Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пути молекулярного возбуждения

    Светящиеся тела, содержащие возбужденные частицы, испускают излучение. Возбуждение происходит или путем поглощения квантов света, или при столкновениях, т. е. за счет теплоты. Спектры испускания известны для атомов и сравнительно небольшого числа молекул, в основном двухатомных (более сложные разлагаются при высокой температуре). Молекулярные спектры изучают главным образом как спектры поглощения, когда излучение источника сплошного спектра (например, лампы накаливания) проходит через кювету, наполненную молекулярным газом. [c.145]


    В последнее время стала развиваться радиационная химия углеводородов и появились исследования радиол иза алканов, доложенные на симпозиуме по радиационной химии углеводородов в 1957 году [146]. Под влиянием облучения таза пучком электронов с энергией порядка 1,5 мэв при обыч-ной температуре могут свободно происходить процессы расщепления молекул алкана на радикалы и непосредственного отщепления молекул водорода и метана На основе изучения цримесей этилена и пропилена в качестве веществ, поглощающих атомы водорода и метил-радикалы, а также результатов изотопического исследования радиолиза смеси этана и полностью замещенного дейтероэтана на масспектрометре, было показано, что большая часть водорода образуется при радиолизе этана путем прямого отщепления его молекул от молекул этана в первичном процессе [146]. Изучение изото-лического распределения метана, образованного при радиолизе системы этан и дейтероэтан, дало доказательство того, что метан возникает путем непосредственного отщепления его молекулы от исходных молекул этана. Таким образом, процессы радиолиза алканов могут происходить под воздейст- вием больщой энергии облучения при обычных температурах по другому механизму, с отщеплением молекул в первичном акте, без участия радикалов. В этом отношении радиолиз несколько схож с высокотемпературным крекингом, при котором относительный вес радикально-цепных процессов снижается и возрастает роль процессов распада, проходящих по молекулярному механизму, что соответствует более высоким порядкам энергий в том и другом случаях. Интересно также, что в условиях радиолиза (25°) могут возникать горячие радикалы, энергия которых соответствует гораздо более высоким температурам, чем температура экспериментов, т. е. распределение по энергиям для таких радикалов не является Максвелл-Больцмановским. С другой стороны, при действии радиации на алканы возникают и радикалы, которые могут тшициировать процессы распада. В этих случаях важной характеристикой инициированного крекинга является общий выход радикалов, способных индуцировать крекинг, отнесенный к определенному количеству поглощенной энергии. Вследствие того, что ионизирующее излучение поглощается молекулами не избирательно, количество поглощенной энергии пропорционально общему числу электронов в единице объема и не зависит от химического строения алкана [147]. В то же время выход радикалов, отнесенный к одинаковой поглощенной энергии, весьма зависит от строения поглощающих молекул. С процессами образования радикалов конкурируют процессы спонтанной де.чактивации возбужденных молекул алканов, связанной с превращением энергии элект- [c.71]


    Положительно заряженные молекулярные ионы не образуются путем прямого отрыва электрона от нейтральной молекулы, так как при поглощении кванта света молекула переходит в возбужденное состояние и энергия успевает распределиться По молекуле прежде, чем произойдет отрыв от нее электрона. [c.52]

    Существуют разл. системы классификации Р. х. В зависимости от путей возбуждения реагентов в активное состояние Р.х. по дразделяют на плазмохим., радиационно-хям., термич., фотохим., электрохим. и др. Кинетич. классификация Р.х. учитывает молекулярность реакции (число молекул, участвующих в каждом элементарном акте,-обычно моно-, би- и тримолекулярные р-ции), порядок реакции (степень, в к-рой концентрация в-ва входит в кинетическое уравнение р-ции, устанавливающее зависимость скорости Р. х. от концентрации реагентов). По формальным признакам (изменение степени окисления, перераспределение связей, фазовому состоянию, топологии и др.) Р. X. делятся на окислительно-восстановительные реакции, присоединения реакции, замещения реакции, гетерогенные реакции, гомогенные реакции, реакции в растворах, реакции в твердых телах, топохимичес-кие реакции, перегруппировки молекулярные,, элиминирования реакции и т.д. Классификация по формальным признакам обычно не зависит от механизма р-ции. Напр., р-ции присоединения объединяются общим внеш. признаком-образованием одного нового соед. из двух или неск. исходных в р-циях замещения один фрагмент молекулы замещается на другой, при изомеризации происходит перераспределение связей между атомами в молекуле без изменения ее состава и т.д. [c.212]

