные ассоциаты, мицеллы разнообразной конфигурации (шаровой, цилиндрической, пластинчатой, ленточной). Такие же ассо-циаты образуют в нефтепродуктах присадки. Мицеллы состоят из ядра и сольватной оболочки. Минимальная концентрация ПАВ, при которой образуются мицеллы, называется критической концентрацией мицеллообразова-ния (ККМ). Величина ККМ обусловливает объемные функциональные свойства ПАВ (моюще-диспергирующие, солюбилизирующие и др.). Мицелляр-ное состояние ПАВ - наиболее энергетически выгодное гидрофильные группы окружены гидрофильными, а гидрофобные - гидрофобными. Основные типы ПАВ характеризуются следующими величинами ККМ  [c.47]

    Битум лаковый применяется в качестве связующего в газетных и некоторых других красках высокой и офсетной печати. В последнее время в состав красок высокой и офсетной печати стали вводить нефтяной пек для увеличения прочности оттиска к истиранию. Асфальтены являются основным компонентом пеков и битумов. Представляло интерес сравнить два типа асфальтенов нативных, полученных из сырой нефти (асфальтиты), и вторичных — выделенных из высокоароматизированной пиролизной смолы. Первый тип асфальтенов имеет лоскутное строение и состоит из полициклических фрагментов, соединенных алифатическими цепями. Размеры и состав фрагментов различны. Асфатштены второго типа отличаются компактным строением и включают бензольные циклы, соединенные друг с другом путем ката- и нерикон-денсации. Предполагалось, что подобное различие в строении молекул асфальтенов должно определенным образом влиять на реологические свойства их растворов в ми- [c.252]

    Выше показано, что присутствие посторонних веш,еств, взаимодействующих с применяемым реактивом, ограничивает применение объемного анализа. Кроме того, с.педует иметь в виду, что в первой группе методов можно пользоваться только такилп хгмнческими реакциями, при которых образуется продукт с какими-либо особенными физическими свойствами. Так, продукт реакции должен выпадать в виде осадка, чтобы его можно было отфильтровать или иным способом отделить от раствора в других случаях продукт реакции должен быть окрашен, чтобы его количество можно было определить по окраске раствора. При объемном анализе такие условия вовсе не требуются наоборот, особенные физические свойства продукта реакций часто мешают установлению точки эквивалентности. Это важное обстоятельство обусловливает известное распределение различных типов реакций при их применении в количественном анализе. Реакции осаждения применяются главным образом в весовом анализе и при разделении элементов. Реакции образования окрашенных соединений (чаще всего — комплексного характера) применяются для колориметрических определений. Кислотно-основные [c.25]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    Само существование соединений постоянного и переменного состава служит отражением общей идеи о единстве непрерывности и дискретности при химических превращениях. Соединения постоянного состава символизируют так называемую "привилегию дискретности" в химии, поскольку для химического взаимодействия характерно скачкообразное изменение состава и свойств продуктов при некоторых определенных соотношениях компонентов. Эти соотношения регламентируются основными стехиометрическими законами кратных отношений, эквивалентов и т.п. Для соединений переменного состава в пределах области гомогенности соотношения компонентов изменяются непрерывно при сохранении кристаллохимического строения фазы. В соответствии с этим непрерывно изменяются и свойства фазы. При этом для фаз переменного состава, которые относятся к дальтонидам в широком смысле, внутри области гомогенности существует "предпочтительный" состав, которому отвечает сингулярная точка на диаграмме состав — свойство. Для бертоллидных фагз, которые также обладают качественно своеобразным кристаллохимическим строением (по этому признаку относятся к соединениям), характерно монотонное изменение свойств в пределах области гомогенности, что роднит их с твердыми растворами. Для бертоллидов (в отличие от дальтонидов) внутри области гомогенности ни один из составов не обладает особыми свойствами, т.е. не является предпочтительным. Таким образом, бертоллиды представляют собой промежуточную ступень между твердыми растворами и химическими соединениями дальтонидного типа. Екли учесть, что сами твердые растворы являются промежуточной ступенью между механическими смесями и химическими соединениями, то прослеживается взаимосвязь  [c.262]

