Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностные влияние газовой фазы

    На окисление топлива растворенным кислородом может существенно влиять соотношение площади поверхности контакта с газовой фазой и объема топлива. Это влияние обусловливается неравномерным распределением концентраций растворенных газов по высоте топлива в тонких слоях. В поверхностном слое топлива растворяется значительно больше газов, в том числе и кислорода, чем в аналогичных по толщине слоях, расположенных в остальном Объеме топлива. В связи с этим количество газов, поглощенных предварительно дегазированным топливом, сильно зависит от высоты его налива [61]. [c.51]


    Поскольку адсорбция— лишь один из этапов процесса, прежде всего необходимо установить влияние хода адсорбции на скорость этого процесса. Согласно гипотезе Лангмюра — Хиншельвуда, на скорость поверхностной реакции (понимаемой как результат последовательного прохождения адсорбции исходных веществ, химической реакции и десорбции продуктов) решающее влияние оказывает сопротивление химической реакции. В соответствии с этим для каждого реагента устанавливается сорбционное равновесие, не нарушаемое прохождением химической реакции. Концентрация данного реагента на поверхности связана с его парциальным давлением в газовой фазе. Связь эту выражает уравнение изотермы Лангмюра. [c.278]

    На основании большого числа опытов, проведенных в различных условиях, доказано, что такие физические свойства, как вязкость, удельный вес и поверхностное натяжение не оказывают существенного влияния на степень перемешивания жидкости на барботажных тарелках. Заметно влия]от высота сливной перегородки, удельный вес барботирующего газа (давление в колонне) и скорость жидкой и газовой фаз. [c.287]

    Используя факт ориентации молекул некоторых веществ, можно найти значение толщины слоя, определяющего поверхностное натяжение. Так как а для всех веществ, имеющих парафиновую цепочку, независимо от их полярности равно а парафинов, то межфазное натяжение определяет только та часть ориентированной молекулы, которая непосредственно граничит с другой фазой. Толщину слоя, определяющего поверхностное натяжение, можно считать равной длине углеводородной цепи в два-три углеродных атома. Например, у диметилформамида, уксусного ангидрида, ацетонитрила, в которых ориентируется лишь метильная или этильная группы, значение о выше, чем у соединений, содержащих более длинную парафиновую цепочку, однако ниже, чем следовало бы иметь по уравнению (13). Таким образом, хотя алкильная группа их и ориентирована в газовую фазу, полярная группа оказывает влияние на поверхностное натяжение. [c.434]

    Измерены поверхность и пористость углей до и после озонирования. Определены кинетические параметры и состав продуктов окисления бурых углей озоном в газовой и жидкой средах. Процесс протекает практически в стационарном режиме, поглощение озона составляет 90%. Окисление сопровождается выделением в газовую фазу оксидов углерода СО и СО2. Показано, что среда окисления оказывает значительное влияние на скорость и механизм процесса при этом начальные скорости процесса различаются в 4 раза. Кинетические кривые озонирования бурого угля, подвергнутого карбонизации, аналогичны необработанным углям. Однако, количество выделяющегося СО2 в случае карбонизованного угля ниже более, чем в три раза что указывает на активное образование поверхностных кислородсодержащих групп. Лимитирующая стадия процесса протекает на поверхности угля, о чём свидетельствует нулевой порядок реакции. [c.91]


    В то же время органические жидкости с асимметричными молекулами (алифатические кислоты, спирты, амины, кетоны) при содержании в цепи более трех атомов углерода имеют одинаковое поверхностное натяжение, равное таковому для предельных углеводородов даже при большой разнице в длине цепи и значениях 11. В этом случае о перестает быть функцией полярности и кривая зависимости о —И идет параллельно оси абсцисс для гомологов с разной длиной цепи (рис. 19.3,2). Отсутствие влияния длины цепи на о является следствием ориентации молекул полярными группами в жидкость, неполярными — в газовую фазу. [c.306]