    Поместив источник и образец в твердые кристаллические решетки, мы не оказали воздействия на переходы без отдачи для всех ядер, но увеличили вероятность перехода без отдачи. Причина этого заключается в том, что энергия у-лучей может привести к возбуждению колебаний решетки. Эта энергия влияет тем же самым образом, что и энергия отдачи в газе, т. е. она приводит к снижению энергии излучающей частицы и увеличению энергии поглощающей частицы. Некоторые характеристики кристалла и условия эксперимента для излучения и поглощения не меняют исходного колебательного состояния решетки, т.е. будут удовлетворять условиям перехода без отдачи. Следует подчеркнуть, что эти условия определяют просто интенсивность наблюдаемых линий, поскольку этим эффектом задается только число частиц с подходящей энергией. Нас не интересует абсолютная интенсивность полос, поэтому здесь не обсуждается этот аспект МБ-спектроскопии. Однако упомянем, что для некоторых веществ (обычно твердых молекулярных веществ) решеточные и молекулярные колебания возбуждаются до такой степени, что при комнатной температуре происходит только небольшое число переходов без отдачи и спектр не наблюдается. Часто спектр регистрируют путем значительного понижения температуры образца. [c.287]

    На основе классич. Б. в этот период возникли самостоят. науки-молекулярная биология и бноорганическая хи.чия. Научное направление, объединяющее эти науки с биофизикой, получило название физ.-хим. биологии. Совр. период в развитии Б. характеризуется новыми достижениями в изучении живой материи. В области энзимологии исследованы сотни ферментных систем, во мн. случаях установлен механизм их каталитич. действия. Новые концепции возникли в области Б, гормонов, в частности в связи с ролью аденилатциклазной системы в области биоэнергетики, где было открыто участие в генерации энергии клеточных мембран, а познании механизмов передачи нервного возбуждения и биохим. основ высшей нервной деятельности и др. В настоящее время установлен в общих чертах механизм передачи генетич. информации, реализующийся при репликации, транскрипции и трансляции, разработаны методы получения и определения структуры отдельных генов, по существу завершено составление метаболич. карты , т.е. путей превращения в-в в клетке, свидетельствующей о биохим. общности живых организмов и непрерывности обмена в-в в биосфере. [c.292]

    Электронное возбуждение влияет на дипольные моменты не только путем изменений в геометрии молекулярного скелета, но и через перераспределение самих электронов. Определяя это распределение, дипольные моменты таким образом предполагают возможное химическое поведение возбужденных состояний. Изменения в дипольном моменте при возбуждении можно установить по влиянию полярных растворителей на спектры поглощения и флуоресценции и по воздействию приложенных электрических полей на деполяризацию флуоресценции, возбужденной поляризованным светом. Все эти изменения могут происходить как в сторону увеличения, так и в сторону уменьшения величины дипольных моментов. Например, в формальдегиде (метаноле) дипольный момент уменьшается от 2,3 дебая в основном состоянии до 1,6 дебая в состоянии ( , я ), тогда как для бензофенона эти значения составляют 2,9 и 1,2 дебая в основном и возбужденном состояниях соответственно. Уме1[ьше-ние дипольных моментов определяется уменьшением поляризации связи С = 0 в возбужденной молекуле. В то же время дипольный момент ароматической молекулы, такой, как 4-нитроанилин, при возбуждении увеличивается от 6 до 14 дебая. Это происходит в значительной мере благодаря процессам переноса заряда в возбужденном состоянии можно ожидать, что полностью биполярная структура 4-нитроанилина, с полностью отрицательными зарядами на каждом кислороде и полностью положительными зарядами на каждом азоте, должна иметь дипольный момент около 25 дебая. [c.150]