    Таким образом, у данного типа ионообменников наблюдается переход от анионного обмена в кислом растворе к катионному обмену в щелочном растворе. Подобного перехода не наблюдается, если М — элемент с низкой основностью, например кремний. Переход от одного типа обмена к другому происходит в определенном интервале значений pH, зависящем от основности иона металла. Отсутствие резкого перехода, отвечающего этому изменению (здесь уместно сравнение с изоэлектриче-ской точкой амфотерных ионов), и возможность в некоторых случаях одновременно и катионного и анионного обмена при определенном значении pH дают основание предполагать, что ионообменные группы неравноценны. Силикагель обладает только катионообменными свойствами [20] высокое электронное сродство у четырехвалентного иона кре.мния проявляется в форме очень слабой основности гидроксильных групп. Атомы водорода последних легко заменяются катионами даже в кислых растворах, особенно теми, которые легко координируются с кисло- родом. На рис. 24 представлено влияние pH раствора на величины коэффициентов распределения различных ионов при сорбции нх на силикагеле. Из этих данных следует, что указанные ионы можно разделить при определенных значениях pH раствора. Этот метод был использован [21] для разделения урана, плутония и трехвалентных металлов (продукты деления) из растворов, полученных при растворений облученрого урана кислоте. Значения коэффи- [c.119]

    Для характеристики неупорядоченного состояния лучше использовать средние общие размеры молекулы, а не средние локальные конформации, потому что такие свойства, как объемная вязкость и способность связывать воду определяются общим объемом раствора, охватываемы. подвижной цепью. Математически мол<но показать, что проблема вычисления средних общих размеров сводится к проблеме определения средней ориентации одного углеводного остатка по отношению к следующему за ним остатку и в принципе может быть решена методом построения моделей с помощью ЭВМ [2]. Чтобы рассчитать соответствующие энергии взаимодействий на каждой стадии для их усреднения согласно распределению Больцмана, необходимо рассмотреть все возможные ориентации углеводных остатков относительно друг друга и затем вычислить среднее квадратичное расстояние между концами цепи. Результаты можно сравнить с экспериментальными значениями, в частности полученными методом светорассеяния. Выяснилось, что две основные группы периодичных гомополнсаха-ридов, которые можно распознать по их четко определенным типам конформаций (см. выше), различаются по основным свойствам и в состоянии статистического клубка. Молекулы соединений, имеющих конформацию ленты, как было правильно предсказано [20], охватывают в растворе большее пространство (типичное характеристическое отношение С , 100) по сравнению с молекулами в конформации полой спирали (Сое 10). [c.290]

    Форму.гы сплавов. Твердые растворы замещения могут иметь любой состав в пределах области смешиваемости взятых металлов, причем в них осун1ествляется статистическое распре-де.тение атомов по позициям в структуре металла-растворителя. При определенных отношениях количеств атомов могут возникать сверхструктуры. Два силава одного и того же состава, по с различной структурой — упорядоченной и неупорядоченной—могут заметно отличаться друг от друга по физическим свойствам. Таким образом, состав пе может служить исчерпывающей характеристикой силава. Состав твердых растворов внедрения также изменяется в определенных пределах. Верхний предел количества внедренных атомов определяется числом пустот подходящего размера, но, как мы увидим ниже, этот предел достигается не всегда. Когда это позволяет отношение числа внедренных к числу основных атомов структуры, в ней осуществляется симметричное расположение двух типов атомов. В промежуточных случаях расположение внедренных атомов является статистическим. [c.493]

    Мы должны — указывает Курнаков — считать растворы и вещества переменного состава или сольваты основным типом химических превращений. Как ни странно на первый взгляд, но именно принципу непрерывности отныне суждено защищать незыблемость закона постоянства состава и дать точную геометрическую характеристику разрывов при образовании определенных химических соединений. Действительно, не состав твердого вещества характеризует определенное соединение, так как он является вообще переменным, а постоянный состав сингулярной или инвариантной точки на диаграммах свойств твердого вещества [74]. [c.71]