    Влияние температуры на скорость процессов спекания и рекристаллизации. До сих пбр рассматривались процессы, протекающие при постоянной температуре, достаточно высокой для того, чтобы изменения в порошкообразной массе могли быть обнаружены за время опыта. Неоднократно указывалось, что перенос вещества при этом может происходить через газовую фазу путем поверхностной и объемной диффузии. Изменение скорости спекания и рекристаллизации с температурой зависит от вклада этих стадий в суммарный процесс и присущих им величин энергий активации. По данным Мальвина и Хьюза, энергия активации объемной диффузии для данного вещества в среднем составляет около 0,6 от энергии сублимации. Для большинства бинарных соединений она лежит между 80—250 кДж/моль. [c.220]

    Аналогичный вывод был сделан при изучении влияния состава электролита. Замена газовой фазы на незаряженную металлическую не оказывает значительного влияния на поверхностные свойства солевого расплава. [c.194]

    Предполагается, что, кроме названных выше основных эффектов, связанных с наличием окалины, на свойства материала подложки вблизи поверхности могут влиять и другие поверхностные факторы. В частности, модуль упругости и параметры решетки очень тонкого ( — 30 А) приповерхностного слоя могут изменяться в результате адсорбции атомов газовой фазы [114]. На подобные эффекты ссылаются при объяснении ухудшения механических свойств поверхностных слоев некоторых неметаллических твердых материалов под влиянием адсорбции во влажных средах [136]. Наглядной иллюстрацией служит рис. И, где представлены данные об уменьшении временного сопротивления серебряной проволоки при высоких температурах в атмосферах различных газов (изменения наиболее велики в случае более тонкой проволоки) [137]. [c.31]

    Даже после рассмотренных систематических исследований многие вопросы остаются открытыми. Воздушная среда имеет тенденцию усиливать скольжение по границам зерен, но природа реакций с газовой фазой на этих границах и механизм усиления скольжения неизвестны. Точно так же механизм упрочняющего влияния поверхностной оксидной пленки и ее профиль по глубине еще требуют модельного описания в терминах толщин оксида и металла, компактности и адгезии оксида. Кроме того, если полагать, что само физическое присутствие окалины может вызывать упрочнение поверхностных зерен, то следует изучить состояние напряжения дальнего порядка, вызванного в подложке ростом пленки оксида или индуцированного термически, а также исследовать влияние этих напряжений на ползучесть и разрущение (см. табл. [c.40]

    Модель зоны горения, которая обычно используется при исследовании вибрационного горения, является моделью с одномерной гомогенной плоской зоной горения (см. рис. 1). Принимается допущение об одноступенчатой химической реакции в газе и предполагается, что процесс газификации также является одноступенчатым поверхностным процессом и не затруднен обратным процессом. Единственным процессом, который принимается во внимание в конденсированной фазе, является процесс теплопроводности. Влиянием тепловых потерь и возвращения молекул из газа в конденсированную фазу всегда пренебрегают. Исследования различаются лишь подходом к анализу процессов в газовой фазе. [c.300]

    Поясним на примерах смысл уравнения (11.15). На рис. II.7 изображены свободная и смачивающая пленки, образованные путем отсасывания жидкости из плоской вертикальной щели. Пленка жидкости а находится в равновесии с примыкающими к ней капиллярными менисками. Давление в объемной части прилегающей газовой фазы равно = Р . По определению, давление Рц относится к жидкости под капиллярным мениском за пределами переходной зоны с, в которой еще имеет место перекрытие поверхностных зон. При этом разность Рг — Р в зоне Ь в объемной части мениска отвечает скачку фазового давления при переходе через искривленную поверхность раздела. Иными словами, за пределами переходной зоны разность Р — Рд равна капиллярному давлению Рк.невозмущенного мениска постоянной (в пренебрежении влиянием силы тяжести) кривизны. [c.39]


    Изучено влияние соляной, серной, борной, фосфорной, уксусной, лимонной кислот на процесс испарения частиц аэрозоля и реакций в газовой фазе при определении натрия [486]. Измерялись вязкость, поверхностное натяжение, скорость поступления растворов в пламя, применялась техника двух распылителей. Показано, что присутствие уксусной, лимонной и серной кислот влияет на дисперсность капель аэрозоля и скорость испарения частиц. Фосфорная, соляная и борная кислоты влияют также на процесс испарения и равновесные реакции в газовой фазе. [c.124]