    Пути молекулярного возбуждения [c.27]

    В большом цикле работ Дж. Поляни с сотр. [284, 345, 365, 366, 368, 369) исследовано влияние локализации барьера ППЭ на характер кинетического поведения молекулярной системы. Для трехчастичной реакции обмена типа А + ВС АВ + С вводится классификация участков ППЭ вдоль пути реакции. В зависимости от того, где в основном кинетическая энергия системы превращается во внутреннюю энергию продуктов — при сближении реагентов или при разлете продуктов, ППЭ соответственно называется притягивающей или отталкивающей. В промежуточном случае говорят о смешанной поверхности. Показано, что притягивающие ППЭ характерны для экзотермических реакций, а отталкивающие — для эндотермических. Определены функции распределения энергии между продуктами реакции в зависимости от вида поверхности. Так, для экзотермических реакций притягивающий характер потенциала обусловливает сильное колебательное возбуждение продуктов. Степень колебательного возбуждения продуктов определяется также и соотношением масс реагентов. Проанализирована эффективность вращательного и колебательного возбуждений в преодолении барьера активации в зависимости от локализации барьера. Показано, что поступательная энергия реагентов более эффективна в преодолении барьера, чем колебательная, когда барьер расположен в области реагентов. Колебательная энергия реагентов более эффективна при локализации барьера в области продуктов. [c.93]

    Спиновое взаимодействие между протонами обусловливает магнитную поляризацию промежуточного электронного облака, как это указывалось на стр. 289. Взаимодействие между протонами и электронами может происходить по различным механизмам (Рамзей [52]) с участием магнитных моментов, связанных как с орбитальным движением электронов, так и с электронным спином, но, по-видимому, только один из этих факторов является достаточно существенным для объяснения наблюдаемой величины взаимодействия. Речь идет о влиянии электронного спина, известного под названием фермиевского или контактного взаимодействия, поскольку оно зависит от плотностей электронных спинов у про.тонов. Величина константы связи может быть вычислена методом возмущений второго порядка [52], согласно которому возбужденные триплетные состояния вводятся в волновую функцию молекулярных электронов, или путем дальнейщего приближения, для чего средняя величина энергии возбуждения берется непосредственно из волновой функции основного состояния. Именно так сделал Рамзей в случае молекулярного водорода, использовав функцию Джемса — Кулиджа. Было использовано произведение атомных орбит по Гейтлер-Лондону [33] Карплус и сотр. [61, 62, 119] рассчитали приближенным методом величины ряда валентных связей. Эти данные позволили получить теоретическое значение константы связи в метане, равное 10,4 1,0 гц константа связи, определенная по расщеплению спектра H3D, составляет 12,4 1,6 гц. Кроме того, предсказано, что константа связи J между протонами внутри метиленовой группировки [61]является чувствительной функцией угла связи Н—С—Н зависимость такова, что J уменьшается от величины примерно 20 гц при валентном угле 105° до нуля с расщирением угла примерно до 125° при более щироких углах можно ожидать появления небольших отрицательных значений J. Число молекул, для которых точно известен валентный угол Н—С—Н, весьма ограниченно в тех случаях, когда эти углы известны, экспериментальные данные согласуются с вычисленной кривой. В частности, в отнощении двух геминальных водородов в винилиденовой груп--пе>С = СН2 можно предсказать, что они взаимодействуют очень слабо (7 S1 гц), так как центральный атом углерода является- хр -гибридизованным, а угол Н—С—Н велик константы связи поэтому малы, что согласуется с экспериментальными данными. [c.307]