    Экспериментальные методы определения кислотно-основных свойств поверхности по Льюису аналогичны методам определения протонной кислотности или основности (т. е. по Бренстеду). В ряде случаев эти два типа кислотности трудно различить. Например, метод ионообменной адсорбции из растворов сильных щелочей может привести к гидролизу связей Si—О—А1 в алюмосиликате и к их гидратации [200]. В результате определяется суммарная (протонная и апротонная) кислотность. Согласно Миессерову [251], обменные [c.75]

    Основными условиями применения в фотометрическом анализе комплексов титана, ванадия, ниобия и тантала с перекисью водорода является силь номи слая среда и достаточный избыток перекиси водорода. Хлориды и сульфаты мало влияют на оптические свойства этих комплексов, хотя по ряду данных они присоединяются к окрашенным комплексам Ме—Н2О2, образуя смешанные комплексы, иногда анионного типа. С другой стороны, комплексы титана и ванадия с Н2О2 вследствие своей невысокой прочности сравнительно легко подвергаются действию различных анионов, связывающих центральный ион. Например, щавелевая кислота резко ослабляет окраску или совсем обесцвечивает раствор перекисноводородного комплекса титана. При этом образуется смешанный комплекс, причем полоса поглощения постепенно сдвигается в ультрафиолетовую область спектра. Известно, что титан образует с фтором более прочный комплекс по сравнению с ванадием. Поэтому в смеси перекисных соединений этих элементов, при действии умеренных количеств фторидо В, можно обесцветить комплексное соединение титана, тогда как окрашенное соединение ванадия не разрушается. Это является основанием одного из методов колориметрического определения ванадия и титана при совместном присутствии. [c.254]

    Наиболее важное отличие этих элементов от титана состоит в том, что низшие состояния окисления у них встречаются крайне редко. Достоверно известно всего лишь несколько соединений, в которых 2г и Н1 не являются четырехвалеитныкш. Подобно титану, оба элемента образуют бориды, карбиды, нитриды и т.д. по типу соединений включения, в которых металлу нельзя приписать определенного валентного состояния. Вследствие большего размера атомов их окислы обладают более основныли свойствами и хи и1я их водных растворов несколько более обширна, чем у титана у нпх встречаются соединения с координационным числом 7 и чаще 8. [c.339]

    Получение и свойства мембран на основе коллодия подробно описал Солнер [S66, 67]. Он и его сотрудники произвели большую. часть исследований этих мембран. В соответствии с этими работами [S68, 69]было установлено, что у мембран из коллодия, окисленного в блоке, наблюдается тенденция к деградации, которая происходит путем уменьшения среднего молекулярного веса. Эффект деградации сводит на нет кажущиеся преимущества мембран этого типа, заключающиеся в возможности получения больших количеств материала, а следовательно, и мембран в одну стадию.. Для окисления коллодия может быть использован ряд окислительных агентов. Оказалось, что перекись водорода, бромная вода и перманганат натрия менее эффективны для этих целей, чем ги-похлориты натрия и кальция и гипобромид натрия. Последняя группа окислительных агентов может быть с таким же успехом применена и для других производных целлюлозы. Мейер и Сивере М58] использовали их при окислении целлофана. Окисление коллодиевых мембран или пленок осуществляется погружением их в окислительный раствор при комнатной температуре на определенное время (обычно на несколько часов) затем их тщательно промывают. Концентрация и значение pH окислительного раствора влияют на пористость и основную обменную емкость мембран. [c.127]