    Необходимо отметить, что водород, присутствующий в реакционной среде, оказывает существенное влияние на скорость и механизм превращения углеводородов. Замечено, что добавление водорода в реакционную среду приводит к подавлению диссоциативной хемосорбции насыщенных углеводородов и, таким образом, препятствует самоотравлению и зауглероживанию поверхности катализаторов. В то же время водород в относительно высоких концентрациях в газовой фазе способствует как гидрированию олефинов, так и расщеплению М—С-связи. Прочно удерживаемая на поверхности катализатора форма водорода (Н -форма) изолирует поверхностные атомы металла от прямых контактов с молекулами реагентов, что может привести к изменению механизма их превращения. Например, на поверхности платино-оловянного катализатора, не содержащего адсорбированного водорода, превращение к-гексана протекает неселективно с образованием легких предельных углеводородов. Е сли поверхность катализатора покрыта водородом, то селективность по олефинам возрастает. [c.699]

    Влияние диаметра перфорации на напряжение при электролизе хлористого натрия, по-видимому, будет таким же, как при электролизе едкого натра, так как физические свойства растворов поваренной соли (вязкость, поверхностное натяжение) мало отличаются от физических свойств исследуемого раствора. То обстоятельство, что при электролизе хлоридов объем газовой фазы, выделяющийся в единицу времени, в два раза больше, чем при той же плотности тока при электролизе едкого натра, по-видимому, не окажет существенного влияния на выбор оптимального диаметра отверстий перфорации, поскольку (см. данные табл. П-2) при изменении плотности тока не меняется оптимальный диаметр отверстий перфорации. [c.61]

    Масс-спектрометрический метод с полевой ионизацией позволяет изучать адсорбционный слой, взаимодействие адсорбированных атомов (молекул) с поверхностью металла и между собой, образование поверхностных соединений, поверхностную диффузию, различные гетерогенные реакции, кинетику таких реакций и другие поверхностные процессы в широком интервале температур вплоть до самых низких. В качестве эмиттера-адсорбента могут использоваться только твердые вещества с высокой электропроводностью — металлы, сплавы, графит. Метод ограничен величиной давления газовой фазы (менее 10 Па). Кроме того, высокая напряженность электрического поля у поверхности острия может оказывать значительное влияние на поверхностные процессы. Обзор работ с применением данного метода приведен в работах [7, 15, 16]. [c.51]

    В газовой фазе больше, чем в водной, эти величины сравнимы, а для соседних членов ряда практически одинаковы. Следовательно, молекулы углеводородов газовой фазы значительно сильнее влияют на поверхностное натяжение, чем водной, где каждая молекула находится в ячейке растворителя. Объясняется это влияние, видимо, непрерывным обменом молекул фаз и поверхности. Возможность такого процесса предполагал еще Мак-Бен [491. [c.436]

    Полученные результаты позволяют сделать вывод о том, что в жидкой фазе линейный размер конвективных ячеек (глубина проникновения поверхностной конвекции) соизмерим с толщиной диффузионного пограничного слоя, а масштаб скорости ячеек соизмерим с коэффициентом массоотдачи в газовой фазе интенсивность поверхностной конвекции недостаточна, чтобы оказать заметное влияние на скорость массоотдачи. Величина Ор определена из расчета. Расчет не учитывает интенсивную гиббсовскую адсорбцию [29], наблюдаемую в растворах сильных ПАВ, и прочие поверхностные эффекты, т. е. основан на использовании величины статического, а не фактического (динамического) поверхностного натяжения. Вероятно, этим объясняется расхождение экспериментальных и теоретических критических значений чисел Марангони. [c.98]

    Из уравнения (1.45) следует, что роль поверхностной диффузии действительно должна увеличиваться с повышением давления, так как коэффициент диффузии в газовой фазе уменьшается с повышением давления. Для большинства промышленных катализаторов, имеющих широкое распределение пор, точный анализ влияния давления затруднителен, так как доля потока, приходящегося на поры определенного диаметра, зависит от давления. [c.60]

