Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

СОДЕРЖАНИЕ f Другие физические методы

    Рентгенофлуоресцентный метод позволяет анализировать пробы с содержанием отдельных элементов (начиная от элемента с атомной массой 13) от десятитысячных долей процента до десятков процентов. Как и другие физические методы, этот метод является относительным, т. е. анализ выполняется посредством эталонов известного химического состава. Можно анализировать пробы различного агрегатного состояния— твердые, жидкие и газообразные. При анализе твердых материалов из них готовят таблетки, которые затем подвергают действию излучения рентгеновской трубки. [c.785]


    Наряду со вторым моментом источником информации нередко может являться форма линии. Для кристаллов, содержащих в своем составе изолированные друг от друга группировки атомов, обладающих ядерными магнитными моментами, спектры ЯМР обладают настолько характерными особенностями, что идентификация фрагментов типа ОН, Н2О, СНг, Н3О+, Hj методом протонного магнитного резонанса, а также количественная оценка их относительного содержания, могут быть выполнены проще и надежнее, чем при помощи любого другого физического метода (см. рис. 4.1). [c.400]

    Таким образом, примерно 10—12 лет назад существовали следующие три возможности получения ароматических углеводородов из нефти. Во-первых, можно было при помощи четкой ректификации и ряда других физических методов разделения выделять из нефти и ее погонов содержащиеся в них ароматические углеводороды при условии значительного их содержания. Во-вторых, путем термической переработки при вы- [c.20]

    Наряду со спектроскопическими методами анализа феррохрома начинают находить применение и другие физические методы анализа магнитометрический (для определения хрома) и термоэлектрический (для определения кремния), которые позволяют определять их содержание с высокой точностью и скоростью, превышающей даже скорость, достигаемую при использовании методов спектрального анализа. [c.30]

    Нефтяные фракции, полученные при прямой перегонке нефти, содержат различные количества нежелательных примесей и поэтому зачастую требуют дополнительной очистки при помощи химических методов. Некоторые классы соединений могут рассматриваться в качестве примесей или нежелательных компонентов только для определенных фракций. Так, ароматические углеводороды желательны в бензине, но нежелательны в керосине. Другие классы соединений следует считать примесями пли нежелательными компонентами для всех нефтепродуктов. Сюда в первую очередь относятся легко окисляемые и вообще химически нестабильные соединения, а также смолистые или асфальтеновые вещества. Вредными, как правило, являются сернистые соединения, и их предельно допустимое содержание обычно строго ограничивается техническими нормами на нефтепродукты. В тех случаях, когда очистка нефтепродукта от примесей или нежелательных компонентов недостижима обычными физическими методами, прибегают к химическим методам очистки при помощи различных реагентов, которые селективно реагируют с веществами, подлежащими удалению. [c.222]


    Применяемые для исследования вещества должны подвергаться возможно более тщательной очистке,. Способ очистки должен выбираться в зависимости от свойств примесей, которые могут содержаться в исходных веществах. Очистка может производиться с помощью физических методов (перегонки, кристаллизации и др.) или путем химического удаления примесей (например, обезвоживание с помощью водоотнимающих средств). В большинстве случаев очистка производится путем перегонки на лабораторных колонках. Для работы отбирается средняя фракция, которая в случае необходимости может быть подвергнута однократной или многократной повторной перегонке. Критерием чистоты является постоянство физических свойств дистиллата в процессе его отгонки, а также отсутствие или допустимо малое количество примесей, устанавливаемое путем анализа. К числу наиболее употребительных физических свойств вещества, контролируемых при его очистке, относятся температура кипения, показатель преломления и удельный вес. Могут, конечно, использоваться и другие свойства — электропроводность, вязкость, температура кристаллизации и пр. Не всё перечисленные свойства одинаково изменяются в зависимости от концентрации примесей. Поэтому в каждом отдельном случае экспериментатор должен выбрать для контроля чистоты такие свойства, которые наиболее чувствительны к содержанию примесей. [c.143]

    Существуют и другие методы анализа, например биологические. К последним можно отнести метод определения содержания сероводорода в воздухе по изменению интенсивности свечения некоторых бактерий, а также метод анализа некоторых веществ, основанный на наблюдении за движением мелких червей, гибнущих после добавления известной дозы этих веществ. Физико-химические и физические методы, главк-Ум образом в зарубежной литературе, называют инструментальными, так как они обычно требуют применения приборов, измерительных инструментов. На первый взгляд, разные методы химического анализа не имеют между собой ничего общего, настолько различны их приемы, аппаратура и применение. На самом же деле принцип определения химического состава любыми методами один и тот же состав вещества определяется по его свойствам. Дело в том, что каждое вещество, отличающееся от других веществ своим составом и строением, обладает некоторыми индивидуальными, только ему одному присущими свойствами. Например, спектры испускания, поглощения и отражения веществом излучений имеют характерный для каждого вещества вид. По растворимости и форме кристаллов также можно узнать данное вещество. [c.9]