    Кремнезем, по своей способности образовать соли, в ряду окислов стоит как раз на границе со стороны кислот в таком месте, на каком глинозем стоит со стороны оснований, т.-е. гидрат глинозема есть представитель слабейших оснований, а гидрат кремнезема — наименее энергических кислот (по крайней мере в присутствии воды, т.-е. в водных растворах) но в глиноземе все-таки совершенно ясно выражены основные свойства, а в кремнеземе — исключительно кислотные. Как и все слабые кислотные окислы, он способен образовать малопрочные, солеобразные вещества, в воде весьма легко разлагаемые другими кислотами. Главнейшую же особенность креи-неземаых солей составляет множество типов солей. В солях, образованных азотною или серною кислотами, существует одна, две, три довольно постоянные формы солей, тогда как для кислот, таких как кремневая, число этих форм весьма велико, повидимому, даже безгранично. Этому доказательством служат в особенности природные кремнекислые или кремнеземистые минералы, которые содержат различные основания в соединении с кремнезеиом, и для одного и того же основания нередко существует множество разнообразных степеней соединения. Как слабые основания способны давать, кроме средних солей, еще и основные, т.-е. средние слабое основание (водное или безводное), так слабые кислотные (хотя и не всякие) окислы, кроме средних солей, дают много-кислотные соли, т.-е. средние соликислота (ангидрид или гидрат). Таковы борная, фосфорная, молибденовая, даже хромовая, кислоты, а особенно кремневая. Чтобы объяснить себе такие отношения, напомним сперва существование различных гидратов кремнезема, а затем остановим внимание на подобии между кремнеземными соединениями и металлическими сплавами. Кремнезем есть окисел такого же вида и таких же свойств, как и те окислы, которые с ним соединяются, и если два металла могут образовать однородный сплав, в котором могут существовать определенные или неопределенные соеди- [c.145]

    Доказательства в пользу существования двух восстанавливающих активных частиц основываются на экспериментах по определению относительных скоростей реакций, идущих с их участием. Часто результаты для нейтральных растворов сильно отличаются от данных, полученных при радиолизе щелочных сред. Например, Андерсон и Харт [55] нашли, что радикалы с восстановительными свойствами взаимодействуют с кислородом и перекисью водорода приблизительно в пять раз энергичнее (быстрее) в нейтральных растворах, чем в кислых из этого можно заключить, что имеется два типа таких радикалов. В некоторых случаях [56] реакции восстановительных радикалов можно прямо сравнивать с действием атомарного водорода, получаемого в разряде и затем каким-либо способом прибавленного к данной системе. Когда такие опыты были поставлены, то оказалось, что константы скоростей реакций для атомарного водорода хорошо совпадают с константами процессов, идущих с участием частиц, обладающих восстановительными свойствами в кислой среде. Этот факт — довольно сильный аргумент в пользу идентичности данных частиц и атомов водорода. Но если это так, то частицей с восстановительными свойствами, образующейся при облучении нейтральных растворов, является сольватированный электрон. Следовательно, можно ожидать, что при облучении нейтральных и кислых растворов химические реакции должны быть иными. Таким образом, совершенно понятно, почему при облучении растворов хлоруксусной кислоты в кислой среде [57 ] главным образом выделяется водород (основной радикал-восстановитель атомов водорода), а в нейтральных растворах— хлор (восстановитель — сольватированный электрон)  [c.226]

    Фосфат в флуориметрических методах давно известен в качестве мешающего иона, это его свойство было использовано для аналитических целей. В работе [165] использовали свойство фосфора гасить люминесценцию комплекса алюминия с морином. Многие ионы мешают определению, некоторые из них можно отделить предварительным выпариванием анализируемого раствора с хлорной кислотой или с помощью ионного обмена. Киркбрайт, На-райянасвари и Вест [166] попытались реализовать потенциально высокую чувствительность спектрофлуориметрии, оставив при этом селективность определения фосфата, достигнутую в более ранних работах. Им удалось этого добиться следующим образом. Фосфат превращают в молибдофосфорную кислоту, которая, в свою очередь, взаимодействует с основным красителем родамином Б с образованием ионного ассоциата. После экстракции избытка красителя хлороформом ионный ассоциат молибдофосфата и родамина Б экстрагируют смесью 4 1 по объему хлороформа и бутанола и измеряют флуоресценцию этого раствора при 575 нм, длина волны возбуждающего света 350 нм. Изучение влияния на определение фосфора [37] посторонних ионов показало, что метод отличается высокой селективностью. Не мешают определению большие концентрации силиката. Мышьяк(П1) и ванадий (V) могут присутствовать в 25- и 59-кратном избытке по отношению к фосфору. Метод применим для определения 0,04—0,6 мкг Р. При изучении природы комплекса было показано, что соотношение родамина Б и молибдофосфата в ионном ассоциате составляет 3 моля на 1 моль. Это позволяет предполагать, что образуется незаряженный комплекс типа [РЬВ+]з[РМО -]. [c.466]