    ИЛИ прямой активации. При возбуждении механическим путем разрыв связи происходит под действием очень сильных местных напряжений. Например, в пластичных по своей структуре взрывчатых веществах некоторые типы механического воздействия вызывают сильные местные напряжения сдвига. Было высказано предположение (см. работу [2], стр. 209), что возникновение сильных местных напряжений может привести к образованию свободных радикалов путем непосредственного разрыва связи. С другой стороны, такие взрывчатые вещества, как азид свинца, являются кристаллами ионной структуры с больщой энергией решетки. Дробление этих кристаллов должно привести к местному образованию атомов, термически не горячих , но исключительно реакционноспособных, поскольку они уже не занимают своих нормальных положений в кристаллической решетке. После такого непосредственного разрыва связи разложение может потребовать гораздо меньшей энергии активации, чем в случае, когда эта энергия сначала путем молекулярных столкновений, усредняясь, превращается в тепло. [c.381]

    Процессы передачи и релаксации энергии являются одними из определяющих в механизме элементарных реакций. Метод классических траекторий позволяет достаточно полно исследовать процессы внутримолекулярной релаксации энергии и межмолекулярной ее передачи и сопоставлять результаты расчетов с экспериментом. В этом разделе приведены примеры исследования методом классических траекторий процессов колебательной релаксации. Для конкретных систем изучается механизм передачи энергии, определяются порции переданной энергии в зависимости от температуры термостата. Другой класс работ связан с исследованием вопроса о внутримолекулярном перераспределении энергии. Путем расчета траекторий движения изолированной молекулы определяются времена рандомизации молекулярной системы, исследуются процессы межмодовой передачи энергии в случаях термического и селективного возбуждения молекулы. [c.104]

    Успехи в изучении строения молекул и развитие квантовой статистической физики привели к созданию нового метода расчета термодинамических функций и, в частности, химических равновесий. Этот метод дает возможность вычислять значения внутренней энергии (сверх нулевой), энтропии и теплоемкости газообразных веществ в широком интервале температур (до 4000— 6000 °С), исходя из величин энергий всех квантованных состояний молекулы, связанных с ее вращением, колебаниями, электронным возбуждением и другими видами движения. Для вычисления энергии каждого из состояний молекулы необходимо знать молекулярные параметры моменты инерции, основные частоты колебания, уровни электронного возбуждения и др. Эти величины находятся главным образом путем изучения и расшифровки молекулярных спектров. Вычисление же термодинамических величин проводится методами квантовой статистической физики. Здесь будут кратко изложены основы статистического метода расчета термодинамических функций. [c.327]

    Возможен также перенос заряда ионизированной молекулой к другой молекуле с более низким потенциалом-ионизации. Таким образом, для смесей может быть характерна определенная избира-. тельность реакций. Кроме многих предложенных механизмов реакции, есть процессы, при которых возбужденные молекулы беч распада теряют свою избыточную энергию. Хорошо известна флуоресценция — превращение молекулярной энергии в видимое излучение Известен также процесс гашения — постепенное рассеивание энергии путем ее передачи ближайшим молекулам при столкновениях, происходящих в результате теплового движения или каким-либо другим путем. На этих процессах переноса энергии основан механизм защиты от излучения, благодаря которой влияние излучения на чувствительные материалы может быть уменьшено. Другой метод, усиливающий такую защиту, основан на изучении реакций радикалов, часть которых может проходить через многие стадии цепного механизма, например, реакции (2) и (4), Если имеются компоненты, склонные вступать в реакцию со свободными радикалами, то интенсивность излучения может быть уменьшена. К таким акцепторам радикалов относятся иод, ненасыщенные соединения, окиси азота, амины и кислород. [c.159]

    Пути распада молекулярного иона и последующие распады осколочных ионов определяются уже строением самой молекулы органического вещества, т. е. набором и последовательностью в нем атомов, групп и связей. Характер масс-спектра достаточно точно отражает строение молекулы и может служить для определения ее структуры. Распад (так называемая фрагментация) включает в себя как гомолитические, так и гетеро-литические разрывы связей, хотя чаще наблюдаются первые. Таким образом, в отличие от других физико-химических методов исследования органических веществ, масс-спектрометрический метод основан на деструкции молекулы, точнее, возбужденного положительного иона, возникающего из молекулы органического вещества под действием удара электрона. Этим самым масс-спектрометрический метод близок к классическим методам установления строения органических веществ путем деструкции молекулы, но в данном случае весь ход деструкции регистрируется сразу и для всего сложного распада нужно менее одного миллиграмма вещества. [c.589]