    Главным ограничением большинства физических методов анализа являются трудности их применения для анализа сложных смесей, так как третий компонент (и следующие) также может оказывать влияние на измеряемое свойство материала. Так, концентрацию серной кислоты в растворе можно определить различными физическими методами измерением плотности, вязкости, коэффициента преломления света, измерением pH, электропроводности и др. Однако, если в растворе, кроме серной кислоты, будет находиться другая кислота или соль в различных количествах, то все названные свойства раствора также будут меняться, и, следовательно, определить содержание серной кислоты каким-либо одним физическим методом невозможно. [c.16]

    Масс-спектрометрия в отличие от других рассматриваемых в этой книге физических методов анализа относится к деструктивным методам (исследуемый образец разлагается). При этом достигается намного большая чувствительность и скорость анализа. Для получения хорошего масс-спектра на современных приборах требуется до 10 —10 г вещества, а хромато-масс-спектрометры позволяют обнаружить в сложных смесях и исследовать органические соединения при их содержании менее 10 —10 г и времени развертки спектра в несколько секунд. [c.172]

    Определение ароматических углеводородов, как правило, проводится физическими методами, в которых используется существенная разница в значении физических констант (плотности, показателя преломления, анилиновых точек) у ароматических углеводородов по сравнению с другими классами углеводородов. Чаще всего применяется метод анилиновых точек. По этому методу содержание ароматических углеводородов Л (в вес, %) подсчитывается по формуле [c.161]

    Среди наиболее эффективных методов контроля за содержанием различных веществ в потоке важное место занимает проточно-инжекционный анализ (ПИА) - метод, основанный на введении (инжекции) пробы жидкого образца в движущийся непрерывный поток жидкости (носителя) . После ввода в носитель зона инжектированной пробы транспортируется к детектору, который непрерывно регистрирует оптическую плотность, электродный потенциал, ток или любой другой физический параметр, изменяющийся при прохождении зоны пробы через ячейку детектора. Большой интерес к ПИА связан прежде всего с возможностью автоматизации анализа, начиная с рутинного и кончая сложными биохимическими исследованиями. Условия измерения легко регулируются, и часто достаточно лишь поддерживать постоянными ионную силу и pH раствора. [c.577]


    В связи с этим в данной главе большее внимание уделяется второму случаю, когда физический метод позволяет зарегистрировать все компоненты смеси в виде индивидуальных линий спектра или других не менее хорошо выделяемых параметров и затем определить их относительное содержание. Следует отметить, что спектроскопические характеристики кристаллических объектов, в особенности таких, для которых расшифрованы структуры, представляют самостоятельный интерес. В этом случае спектральные параметры могут, правда далеко не всегда, служить основой для распространения закономерностей строения комплексонатов в твердом состоянии на область водных растворов. [c.397]

    Известны методы определения серебра в почвах, растениях, природных и сточных водах, в рудах, минералах, силикатах и горных породах, в чистых металлах и неметаллах, в сплавах, полупроводниковых материалах, в гальванических ваннах, в реактивах и фармацевтических препаратах, в фотографических материалах, в смазочных маслах и других объектах. За небольшими исключениями, особенность этих материалов состоит в том, что содержание серебра в них обычно невелико, поэтому главное значение имеют методы определения микроколичеств серебра. Из физических методов наибольшее распространение имеет спектральный анализ. В последние годы публикуется много работ в области радиоактивационного определения серебра и атомноабсорбционных методов. В химических методах чаш,е всего применяется экстракционно-фотометрическое определение серебра в виде дитизоната, реже используется и-диметиламинобензилиденроданин и некоторые другие органические реагенты. [c.172]

    Методика обучения химии, как и другие науки, имеет свою историю. Возникновение отдельных научных идей методики обучения химии относят к середине ХУШ в., когда М. В. Ломоносов разработал курс Введение в истинную физическую химию на основе атомистической теории, с точки зрения которой химия определялась как наука о составе, свойствах и превращениях веществ. М. В. Ломоносов считал, что при обучении химическому содержанию нужно использовать методы химической науки, в частности, эксперимент, позволяющий изучать вещества и процессы с качественной и количественной стороны. Одновременно он придавал важное значение применению математических и физических методов. Кроме того, М. В. Ломоносов, понимая необходимость защиты своих убеждений и доводов в дискуссии, отводил большую роль правилам риторики. [c.9]

    В том случае, когда сочетаются разные физические, физикохимические или механические методы контроля (неразрушающего и/или разрушающего), говорят о комплексном контроле качества. В.Н. Волченко [32] так определяет понятие комплексный контроль . Комплексным можно называть в отдельных случаях не только контроль с применением методов, отличающихся по физическим признакам. В понятие комплекс могут входить разновидности (способы) одного и того же физического метода, существенно различающихся между собой либо по содержанию получаемой при контроле информации, либо по другим характеристикам эффективности контроля . [c.234]

    Исследование специфических свойств и составляет содержание тех методов, которые позволяют обнаруживать и идентифицировать свободные радикалы. При этом химические методь и методы, основанные на исследовании физических свойств радикалов, хорошо сочетаются и дополняют друг друга, поскольку существуют достаточно стабильные или стабилизированные радикалы, которые не проявляют высокой химической активности, накапливаются в значительных количествах и могут быть обнаружены в таких случаях физическими методами кроме того, концентрации активных радикалов могут быть настолько малыми, что обнаружение их физическими методами чрезвычайно затруднено. Тогда единственно возможными средствами индикации становятся. химические методы. [c.5]