    В работах Гунна и Томаса [127] и Томаса [334] дано математическое описание системы. Применение этого описания позволяет судить о влиянии распределения активных центров в порах и на внешней поверхности катализатора на протекание реакции. Однако в ряде случаев при использовании теоретических выводов упомянутых работ для количественной оценки необходимо детальное изучение истинной кинетики. Это относится к таким реакциям, как дегидроциклизация, когда поверхностная диффузия играет более существенную роль, чем диффузия в газовой фазе. Если промежуточные олефины не десорбируются, то активность катализатора не может быть непосредственно связана с их концентрацией в газовой фазе. [c.161]

    В 6.1 и 6.2 было показано, что влияние поверхностно-активных веществ или движения в газовой фазе на массообмен связано с возникновением касательных сил на межфазной поверхности. Эти эффекты будут подробно рассмотрены в данном параграфе. Предположим, что на поверхности раздела газ — жидкость действует постоянное касательное напряжение. В этом случае профиль скорости задается выражением (2.46). Исключая касательное напряжение, получаем [c.97]

    Природа этого энергетического параметра уже обсуждалась в разделе I, В, 3. В случае металлов диффузия должна быть достаточно быстрой для того, чтобы поверхностное равновесие сохранялось в ходе испарения, даже когда поверхность энергетически неоднородна. Если при фиксированном значении Дт обнаруживаются изменения в полной эмиссии, то наблюдаемая энергия соответствует изостерической теплоте, т. е. изменению удельной молярной энтальпии при переходе из газовой фазы в адсорбированный слой. В общем подобные измерения нельзя считать более эффективными, чем стандартные методы определения изостерических теплот. Действительно, высоковольтная эмиссия может не выявить точного распределения адсорбированного вещества в различных состояниях связи, в то время как оно непосредственно проявляется при флэш-десорбции. Однако, если бы поле наблюдения удалось ограничить небольшим участком поверхности, например гранью монокристалла, энергетический параметр соответствовал бы энергии активации для изменений, происходящих на этом конкретном участке, (и в данном окружении). В этом отношении эмиссионная микроскопия обладает огромным преимуществом перед более макроскопическими измерениями десорбции, так как позволяет обнаружить влияние структурной неоднородности на энергию десорбции. [c.179]

    Катаяма [4] получил более точные результаты, учитывая влияние концентрации вещества в газовой фазе на поверхностное натяжение  [c.197]

    Влияние концентрации и природы молекул в газовой фазе на величину поверхностного натяжения было особенно заметно в тех [c.197]

    Влияние давления. Увеличение давления при постоянстве других факторов способствует переходу гетерогенного процесса в диффузионную область, а уменьшение — в кинетическую. Это подтверждается уравнением (У,24), которое показывает, что коэффициент диффузии в газовой фазе обратно пропорционален давлению. С другой стороны, согласно уравнениям Фрейндлиха (IV, 1) и Ленгмюра (IV, 15), при увеличении давления увеличивается поверхностная концентрация адсорбированных газов, поэтому повышается скорость реакции на поверхности раздела фаз. Поскольку изменение давления изменяет константы скоростей диффузионных и кинетических стадий в противоположных направлениях, увеличение давления, вызываюш,ее уменьшение и увеличение Кк, переводит процесс в диффузионную область. [c.206]

    На рис. 132 проводится сравнение результатов измерения величин Аз[С/]- полученных на рис. 126, с данными для реакции двуокиси углерода. Наклон кривых приблизительно совпадает, но абсолютные величины на 60% выше, чем для СО2. На основании этого можно сделать вывод, что число активных центров будет больше в том случае, если в газовой фазе присутствуют пары воды. Поскольку скорость реакции не зависит от размеров частиц и концентрации инертного газа, можно предположить, что эта разница обусловлена наличием активных центров различного типа. Действительно, краевые атомы углерода могут находиться в различных электронных состояниях, и молекулы воды не обязательно будут взаимодействовать только с поверхностными группами типа СО2. Но если это так, то не обязательно должны совпадать и наклоны кривых йз[С ] для реакций СО2 и Н2О. С другой стороны, трудно объяснить это отсутствием равновесия, поскольку влияние диффузионного замедления не подтверждается зависимостью скоростей от размеров частиц. Для более детального изучения диффузионных эффектов были проведены исследования, в которых применялись [c.245]