    Таким образом, в настоящее время отсутствует единая теория масс-спектров, поэтому приходится ограничиться получением качественной картины взаимодействия электронов с молекулами. Одним из немногих возможных путей, позволяющих судить о характере взаимодействия электронов с молекулой, является изучение экспериментальных данных по масс-спектрам сложных молекул. При небольщих энергиях электронов (10—12 эв) в масс-спектрах будут присут" ствовать только пики, отвечающие ионизированной молекуле— молекулярному иону. По мере увеличения энергии электронов вероятность ионизации возрастает. Появляется больше возможностей для протекания процессов диссоциации молекулярные ионы приобретают избыточную энергию и переходят из основного состояния в возбужденное, соответствующее энергии диссоциации образуются осколочные ионы, свободные радикалы, атомы, а также возбужденные молекулы. Все эти процессы, объединяемые общим названием — [c.18]

    Если бы можно было точно рещить уравнение Шредингера для молекулы, мы получили бы полный набор энергетических уровней и соответствующих им волновых функций, посредством которых легко найти искомые характеристики. Невозможность точно решить уравнение Шредингера для такой сложной системы, как молекула, приводит к необходимости отыскания приближенных решений. Одним из таких приближений является интерпретация незанятых молекулярных орбиталей, получающихся при расчете основного состояния молекулы методом МО ЛКАО, как состояний, в которые переходит электрон при возбуждении. Однако достаточно хорошего совпадения результатов этого расчета с экспериментальными данными при такой интерпретации не наблюдается. Это объясняется тем, что с помощью вариационного принципа можно получить только минимальную энергию. Для отыскания первого возбужденного уровня следовало бы решать другую вариационную задачу, в которой искомая функция должна обеспечивать минимум энергии при дополнительном условии ее ортогональности к волновой функции основного состояния. Однако решение такой задачи очень сложно и нецелесообразно, поскольку оно позвол5 ет получить только один возбужденный уровень, а не спектр уровней. Поэтому следует идти другим путем — уточнять решение приближенного уравнения, например методом конфигурационного взаимодействия (см. гл. I). [c.131]

    Избыточная энергия возбуждения, сообщаемая молекуле налетающим электроном, в общем достаточна для разрушения только одной связи. Если в последующих реакциях раскрываются другие связи, то вследствие образования двойных связей или замыкания колец они образуются таким образом, что в конечном итоге разрушается только одна связь правило энергетического отбора). Это правило облегчает выбор схем процессов распада и предостерегает от ошибочных интерпретаций. Так, ион, на 30 а. е. м. более легкий, чем молекулярный ион, не может образоваться путем отщепления двух метильных радикалов. Поэтому эта разность масс должна быть вызвана потерей другой частицы, например N0. [c.278]

    Флуоресцентные измерения обладают рядом преимуществ в сравнении с абсорбционными. В частности, оптическое поглощение промежуточного продукта, содержащегося в низкой концентрации, вызывает незначительное изменение относительно большой интенсивности зондирующего пучка. Шум , получающийся вследствие случайных флуктуаций интенсивности света, а также из-за статистической природы пучка фотонов, ограничивает чувствительность, достижимую в абсорбционном эксперименте. В люминесцентном эксперименте, напротив, нет излучения кроме того, которое испускается возбужденными соединениями. Статистические ограничения продолжают лимитировать точность, с которой могут измеряться концентрации, но достижимая на практике предельная чувствительность люминесцентного эксперимента обычно значительно выше, чем абсорбционного. По этой причине люминесценция часто используется для изучения веществ, первоначально находящихся в основном состоянии, путем специального оптического возбуждения их в более высокое люминесцентное состояние. В отдельных случаях описанные ранее линейчатые газооазоядные. лям-пы могут использоваться для возбуждения резонансной флуоресценции атомов (например, Н, О, С1) и радикалов (например, ОН). Поскольку флуоресценция изотропна, ее можно регистрировать под углом к направлению возбуждающего пучка. С большим успехом в качестве источника возбуждения можно использовать перестраиваемые лазеры. Лазеры обеспечивают существенно большую гибкость эксперимента, чем газоразрядные лампы. В частности, с их помощью можно возбуждать значительно большее число разнообразных молекулярных частиц (например, ОН, КОз, СН3О, С2Н5О). Более высокая мощность возбуждающего излучения от лазеров обеспечивает высокую чувствительность. Индуцированная лазером флуоресценция (ИЛФ) стала наиболее ценной методикой изучения промежуточных продуктов реакций в газовой фазе. При этом по- [c.196]