    Применение избирательных органических реагентов и использование избирательных схем фотометрического определения элементов (здесь мы рассматриваем в основном редкие элементы) составит серьезную конкуренцию физическим и физико-химическим методам, видимо, еще по крайней мере на протяжении 20—30 лет. Преимущества фотометрических методов, не требующих сложной аппаратуры, очевидны чувствительность методов достаточно высока (молярные коэффициенты погашения для лучших реагентов составляют 50—150 тыс.), что позволяет определять от 100 до 0,01 мкг абсолютных количеств вещества или до 10" % элемента в объекте без отделения основы, до 10 %—применяя простые, экспрессные схемы отделения, и до 10 —10 % —с предварительным концентрированием определяемого элемента. Сложные схемы подготовки анализируемого материала, не пригодные для использования их в автоматических анализаторах, вряд ли найдут широкое применение. При содержании элемента менее 10" % применение обычных фотометрических методов оправдывается только в редких случаях. Следует, однако, отметить, что здесь мы совершенно не рассматриваем другие химические методы анализа, которые также связаны с изменением окраски растворов (реакции, основанные на каталитических явлениях, ферментный анализ и др.), которые, возможно, существенно изменят наши представления о соотношении между собою различных видов анализа. [c.124]

    Это наряду с линейной зависимостью от состава смеси и служит основанием для расчета содержания групп углеводородов в смеси по тому же принципу, который описан для методов с другими физическими характеристиками топливных смесей [1, 7, 12, 43, 44]. Для анализа определяют показатель преломления и плотность исследуемой смеси, вычисляют интерцепт рефракции для смеси и, пользуясь известными значениями его для чистых углеводородов, рассчитывают содержание определяемой группы углеводородов в смеси но правилу аддитивности. Для определения содержания ароматических углеводородов надо проанализировать исходную фракцию до и после деароматизации. [c.210]

    Описанные выше методы дают возможность достаточно точно анализировать иа содержание ароматических углеводородов низко-кипящие фракции до 200°, т. е. фракции бензина. РЗ случае применения этих методов к лигроиновым, керосиновым и газойлевым фракциям, состав которых значительно сложнее, получаются менее достоверные результаты, так как анилиновые точки, рефрактометрические показатели и другие физические константы известны лишь для сравнительно небольшого количества индивидуальных углеводородов, кипящих выше 200°. [c.142]

    Вот почему была и остается актуальной задача развития количественной стороны теории химического строения, обобщения не только результатов классических химических, но и всех других физико-химических и физических методов исследования вещества. Однако, используя достижения указанных дисциплин, теория химического строения останется химической теорией по своему основному содержанию, характеру основных понятий, представлений и законов. [c.37]

    В газовых смесях водород присутствует как в виде соединений с другими элементами, так и в свободном состоянии. Очевидно, что при физических методах получения водорода, основанных на выделении этого компонента из газовых смесей, источником водорода может служить только свободный водород. Указанное обстоятельство значительно снижает степень использования водорода от потенциала по сравнению с химическими методами получения этого компонента и обусловливает экономичность выделения водорода из газовых смесей физическими методами только при относительно высоком содержании в них свободного водорода (свыше 40—50 об. %). [c.254]

    Содержание низкокипящих примесей устанавливалось точным определением температур киления после построения эмпирической кривой температур кипения, в зависимости от количества присутствующих циклических примесей. Однако этот метод анализа оказался неудовлетворительным для примесей с высокими температурами кипения, и была рассмотрена возможность использования других физических методов. Было найдено, что диэлектрическая постоянная была выше для водородсодержащих соединений, и измерение этой физической константы представляло собой быстрый метод определения состава. [c.121]

    Анализ различных продуктов биологического происхождения с помощью метода ЯМР широких линий описан в работах Шоу, Элзкена и Кунзмана [166], а также Шоу и Элзкена [162]. Для проведения анализа, как и при применении других физических методов, необходимы градуировочные графики. На рис. 8-10 показаны градуировочные графики для крахмала и пектина, построенные в координатах О (амплитуда, расстояние между пиками в спектре первой производной поглощения) — содержание воды в образце (определяли высушиванием в вакуумном высокотемпературном сушильном шкафу). В работе Шоу и сотр. [166] высказано предположение, что нелинейный характер кривых, особенно в начальном их участке, обусловлен взаимодействием между молекулами адсорбированной воды и адсорбентом. (Кроме того, следует отметить, что метод вакуумного высушивания может вносить заметную ошибку в определение влаги см. гл. 3.) Наиболее точные результаты анализа на аппаратуре авторов получаются при содержании воды от 7 до 20% [166]. Имеется линейная зависимость между результатами определения воды в сыром картофеле и в картофельной крупке вакуумным высушиванием при высокой температуре (40 ч, 70 °С) и методом ЯМР расхождения между данными анализа (>5%) Шоу и сотр. [166] относят к неполной однородности исследуемого материала. [c.474]