    В г 1 а п Р. L. Т., V i V i а п J. Е., М а у г S. R., Ind. Eng. hem., Fund., 10, 75 (1971). Возникновение конвекции при десорбции из воды понижающих поверхностное натяжение растворенных веществ (и исследование влияния этой конвекции на массоотдачу в жидкой и газовой фазе и поверхность их контакта). [c.279]

    Многокомпонентную пену получали из пенообразуюш его раствора, содержаш,его пенообразователь, стабилизатор, углеводород (обезвоженная дегазированная нефть), силикат натрия, хлористый кальций, газовую фазу и пресную воду. В качестве пенообразователя применялись коллоидные поверхностно-активные вещества — сульфанол и ОП—10 стабилизатором служил — КМЦ—600. В качестве газовой фазы использовался воздух, азот и др. Введение в пенообразующий состав нефти, оказывало благоприятное действие на устойчивость пены. Силикат натрия и хлористый кальций оказывали наибольшее влияние на устойчивость пены. [c.225]

    При очень малых радиусах кривизны пов-сти И. (напр., при И. мелких капель жидкости) учитывается влияние поверхностного натяжения жидкости, приводящего к тому, что равновесное давление пара над пов-йтью раздела выше давления насьпц. пара той же жидкости над плоской пов-стью. Если Я то при расчете И. могут приниматься во внимание только тепло- и массообмен в газовой фазе. [c.276]

    В сэндвич-камере величины К должны быть постоянными независимо от длины пути разделения, что было подтверждено в случае бензола и нропанола-1. Сильное возрастание величины К в случае применения ацетона для значений 2/, не превышающих 100 мм, предполагает предварительное насыщение сорбента из газовой фазы благодаря высокому давлению паров ацетона. Это происходит даже в сэндвич-камере с расстоянием между поверхностью сорбента и крышкой 1 мм. Уменьшение К для гексана при 2/ >70 мм и для четыреххлористого углерода при 2 > 60 мм можно объяснить только эффектами испарения. Степень предварительного заполнения пор сорбента из газовой фазы в зависимости от 2/ можно рассчитать по величине К, которая различна для К-камеры и 1-миллиметровой сэндвич-камеры. Соответствующие данные приведены в нижней правой части рис. 6.7. Было показано, что, например, в К-камере с насыщенной атмосферой при использовании бензола с 100 мм поры слоя сорбента заполнены растворителем в среднем более чем на 30%. На основании полученных данных пришли к выводу, что при выборе растворителя или системы растворителей в качестве элюента (табл. 6.9) необходимо учитывать такие характеристики, как удельная масса, температура кипения, давление паров и теплота испарения. Такой подход тем более важен в случае использования смесей растворителей. В соответствии с нашими собственными исследованиями поверхностное натяжение растворителей пе играет сколько-нибудь заметной роли в хроматографическом разделении. В присутствии сорбента величина 7, очевидно, изменяется в значительной степени. Однако вязкость растворителя является очень важным фактором, влияющим на величину К и, следовательно, на I. Уменьшение вязкости при повышении температуры оказывает положительное влияние на величину К. Параметры, харак- [c.131]

    К сожалению, нет никаких экспериментальных сведений по-изменению геометрии заряда, подтверждающих предложенную схему поверхностных реакций, а имеющиеся данные говорят скорее в пользу многопламенной структуры, чем структуры с одиночным пламенем, постулированной в работе [72]. Поэтому была предложена статистическая модель [7], базирующаяся на нескольких типах пламен ) (рис. 33, в). В этой модели приняты следующие предположения 1) прогрев связующего и окислителя осуществляется за счет теплопроводности, 2) связующее и окислитель разлагаются эндотермически, 3) между продуктами разложения в конденсированной фазе протекают экзотермические реакции и 4) газообразные продукты улетучиваются и реагируют в газовой фазе. При низком давлении рассматриваются три вида пламени первичное пламя между продуктами разложения связующего и окислителя, пламя окислителя и конечное диффузионное пламя между продуктами двух других пламен. Эта модель предсказывает зависимость скорости горения от содержания окислителя в ТРТ и от начальной температуры топливного заряда, среднюю температуру поверхности и расстояние до фронта пламени. Модель несколько завышает влияние размера частиц по сравнению с наблюдаемым на опыте. Бекстед усовершенствовал модель, применив ее к двухосновному ТРТ [4], а в следующей работе [5] предположил, что горючее и окислитель имеют разную, а не одинаковую (среднюю) температуру поверхности. Он также перешел от осреднения по [c.70]