    Затем атомарный кислород, взаимодействуя с молекулярным кислородом воздуха, а также с какой-либо газообразной молекулой М, позволяющей рассеять выделяемую энергию путем перехода ее в возбужденное состояние М , образует озон [c.516]

    Как известно из теории, молекулярные системы можно идентифицировать характеристическими энергетическими состояниями, состоящими из дискретных электронных, колебательных и вращательных уровней. При комнатной температуре большинство молекул определяемого вещества находится в основном электронном и колебательном состоянии. Взаимодействие с электромагнитным излучением определенного вида приводит к возникновению характеристических электронных, колебательных и вращательных переходов. Переход из таких возбужденных состояний в основное обычно осуществляется в течение 10 с либо с испусканием во всех направлениях фотонов с частотой, равной или меньшей, чем частота ранее поглощенных фотонов, либо путем безызлучательной релаксации (см. рис. 9-1). [c.146]

    Оценочные значения получены подобным (косвенным) путем, т. е. при получении данных ионизационных потенциалов использовались измерения эффективности электронного столкновения или фотоионизации. Видно, что для молекул, перечисленных в данной таблице, энергия диссоциации положительно заряженных молекулярных ионов значительно меньше, чем для неиони-зированной молекулы. (Следует заметить, что энергия диссоциации молекул, находящихся в возбужденных состояниях, не обязательно всегда меньше соответствующей энергии диссоциации молекул в основных состояниях. Но для рассматриваемых здесь органических соединений представляют интерес случаи с пониженной энергией диссоциации вследствие удаления электрона.) [c.111]

    Все известные до сих пор масс-спектры индивидуальных веществ получены опытным путем. Достаточно строгий теоретический расчет распределения интенсивностей линий в масс-спектре удалось произвести только для простейшего случая — молекулы Н,. В последние годы школой Эйринга [41 была выдвинута полуколичествеиная теория масс-спектров сложных молекул, основанная на предположении, что в первый момент после удара электрона образуются всегда только молекулярные возбужденные, но еще не диссоциировавшие ионы, которые при достаточной энергии ионизирующих электронов равномерно распределены по энергиям возбуждения от Е = О цо Е = макз- Затем происходит распад, константа скорости которого вычисляется по формулам теории молекулярного распада. При подборе значений -Емякс и эмпирического множителя частоты, входящего в выражение константы скорости мопомолекулярного распада возбужденного иона, удалось получить удовлетворите.чьное совпадение с опытом для случая бутена и низших сложных эфиров нри этом, однако, было показано, что теория неверна для низких энергий ионизирующих электронов, когда большая часть осколков образуется при прямой диссоциации электронным ударом. Пока- [c.461]