    Г афний. Для гафния еще не предложено йи одной специфической реакции. Устанавливать его присутствие в объектах исследования приходится пока спектральным или другими физическими методами (рентгеноспектральным, флуоресцентным в рентгеновских лучах, радиохимическим после активации нейтронами и т. д.). При химическом анал изе гафний сопутствует цирконию на всех стадиях анализа и осаждается тем и же реактивами. Поэтому для определения гафния в присутствии Циркония приходится прибегать к методам косвенного ана.пиза. Одним из таких методов является метод осаждения циркония [543] вместе с гафнйем бромоминдальной кислотой из 12-н. раствора соляной кислоты в присутствии серной кислоты при 85—95° С. Для облегчения коа гуляции осадка добавляют этиловый спирт. Осадок центрифугируют, высушивают и взвешивают полученную смесь солей бромоминдальной кислоты. Затем осадок прокаливают и взвеш И вают смесь окислов циркония и гафния. Процентное содержание окиси гафния в прокаленной смеси окислов вычисляют по уравнению [c.201]

    После того как в результате исследований с полющью колебательных спектров и дифракционных методов были получены сведения о расположении ядер в люлекулах фторидов ксенона, стало возможным использовать другие физические методы, которые позволяют установить пространственное и энергетическое распределение электронов в этих молекулах. Такие соединения очень удобны для изучения методом ядерного магнитного резонанса [16], поскольку естественное содержание ядер Р(5 = 2) составляет 100%, 12 Хе (5=1/2)25%, 131Хе(5 = 3 2) 25%. Между ядрами охе и Р может иметь место только магнитное взаимодействие, однако в случае ядер Хе и Р возможно также взаимодействие между квадрупольным моментом и любым градиентом электрического поля, существующим в области ядра ксенона. Полностью разрешенный спектр ЯМР молекулы Хер4 для ядер Р содержит две линии, обусловленные взаимодействием с Хе. Если бы молекула была построена в виде тетраэдра, в спектре следовало ожидать появления четырех линий за счет взаимодействия между Хеи Р однако в результате квадрупольной релаксации они должны слиться в одну линию. Простой вид спектра свидетельствует об эквивалентности всех атомов фтора, однако, как уже отмечалось выше, не следует забывать о масштабе времени, к которому относятся опыты по ядерному магнитному резонансу. На основании ширины линий можно также установить, что среднее время жизни атома фтора, связанного с атомом ксенона (по спектрам в растворе НР), больше [c.405]

    Применение ИК-спектроскопии в научно-исследовательских, аналитических и промышленных лабораториях получило в последние 20 лет настолько быстрое и широкое развитие, что едва ли можно назвать какой-либо другой физический метод, сравнимый с ней в этом отношении. Помимо того что ИК-спектры давно уже плодотворно используются для изучения структуры молекул, качественного и количественного анализа в химии, метод открывает все новые неоценимые возможности и резервы для решения практических задач в различных узкоспециальных областях производства, науки и техники. Иллюстрацией этому может служить и предлагаемая вниманию читателя книга, касающаяся некоторых важных аспектов прикладной ИК-спектроскопии. Книга написана коллективом авторов — специалистов в разных областях знаний, плодотворно применяющих и совершенствующих технику ИК-спектроскопии. В ней не ставилась цель рассмотреть все вопросы теоретической и практической сторон метода, в чем и не было необходимости, так как в настоящее время имеется обширная научно-техническая и учебная литература по этим вопросам. Содержание же данной книги может быть вкратце охарактеризовано по следующим группам глав. Первые две главы и гл. 10 имеют вводный характер и дают неискушенному читателю необходимые общие знания принципов устройства и действия ИК-аппаратуры (гл. 1) и техники приготовления образцов для исследования (гл. 2), в том числе микрообразцов (гл. 10). Главы 3—5 уже вполне оригинальны и касаются практического применения ИК-спектроскопии в фармацевтической и парфюмерной промышленности для анализа лекарственных и косметических препаратов, эфирных масел и т. д., а также применения в геохимии, в частности для исследования структуры каменного угля. Для специалистов, работающих в указанных и смежных областях, эти главы, несомненно, очень полезны. В гл. 6 содержатся ценные сведения об организации и практике работы заводских лабораторий США, использующих метод ИК-спектроскопии, а гл. 7 дает достаточно полное представление о современных промышленных ПК-анализа-тора.х, работающих в непрерывном поточном производстве. [c.5]