    Другой фактор, оказывающий влияние на кинетику процесса спекания в реальных системах, — наличие газовой фазы в замкнутых порах. При уменьшении объема поры в процессе ее зарастания давление р газа в поре возрастает в соответствии с уравнением Р = Ро(го1г) , где Ро и р — соответственно давление газа в начальный момент при радиусе поры Го и в данный момент при радусе г. Это давление препятствует давлению Ри стягивающему пору при ее зарастании, которое можно выразить через силу поверхностного натяжения а  [c.341]

    Отрицательное значение изменения поверхностного потенциала в процессе адсорбции кислорода на серебре при малых заполнениях поверхности свидетельствует о том, что в процессе хемосорбции осуществляется перенос зарядов с атомов серебра на адсорбированный кислород и поверхность заряжается отрицательно [53]. Этот вывод подтверждается работами по изучению изменения работы выхода электрона при адсорбции кислорода на серебре. Большинство исследователей считает, что адсорбция кислорода на серебре сопровождается диссоциацией его на атомные ионы (атомарная адсорбция) [54, 55]. В то же время в области больших заполнений поверхности имеет место и недиссоциативная (молекулярная) адсорбция [56]. Однако взаимодействие кислорода с серебром не ограничивается одной адсорбцией. В поверхностных слоях серебра, происходит растворение кислорода в металле [52], причем растворенный кислород, в свою очередь, оказывает влияние на дальнейшую адсорбцию кислорода из газовой фазы [57]. [c.35]

    Массоперенос в пузыре. Вследствие того, что коэффициенты диффузии в газе на 4 порядка выше, чем в жидкости, процесс массопереноса в пузыре протекает значительно быстрее, чем в каплях. Степень извлечения различных газов и паров из пузыря диаметром 4 мм, равная 99 %, может достетаться уже на высоте слоя жидкости от 2 до 10-12 см. Такая высокая скорость массопереноса в пузырях приводит к значительным трудностям при экспериментальном исследовании этого процесса. Трудности эти связаны с очень большим вкладом так называемых концевых эффектов в общее количество вещества, поступающего в пузырек в процессе его существования. Разделить стадии, из которых складывается общий процесс массопереноса в пузырьке (массоперенос во время образования, собственно движения и коалесценции на поверхности жидкости) практически невозможно. При этом степень поглощения в процессе образования пузыря и выхода его на поверхность жидкости может составлять до 50 % и выше. Кроме того, в связи с очень большой скоростью массопереноса в процессе движения становится заметным влияние так называемого поверхностного сопротивления. По-видимому, этим объясняется тот факт, что в настоящее время механизм массопередачи в пузырьке до конца не выяснен, а имеющиеся экспериментальные результаты по определению коэффициентов массоотдачи достаточно противоречивы. Многочисленные результаты по определению коэффициентов массоотдачи при лимитирующем сопротивлении газовой фазы на барботажных тарелках различных конструкций практически не дают никакой информации о механизме массопередачи в движущихся пузырях. Это связано с тем, что в такого рода экспериментах определяется суммарный коэффициент массоотдачи на тарелке, включающий все три стадии процесса. [c.285]

    Механизм такого снижения коэффициентов массоотдачи в газовой фазе по сравнению со значениями, предсказываемыми теорией конвективного массопереноса, еще не достаточно изучен. Можно предположить, что это является следствием образования на границе раздела фаз энергетического или механического барьера из адсорбированного слоя молекул растворимых или нерастворимых веществ, обладающих поверхностно-активными свойствами. Влияние поверхностно-активных веществ (ПАВ), специально вносимых в жидкую фазу в небольших количествах, на скорость массопередачи исследовалось неоднократно [5]. Такое влияние в основном является негативным, однако при некоторых видах ПАВ может приводить и к ускорению массопередачи. Уменьшение скорости массопереноса при добавках ПАВ происходит не только вледствие изменения гидродинамических условий, в частности подавления циркуляции внутри капли или пузыря. Разработана модель [16], согласно которой растворимые ПАВ адсорбируются поверхностью капли или пузыря и накапливаются в кормовой ее части в количествах, достаточных для создания межфазного сопротивления или барьера. Присутствие не растворимых в воде веществ также может способствовать уменьшению скорости массопереноса. В [48] отмечается, что скорость испарения воды в пузырек падала в несколько раз, когда в воде присутствовали капельки не растворимого в ней ундекана, которые могли захватываться всплывающим пузырьком и экранировать его поверхность. Однако в настоящее время нет ответов на вопросы о том, могут ли незначительные количества ПАВ или загрязнений, содержащихся в обычных жидкостях, создать на поверхности [c.286]