    Движение газов в печных каналах и полостях, вообще говоря, может идти несмешивающимися струями по траекториям, подобным форме канала такое движение называется ламинарным. Это соответствует значению критерия Рейнольдса Ке 2 300. Оно редко наблюдается в печных газоходах. При ламинарном движении перенос массы осуществляется путем молекулярной диффузии, а передача тепла — путем теплопроводности тепло- и массообмен протекают слабо. При Ке>2 300 инерционные силы в потоке превалируют над силами трения настолько, что в потоке образуется множество возбужденных пересекающихся струек масса переносится главным образом путем вихревой диффузии, а теплота — посредством конвекции. Скорость в каждой точке изменяется по величине и направлению. Такое движение называется турбулентным. При постоянном расходе газа через какое-либо сечение средняя скорость турбулентного движения в данной точке остается постоянной по величине и направлена в сторону движения. На рис. 8-1 показано значение вектора мгновенной скорости т в данной точке, являющейся геометрической суммой средней скорости ш (постоянной по величине и направлению) и пульсационной скорости гд, изменяющейся по величине и направлению  [c.93]

    Много полезной информации, касающейся относительных вкладов молекулярных и ионных реакций, можно получить, как указывал Эссекс [17], при изучении радиолиза в приложенном электрическом поле. Ауслус и сотр. [118] использовали эту методику, а также исследовали эффекты плотности, введения меченых атомов и добавления поглотителей свободных радикалов для выделения различных процессов. Приложенное электрическое поле вряд ли окажет значительное влияние на продукты ион-молекулярных реакций, в то время как в случае реакций возбужденных молекул можно ожидать возрастания выхода продуктов, так как взаимодействие ускоренных электронов с веществом, вероятно, увеличивает выход возбужденных молекул. Однако прикладываемое напряжение оказывается недостаточным, чтобы вызвать вторичную ионизацию. Так, при у-радиолизе газовых смесей СгНб—СгОб—N0 выходы СгОзН и СОзН оставались практически постоянными, а выходы Сг04 и С04 в диапазоне О—1300 В возрастали почти в 4 раза (N0 добавлялось для поглощения всех свободных радикалов). Согласно результатам фотолиза [119, 120], основные пути распада возбужденных молекул этана следующие  [c.117]

    Исследование начального энергетического распределения по крайней мере требует, чтобы межмолекулярные столкновения не приводили к перераспределению энергии между модами. Для этого необходимы очень низкие давления газа, и работы обсуждаемого типа, как правило, ограничиваются газофазными системами. Еще лучший путь исключения столкновений молекул дают свободные от столкновений молекулярные пучки. Одной из важных методик, использующих молекулярные пучки, является времяпролетная спектроскопия фотофрагментов. Определение времени, которое требуется фрагментам фотодиссоциации, чтобы достигнуть детектора, помещенного на удаленном конце пролетной трубки, позволяет установить скорость поступательного движения и, следовательно, энергию фрагментов. Тогда разность между энергией кванта света и энергией диссоциации молекулы показывает распределение энергии фрагментов между поступательным движением и внутренними модами. В ряде случаев для определенного фрагмента появляется несколько пиков, обычно представляющих различные образующиеся колебательные уровни, а иногда указывающих, что образовалось более одного электронно-возбужденного состояния. Ширины отдельных пиков дают меру вращательного распределения фрагментов. Методику можно развить, если обеспечить передвижение детекторной части относительно входящего молекулярного пучка с целью получения важной информации об угловом распределении для процесса фрагментации. Подробные данные о вращательном распределении фрагментов обычно могут быть получены только с помощью спектроскопии высокого временного разрушения. Оптическое поглощение, фотоионизация и КАСКР, как описано в разд. 7.4, нашли применение в этом контексте. [c.206]

    Как это ясно представляли Кауц-ман и Эйринг [10] уже двадцать лет назад, в подобного рода случаях лучше всего пользоваться одноэлектронной теорией. В первом приближении переход запрещен для электрического дипольного излучения, так что ц1 для перехода в этом приближении равен нулю, хотя Пт имеет порядок магнетона Бора. Здесь принято для верхнего индекса 1( 1, так как рассматриваемый переход является первым со стороны длинноволновой области спектра. Весьма важно рассмотреть теперь, каким образом компонента il может быть индуцирована в направлении ц1п- Ее можно ввести в квантовомеханические формулы, если придать орбитали возбужденного состояния, которая в выбранной системе координат образуется линейной комбинацией атомных 2/)д -орбитэлеп атомов углерода и кислорода, некоторые черты еще более высоких орбиталей (например, 3 2-орбиталей) под действием диссимметрично расположенных соседних атомов. Следовательно, образовавшаяся таким путем молекулярная орбиталь возбужденного состояния не будет ни симметричной, ни антисимметричной по отношению к плоскостям симметрии карбонильной группы, и, значит, произведение ИеР-, не будет более равно нулю. [c.51]