    Ароматические углеводороды нефти могут иметь различное происхождение. Во-нервых, ароматические группировки содержатся уже и самом сапропелитовом материале на более или менее глубоких стадиях его изменения. В керогене эстонских сланцев X. Т. Раудсепн нашел до 26% ароматических систем конечно еще ие углеводородного характера, а так как ароматические кольца не уничтожаются, они переходят из одного класса органических соединений в какой-то другой класс и в конце концов в ароматические углеводороды. Постоянное содержание кислорода (часто и серы) в ароматических углеводородах, выделенных из нефти физическими методами, является возможно признаком, унаследованным от исходного материала. Последний мог содер-н ать ароматические системы лигнина водяных растений. Попадавшие в сапропелевые илы в виде растительного детрита остатки наземной флоры также могли повысить ресурсы ароматических структур. Значительное содержание ароматических углеродных атомов в гумусовых углях, несмотря на то что клетчатка их не содержит, иллюстрирует возможность значительного содержания ароматических систем и в исходном материале нефти. Во всяком случае речь мол ет идти только о полициклических ароматических системах, а, следовательно, и об углеводородах этого ряда. С этой точки зрения содержание кислорода именно в высших членах ароматического ряда, выделенных из нефти, показательно в том отношении, что эти углеводороды ближе к иачальному веществу нефти, чем углеводороды прочих рядов, особенно среднего и низкого молекулярного веса. Вместе с тем подкрепляется положение, что во всех нефтях близость группового состава характерна именно для выспщх фракций высокого молекулярного веса. Различные типы нефти в основном зависят от позднейших ее превращений. Разукрупнение высших гибридных углеводородов [c.124]

    Например, примесь кислорода в азоте и водороде можно определить колориметрическим методом ло реакции с солями меди (1) при в1Г0 содержании 1 10 % объдан. (при объеме пробы 0,5 л). Однако колориметрические методы не при-. годны для определевия примеси кислорода в, хлоре, сероводо- роде, цианистом водороде, двуокиси углерод и в некоторых других газах. Определение примеси окиси и двуокиси углерода невозможно проводить в присутствии всех газов с кислотными свойствами. Определению примеси лор мешают газы, обла-. дающие окислительными или восстановительными свойствами двуокись азота, озон, двуокись серы, сероводород и другие. Подобные случаи довольно часты и они вынуждают экспериментатора для оценки чистоты газов применять большей частью физические методы. [c.79]

    Наличие примесей в прпмепяелгых для исследования веществах влияет на условия равновесия и чрезвычайно усложняет анализ смесей. Поэтому исходные вещества должны подвергаться возможно более тщательной очистке. Способ очистки должен выбираться в зависимости от свойств вещества и содержащихся в нем примесей. Применяются физические методы очистки — перегонка, кристаллизация и др., а также химические методы удаления примесей (например, удаление воды с помощью водоотнимающих средств). Для очистки жидких веществ чаще всего используется ректификация, проводимая на обычных лабораторных колонках. Для работы отбирается средняя фракция, которая при необходимости может быть подвергнута повторной перегонке. Критерием чистоты продукта, отбираемого в процессе перегонки, является постоянство физических свойств дистиллата, прежде всего температуры кипения, которую легко контролировать по ходу разгонки. Помимо температуры кипения контролируются чаще всего показатель преломления и удельный вес. Могут, разумеется, контролироваться и другие свойства (например, электропроводность, вязкость). Для оценки степени чистоты следует выбирать такое свойство, которое в наибольшей степени изменяется с изменением содержания примесей и поддается контролю с наибольшей точностью. Помимо измерения физических свойств, следует во всех случаях, когда это возможно, использовать химические и физико-химические методы анализа. Особенно большое распространение для определения чистоты органических веществ получил в последнее время метод газо-жидкостной хроматографии. [c.8]

    Одним из таких физических методов является спектрофотометрия в ультрафиолетовой части спектра. Область применения ультрафиолетовой спектроскопии ограничена в основном ароматическими углеводородами и системами с двойными связями, сопряженными между собой или с какими-нибудь функциональными группами. В промышленности синтетического каучука метод ультрафиолетовой спектроскопии находит применение для анализа самых различных продуктов производства определение примесей в мономерах и различных полупродуктах, изучение состава ряда полимеров, определение содержания различных ингредиентов в каучуках, контроль некоторых процессов сополимеризации и многое другое. В ряде случаев метод может быть применен для идентификации некоторых соединений и расшифровки состава образцов синтетических каучуков. Недостатками метода, ограничиваюш.ими в некоторых случаях [c.3]

    Первичная структура целлюлозы установлена в 1930-х годах. При анализе этого полисахарида методом метилирования образуется более 90 % 2,3,6-три-0-метил-Л-глюкозы следовательно, молекулы целлюлозы в основном линейны. Поскольку при частичном гидролизе целлюлозы образуется целлобиоза (6), этот полисахарид содержит р-(1->4)-связи, р-Конфигурация внутримолекулярных гликозидных связей подтверждена ферментативным анализом. Определение длины цепи по содержанию концевых групп в случае в основном линейных молекул неточно и дает очень низкие значения (- 200 моносахаридных звеньев) из-за деструкции в ходе анализа. Длина молекулы целлюлозы, определенная физическими методами, составляет до 10 000 остатков D-глюкозы. Изучение кинетики гидролиза целлюлозы показало, что свыше 99 % связей в ее молекулах имеет один и тот же характер (р-1,4-связи) [94]. Существование в молекулах целлюлозы связей другого типа не доказано. [c.239]