    Если в случае изоморфизма в широком смысле слова размеры отдельных частиц или комплексов не имеют значения, то необходимым условием изоморфизма в узком смысле является близость размеров замещающих друг друга частиц. Другими словами, основным в определении изоморфизма является представление о взаимозамещаемости частиц близких размеров в сходных по типу и по химическим свойствам кристаллах. Однако указанное условие не может рассматриваться чисто геометрически, так как благоприятный размерный фактор еще не дает оснований предсказать, что данные вещества способны образовывать твердые растворы. Принято считать, что два вещества могут образовать широкую область твердых растворов, если атомные радиусы взаимозамещающих частиц отличаются не более чем на 15%. [c.231]

    Дать определение ауксохромов значительно сложнее, чем хромофоров, и в вопросе о природе и роли ауксохромов была некоторая путаница. Уже говорилось о том, что Витт употреблял этот термин для таких групп, как амино- и гидроксильная группа, которые являются слабо солеобразующими , обусловливают красящие свойства окрашенных соединений и усиливают действие хромофора. Эти два эффекта различны и самостоятельны и их необходимо рассматривать отдельно. Одна из функций ауксохромов —способность образовывать соли. После того, как отказались от методов, при которых нерастворимый краситель наносился на текстильный материал в виде пигмента, содержащего смоляную связку, крашение текстильного волокна стали проводить в водных растворах. Поэтому молекула красителя должна содержать группу, обеспечивающую его растворимость в воде (в нейтральной, кислой или щелочной среде), непосредственно или после предварительной химической обработки, например восстановления гидросульфитом и щелочью или сернистым натрием. Красители поэтому содержат солеобразующие группы или группы, которые могут быть превращены в солеобразующие перед крашением. В числе ауксохромов, указывавшихся Виттом, были сульфогруппа, карбоксил, четвертичные аммониевые группы и т. д., роль которых состоит в том, чтобы окрашенное соединение можно было использовать в качестве красителя влияние этих групп на окраску молекул могло быть разнообразным — вариохромным (ср. положительные и отрицательные ауксохромы Вицингера). В связи с изложенным интересны два красителя, не содержащие ауксохромов в понимании Витта 1,Г-азонафталин-4,4 -дисульфокислота (ХУП ), окрашивающая шерсть в оранжевый цвет, и флавиндулин (XIX), основной краситель для хлопка, протравленного таннином. Красители другого типа — кубовые — не содержат ауксохромов в исходном состоянии и приобретают их лишь перед крашением в процессе растворения. Дибензантрон (XX) — интенсивно синий краситель без ауксохромов при действии гидросульфита и щелочи он переходит в дигидросоединение [c.393]


Смотреть страницы где упоминается термин Свойства растворов Типы растворов. Основные определения: [c.597]    [c.647]    [c.463]    [c.185]    [c.124]    [c.56]    [c.313]    [c.90]    [c.30]    [c.41]    [c.690]    [c.20]    [c.125]    [c.393]    [c.203]   
Смотреть главы в:

Общая химия  -> Свойства растворов Типы растворов. Основные определения




ПОИСК





Смотрите так же термины и статьи:

Основные определения

Растворов свойства

Растворы основные свойства

Типы растворов



© 2024 chem21.info Реклама на сайте