    Из экспериментальных работ, посвященных изучению влияния эффекта поверхностной конвекции на скорость массопередачи без химической реакции, необходимо отметить исследования [123, 125—128]. П. Бриан с сотр. [125] в пленочной колонне из разбавленных водных растворов десорбировали в азот вещества, понижающие поверхностное натяжение (метилхло-рид, этиловый эфир, триэтиламин, ацетон). Интенсивность нестабильности критерия Марангони оценивали трассерным методом в качестве инертного трассера использовали для жидкой фазы пропилен, для газовой фазы — воду. Результаты работы свидетельствуют о том, что по достижении критического значения числа Марангони коэффициент массоотдачи в жидкой фазе увеличивается, причем максимальное увеличение составляет 3,6 (по сравнению с десорбцией пропилена из воды). Это косвенно свидетельствует о существовании поверхностной конвекции в жидкой фазе. В газовой фазе коэффициент массоотдачи оставался постоянным. [c.98]

    Из приведенных в табл. 3.1 критериальных уравнений массопередачи наиболее надежными для условий группового барботажа можно считать уравнение Хьюмарка [28, 47] для массопередачи в жидкой фазе и уравнение Соломахи [29] для массопередачи в газовой фазе, так как они, во-первых, обобщают большое количество экспериментальных данных по абсорбции, десорбции и ректификации на разных типах контактных устройств и, во-вторых, учитывают наиболее корректно влияние сил вязкого трения, поверхностного натяжения и силы тяжести. Кроме того, возможность обобщения большого и разностороннего материала при помощи указанных уравнений обеспечивается также правильным выбором характерных линейных размеров в критериях и характерной скорости движения потоков. [c.96]

    Францини [29] рассматривал отклонение от пропорциональности между диффузией и давлением как результат влияния величины порога адсорбции или давления испарения, устанавливающегося при диффузии водорода через палладий. Он полагал, что молекулы адсорбционного слоя на металлической поверхности, удерживаемые электростатическими силами, вызывали возмущение электронов в поверхностных атомах, что влияло на диффузию через рещетку металла. Так как поверхностный слой находится в равновесии с газовой фазой, то те факторы, которые влияют на него, влияют также на диффузию газа. Опыты Францини показали, что, в то время как Н адсорбируется легче, чем на палладии Н диффундирует быстрее, чем Н . [c.134]

    Как видно из таблицы, при добавлении паров воды. скорость реакции падает немного, зато отношение СО/СО2 заметно понижается, особенно для ламповой сажи, указывая тем самым, что пары воды сильно ка-. тализируют окисление окиси углерода. Ряд авторов [14, 15] показали, что окисление окиси углерода действительно катализируется парами воды. Однако если считать, что окисление окиси углерода целиком происходит в газовой фазе, то влияние паров воды на изменение отношения СО/СО2 для двух разных типов углерода должно быть одинаковым. В данном случае это не имеет места, возможно, потому, что различна не только природа углерода, но и процентное содержание воды в газовой фазе и температура углерода. Действительно, уменьшение скоростей реакции с влажным кислородом для двух типов углерода почти одинаково. Это указывает на то, что пары воды не влияют на поверхностную реакцию. [c.295]

    В этих уравнениях 0д и 0в — поверхностные концентрации веществ А и В, выраженные в долях поверхности, занятой этими веществами сд и Св — их концентрации в газовой фазе ИбгС — сумма из произведений адсорбционных коэффициентов всех присутствующих веществ, включая А и В, на их объемные концентрации. Эти уравнения, кроме полной адсорбционной и каталитической однородности, предполагают также отсутствие взаимного влияния друг на друга адсорбированных молекул одного [c.66]