    В основном же для проведения ускоренных анализов используют другие методы, которые являются, как правило, менее точными, чем маркировочные, но достаточно быстрыми. Для ускоренных анализов применяют из химических методов титриметрические, из физико-химических, например фотометрические, ионометрические и др. Из физических методов наиболее пригодными являются методы, с помощью которых легко осуществим Автоматический контроль. Например, в последние годы на предприятиях цветной металлургии применяют рентгеносиект-ральные методы анализа, позволяющие контролировать содержание элементов непосредственно в потоке раствора или пульпы (квантометры Поток КРФ-13). [c.24]

    Следует отметить, некоторую условность де 1ения методов на химические, физико-химические и физические. Существуют также другие классификации. В последние годы иолучили развитие так называемые комбинированные методы анализа, к которым можно отнести, например, химико-сиектральный, экстракционно-атомно-абсорбционный, экстракционно-фотометрический методы. Эти методы сочетают предварительную химическую подготовку пробы (разделение, концентрирование) с последующим определением содержания элементов физическими или физико-хи-мическими методами. [c.25]

    Экономичность щелочного обогащения быстро повышается с ростом содержания железа в исходных рудах. На рудах, бедных по железу (20—30 7о), нужно добиться значительных технологических и технических усовершенствований, чтобы метод стал экономичным. По мнению авторов, метод применим к рудам, богатым Железом, но загрязненным вредными пpимetями — силикатами, алюмосиликатами и фосфатами. Процесс целесообразен для удаления хрома из руд Конакри (53—56% Ре и 0,5—1 % Сг), алюминия — из некоторых богатых железом индийских руд (55— 60 7о Ре и 10—12% А120з) и для марроканских руд (50 7о Ре и 170/0 5102), т. е. для руд, которые не могут практически использоваться, несмотря на высокое содержание железа, так как вредные примеси в них неотделимы физическими методами. При обработке руд других металлов, цена на которые более высока, экономика щелочной обработки может быть более благоприятна. [c.171]

    Активационный анализ (АА) относится к основным ядерно-физическим методам обнаружения и определения содержания элементов в различных природных и техногенных материалах и объектах окружающей среды [1—9]. Метод базируется на фундаментальных понятиях и данных о структуре атомных ядер, сечениях ядерных реакций, схемах и вероятностях распада радионуклидов, энергиях излучения, а также на современных способах разделения и предварительного концентрирования микроэлементов. Широкое распространение АА получил благодаря таким преимуществам перед другими методами, как низкие пределы обнаружения элементов (10 -10 г), экспрессность и воспроизводимость анализа, возможность неразрушающего одновременного определения в пробе 20 и более элементов [5, 7-13]. Применение специальных химических методик и аппаратурных приемов позволяет определять фоновое содержание металлов в приземном слое атмосферы [3], следовые количества примесей в биологических объектах, особо чистых веществах [6,91 и устанавливать химическую форму элементов в исследуемьк пробах [10]. Большое значение имеет возможность проведения анализа в диапазоне массы образцов от нескольких микрограммов (важно для труднодоступных образцов, например, метеоритов или лунного грунта) до нескольких сотен граммов. Следует отметить, что относительная погрешность определения содержания элементов в пробах активационным методом не выходит за пределы 10%, а воспроизводимость составляет 5-15% и может быть доведена до 0,1-0,5% при серийных анализах [2]. [c.3]

    Предложенная вьппе трактовка термина хро.ыатогра-фия не является традиционной. Она помогает понять сущность хроматографического процесса и объединяющее начало многочисленных хроматографических методов. В то же время представление о хроматографии как о способе осуществления процесса межфазного распределения веществ не является альтернативой традиционным представлениям о ней как о методе разделения или методе анализа, а точнее о совокупности методов разделения и анализа. Скорее наоборот, триединое понимание смыслового содержания термина хроматография позволяет прийти к логически завершенной схеме формирования терминологии для характеристики хроматографических методов в отличие от рекомендованного ИЮПАК определения Хроматография — это физический метод разделения, в котором разделяемые компоненты распределяются между двумя фазами, одна из которых неподвижна (стационарная фаза), тогда как другая (подвижная фаза) движется в определенном направлении [74]. Общая схема формирования терминологии для характеристики хроматографических методов разделения и анализа веществ приведена в табл. 3.55. [c.180]

    Для некоторых газов между А Г и содержанием влаги (в пре делах от О до 0,1%) соблюдается линейное соотношение. Од нако наклоны линий будут несколько различаться для газов с раз личной теплоемкостью. Для калибровки прибора были использо ваны газовые смеси, содержащие 7% водорода 1,0% кислорода 0,7% этилена 0,6% диоксида углерода и 0,5% (об.) бутана Показано, что этим методом может быть определено даже 0,0005% (об.) БОДЫ (5 млн" ). Энгельбрехт и Дрекслер [28] применили этот метод для прямого определения свободной воды в нитрате аммония, который распыляли в токе сухого азота при комнатной температуре. Количество влаги, удаляемой азотом, определяли путем поглощения пентоксидом фосфора и сравнивали с общим содержанием воды, найденным методом Фишера оказалось, что при распылении нитрата аммония влага удаляется не полностью. Тем не менее, между содержанием влаги, найденным методом Фишера, и разностью сопротивлений термисторов выполняется линейное соотношение. Описанным методом можно достаточно надежно определить менее 0,1% воды. Энгельбрехт и Дрекслер [28] сделали заключение, что описанная техника измерений применима для определения содержания свободной воды во многих мелкораздробленных твердых материалах. Десорбция влаги потоком сухого газа может быть использована в сочетании с другими методами определения воды—абсорбционными, электрическими и физическими. [c.208]

    Фосфоритная руда Каратау содержит до 20% карбонатов [1]. При переработке фосфоритов в суперфосфат расходуется дефицитная серная кислота, реагирующая с карбонатами образуется новый балласт — сульфат кальция. Кроме того, выделяющийся углекислый газ выбрасывает измельченную фосфоритную руду, что зачастую ведет к нарушению нормального хода производственных процессов. Путем флотации не всегда можно отделить ценную руду от балластных карбонатов. Обогащение фосфоритов нри помощи флотации лишь частично понижает содержание карбонатов [ ]. По данным Чепелевецкого и Бруцкус [ ], а также Позина [ ], флотационный концентрат различных фосфоритов содержит от 3.8 до 6.8% двуокиси углерода, что составляет 8.6—15.5% карбоната кальция. Не дали положительного эффекта и физические методы удаления карбонатов, например путем магнитной и электростатической сепарации. Опыты обжига руды с последующим отмучиванием гидроокисей кальция и магния также не привели к желательным результатам. На совещании по теории и практике флотационного обогащения в 1950 г. было отмечено, что наилучшие результаты получаются при химическом отделении карбонатов Р]. К такому же выводу пришли в США при обогащении некоторых шеелитовых и фосфоритных руд [ ]. Особенное значение приобретают химические методы, когда обогащаемый материал — шлам. Известно, что успешное применение флотации наряду с другими условиями требует определенного размера частиц, не выходящего за границы некоторого интервала. Шламы же из-за высокой дисперсности не поддаются флотации [ . ]. Между тем при измельчении фосфоритов 15—20% всей руды отходит в шлам. Казалось бы самый простой способ химического обогащения — удалять карбонаты, действуя на РУДУ разбавленными кислотами. Тем более, что карбонаты значительно лучше растворяются в разбавленных кислотах, чем основная порода большинства руд. Действительно, методы извлечения карбонатов, содержащихся в фосфоритных рудах, разбавленными серной, соляной, азотной, а также сернистой кислотой разработали Вольф-кович с сотрудниками, Ченелевецкий и Бруцкус, Логинова в НИУИФ, Черняк в Иркутском институте редких металлов [ . >]. Однако минеральные кислоты слишком дорогой продукт для химического обогащения фосфоритов, особенно если принять во внимание, что регенерация кислоты затруднена. Имеет значение также коррозия аппаратуры. [c.32]

    Диапазон различий физических и химических характеристик компонентов пищевых продуктов чрезвычайно широк. Жидкие пищевые продукты содержат как нерастворимые в воде твердые вещества, так и неограниченно растворимые. Концентрация одних растворенных веществ, например таких, как сахар, может достигать 20% веса продукта, тогда как содержание других растворенных веществ может быть настолько цезначительным, что его трудно измерить существующими методами. Пищевые продукты содержат как самые простые, так и наиболее сложные соединения, известные человеку. [c.212]

    При определении содержания кристаллической фазы при помощи измерения любой другой физической величины такн<е всегда используются соответствующие значения этой величины для низкомолекулярпых кристаллических гомологов (например, при оценке кристалличности полиэтилена по теплосодержанию используются значения скрытых теплот плавления низкомолекулярных парафинов). Оценка степени кристалличности сравнепиедг на рентгенограмме интенсивностей рефлексов, приписываемых рассеянию на аморфных и кристаллических областях, является также ненадежной, поскольку до выяснения природы кристалла полимера нельзя определить и характер рассеяния в таких кристаллах. Следовательно, и в этом методе молчаливо предполагается тождественность строения кристаллов полимеров и их низших гомологов. Тот же дефект содержится и в оценке степени кристалличности по инфракрасным спектрам, где для сравнения используются спектры низкомолекулярпых веществ. Таким образом, все оцетгки степени кристалличности полимеров являются формальными и должны быть пересмотрены после выяснения природы кристаллов полимеров. [c.82]

    Для автоматизации производства необходимы контроль нераз-рущающими методами и широкое использование современных физических методов экспрессного анализа результаты анализа должны быть оформлены в виде электрических сигналов. К числу таких физических методов относятся эмиссионный спектральный анализ с фотоэлектрической регистрацией (квантометры, в том числе для вакуумной области спектра), рентгенофлуоресцентный метод также с использованием соответствующих квантометров, автоматические методы определения углерода,серы,кислорода, водорода и азота в металлах и сплавах. В первую очередь решаются задачи автоматизации анализа в кислородно-конверторном производстве стали, которое получило большое развитие. Мы уже говорили в начале книги, что плавка в этом случае длится 15—25 мин, а по ходу ее нужно получать информацию о составе жидкой стали, например о содержании углерода. Эту задачу в значительной степени решают вакуумные квантометры, позволяюш.ие определять в числе прочих элементов углерод, серу, фосфор. При анализе простых сталей определение трех названных элементов составляет 60—707о всех определений. Другое направление внедрения прогрессивных аналитических методов — автоматизация электросталеплавильного производства. Конечно, автоматизированные методы анализа нужны и доменному, и мартеновскому, и коксохимическому производствам, и горнорудным предприятиям. [c.144]