    Эти выводы о влиянии прочности связи металл—кислород на активность окисного катализатора качественно подтверждаются опытами по частичному восстановлению поверхности при последовательном импульсном вводе проб бутена нри отсутствии в газовой фазе кислорода. Естественно, что нри этом должно происходить обеднение поверхностных слоев кислородом, т. е. уменьшение концентрации ионов 0 . При этом должна расти величина Так, например, при переходе МнОа в МпаОд ( о = 17, а при переходе Мп Оз в МП3О4 ( о = 34. В результате увеличе-ния 0 катализатор должен становиться менее активным в отношении реакции глубокого окисления. На рис. 1.15 приведены результаты с МнОа- Видно, что с увеличением числа импульсов конверсия бутена-1 уменьшается с 60 до 40%, главным образом, за счет уменьшения образования СО2 (с 30 до 8%). Происходит увеличение выхода бутадиена с 4 до 10%. Согласно работам [53, 28], восстановление поверхности в результате протекания реакции окислительного дегидрирования сильнее всего уменьшает скорость глубокого окисления. Скорость реакций образования кислородсодержаш их соединений уменьшается не так значительно. На реакции окислительного дегидрирования и изомеризации восстановление поверхности оказывает лишь слабое влияние. Это уменьшает убедительность указанной корреляции. Но ее самая слабая сторона— резкая разнородность сравниваемых систем. Действительно, сопоставляются окислы типа МеО, МваОд, МеОа, образованные как переходными металлами Сг, Ее, N1, Мо, так и непереходными Хп, Зп, В1. У этих окислов различные типы кристаллических решеток, не тождественные типы связей при частичной потере кислорода Опи образуют также мало похожие промежуточные формы. Поэтому, если искать корреляцию термохимических и термодинамических характеристик окислов с их каталитическими свойствами, то в основу следовало бы скорее брать дифференциальные теплоты и свободные энергии частичного восстановления в условиях катализа каждой конкретной оксидной системы. Несмотря на то что очень высокие Qg исключают катализ, а очень малые могут быть невыгодными, более вероятно все же, что не только селективность, но и активность при глубоком окислении в первую очередь определяется кинетическими, а не термохимическими величинами. Поэтому нет оснований искать далеко идуш,ие корреляции между термохимическими свойствами окислов и их каталитической активностью. [c.291]

    Были проведены две серии опытов [62], показавших достаточно отчетливо отсутствие хроматографических эффектов при дегидрировании бутиленов в дивинил. В первой из этих серий в поток гелия импульсно вводили в микрореактор при 300° смесь бутилена и водорода. Во второй серии при этой же температуре газ-носитель гелий был заменен водородом. В обоих случаях выходы дивинила оказались такими же, как и при отсутствии водорода в газовой фазе, т. е., несмотря на огромный избыток водорода, в газовой фазе он не оказывал влияния па поверхностный процесс окислительного дегидрирования. Следовательно, не было и обратной реакции гидрирования. Так же, как и в случае В —Мо-катали-затора (см. стр. 286), было показано, что обеднение поверхности окисного железо-цинк-хромового катализатора кислородом происходит в результате реакции селективного окисления бутилена, даже при добавлении к бутилену значительных количеств кислорода. После проведения серии опытов по окислительному дегидрированию с добавлением к бутилену кислорода в количествах, превышаюш их стехиометрические, катализатор способен поглоп1 ать кислород. На этом катализаторе также, по-видимому, при низких температурах стадия окисления молекулы бутилена протекает быстрее стадии последуюш его окисления поверхности катализатора Для проверки высказанного положения следует измерить скорость каждой стадии в отдельности. Однако при этом трудно отличать кислород, хемосорбированный поверхностью, от кислорода решетки. [c.295]


Смотреть страницы где упоминается термин Поверхностные влияние газовой фазы: [c.320]    [c.141]    [c.19]    [c.547]    [c.413]    [c.156]   
Химия несовершенных кристаллов (1969) -- [ c.560 , c.562 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние ЛПЭ в газовой фаз

Газовая фаза



© 2025 chem21.info Реклама на сайте