    Для определения группового углеводородного состава реактивных и дизельных топлив используют те же методы, что и для анализа бензинов (анилиновый метод, суммарное определение непредельных и ароматических углеводородов но сульфированию, криоскониче-ский метод определения ароматических углеводородов, относительная характеристика содержания парафиновых и нафтеновых углеводородов по удельной рефракции или другим физическим константам). Точность такого анализа еще меньше, чем для бензинов, поскольку само понятие группа углеводородов в случае высокомоле-кулярнь1Х топлив весьма условно. [c.228]

    ФАЗОВЫЙ анализ — анализ химической природы, состава, структуры, дисперсности п количества фаз, входящих в состав исследуемого многофазного материала. Отличается от элементного химического анализа, с помощью к-рого определяют содержание тех или иных элементов во всем материале, и от вещественного анализа, к-рым устанавливают наличие и количество определенных соединений элемента независимо от их распределения в отдельных фазах, составляющих исследуемый материал. Ф. а. осуществляют после разделения фаз или ие прибегая к разделению, в равновесных или неравновесных системах либо в стадии превращения. В пом используют различные химические, физико-химическио и физические методы рентгеноструктурпый, металлографический, петрографический, кристаллооптический, элект-рониомикроскопический, термографический, объемный газовый и др. Важнеггшей операцией Ф. а является разделепие фаз, для чего обычно прибегают к хим. методам избирательного растворения и электрохим. методам селективного анодного растворения. Избирательность хим. методов растворения основана либо на существенных различиях в термодинамической устойчивости разделяемых фаз в условиях проведения анализа (термодинамическая селективность), либо на больших различиях в скорости взаимодействия различных фаз с применяемым реактивом, переводящим в раствор за определенное время в определенных условиях (т-ра, кпс-лотность и т. и.) одни фазы и практически не успевающим растворить другие (кинетическая селективность). В электрохим. методах растворения (применяемых при анализе электропроводных материалов) также используют различную термодинамическую устойчивость фаз в условиях контакта с определенным раствором при заданном потенциале (или плот- [c.632]

    В настоящее время в промышленности все шире внедряются новые процессы, для проведения которых могут быть использованы только чистые соединения. Анализ загрязнений в чистых соединениях и в различных товарных продуктах в наши дни является одной из основных областей применения аналитической химии [1]. В отличие от других физических и химических методов, газовая хроматография дает возможность в одном опыте получить информацию о содержании не какохьлибо одной примеси, а о ряде компонентов загрязнений, допустимые нормы содержания которых в основном веществе различны. [c.90]

    Точным методом определения концентрации перекиси водорода является измерение температуры замерзания ее чистых водных растворов так, у растворов с высоким содержанием перекиси водорода температура замерзания изменяется приблизительно на Г ira каждый весовой процент состава. Однако этот метод следует рассматривать лишь как специальный в качестве обычного экспериментального метода он ие подходит. В особых условиях использована для открытия перекиси водорода и масс-спектрометрия [105]. Другие физические свойства растворов перекиси водорода применяются очень редко для анализа. Хотя диэлектрическая проницаемость как будто и является удобным показателем концентрации перекиси водорода, но, поскольку кривая диэлектрической проницаемости как функция концентрации обладает максимумом, для ее использования необходимо предварительно знать приближенный состав раствора. Кроме того, этот метод пригоден лишь для анализа чистейших проб, так как уже следы примеси электролитов влияют на электропроводность и таким образом обусловливают ошибки в измерениях [106]. Для определе1шя перекиси водорода предложено также применение гальванических элементов [107]. [c.468]

    Для удаления окиси угЛерода из технического водорода применяются как химические, так и физические методы. К химическим методам очистки водорода от СО относятся процессы, связанные с каталитическим окислением или восстановлением этого соединэння, а также процессы, предусматривающие абсорбцию окиси углерода при помощи растворов химических реагентов. Следует отметить, что в ряде случаев — при значительном содержании СО в исходном газе — процесс удаления окиси углерода из газа совмещается с использованием этого соединения для получения другого целевого продукта. Указанное имеет место, например, при каталитической конверсии СО с водяным паром (с целью получения дополнительных количеств водорода) или при применении СО для синтеза метанола. [c.380]


Смотреть страницы где упоминается термин СОДЕРЖАНИЕ f Другие физические методы: [c.161]    [c.633]    [c.23]    [c.136]    [c.16]   
Смотреть главы в:

Установление структуры органических соединений физическими и химическими методами том 1 -> СОДЕРЖАНИЕ f Другие физические методы




ПОИСК





Смотрите так же термины и статьи:

Другие методы

Методы физические



© 2025 chem21.info Реклама на сайте