    Отсутствие зависимости от О2 выхода пиримидиновых димеров при облучении ДНК длинноволновым УФ-светом свидительствует о том, что их образование осуществляется не по фотодинамическому механизму, а путем молекулярной фотосенсибилизации, при которой энергия возбуждения с молекулы хромофора, поглотившей квант света, переносится на пиримидиновое основание ДНК. (Выше был рассмотрен пример образования димеров по такому механизму, когда в качестве первичного хромофора-сенсибилизатора выступала молекула ацетофенона). [c.447]

    Исследования зависимости масс-спектров от кинетичес кой энергии электронов показали, что относительные вероятности обра,чова)[ИЯ осповпых ионов в масс-спектре сравнительно слабо зависят от кинетической энергии в диапазоне от нескольких десятков электронвольт до десятков килоэлектронвольт. Обычные масс-спектры получены при давлениях 10 - тср и ниже. При использовании этих спектров для предсказания путей радиационно-химических процессов, происходящих при значительно боле( гысоких давлениях, существенно соотпошение между временем диссоциации в временем столкновения иона с молекулой. Если распад происходит в момент столкновения, то в дальнейшие реакции будут вступать те самые осколочные ионы (и, конечно, нейтральные осколки), которые известны из масс снег тральных данных. В противном случае в реакцию будет вступать возбужденный, еще не успевший распасться молекулярный поп. [c.186]

    Авторы считают, что катализаторы способны относительно длительное время сохранять полученную ими энергию возбуждения (теплового, светового и т. д.), причем вероятность такого возбуждения растет с усложнением системы, с увеличением молекулярного веса. Катализатор воспринимает такл<е часть энергии реакции, что позволяет в результате возбуждения снизить энергию активации процесса. Катализатор является как бы энергетической ловушкой , в которой энергия химического процесса некоторое время задерживается от рассеяния, чем облегчается переход через энергетический барьер. Таким путем делается попытка объяснения сверхактивности ферментов, состоящих из комбинации активной группы с носителем, Эффект агравации—проявление особых свойств вещества в термодинамически неравновесном состоянии (ср. теорию пересыщения, стр. 144)—является, по Н. И. Кобозеву и О, М. Пол-торак, катализом энергетически возбужденными структурами. Теория агравации требует для своего признания дальнейших эспери-ментальных подтверждений. [c.149]

    Количеств, оценка скорости Б. р. и расчет констант скорости-чрезвычайно сложная задача, требующая знания ф-ций распределения реаги ющих частиц и частиц продуктов по внутр. степеням свободы. Информация о столкновениях между отдельными молекулами на предварительно выбранных энергетич. уровнях стала доступной благодаря использованию молекулярных пучков метода. Для экзотермич. р-ций очень важно исследование ф-ции распределения молекул продуктов по колебательно-вращательным состояниям. Если это распределение сильно неравновесно, запасенная в молекулах энергия м. б. непосредственно превращена в когерентное электромагн. излучение хим. лазера. Другое практич. применение сведений о кинетике неравновесных Б. р. связано с возможностью избирательного увеличения скорости эндотермич. р-ций путем предварительного перевода молекул реагентов в определенные возбужденные С0Ст0Яни.Ч. Е.Е. Никитин. [c.286]

    Путь расчета ДС (и отсюда — константы равновесия) по уравнениям (11—14) назырается расчетом по третьему закону термодинамики, из которого следует уравнение (14), Другой путь расчета — статистический — применим лишь к газовым реакциям. По этому пути энтропия каждого газообразного участника реакции вычисляется методами статистической термодинамики на основе молекулярных параметров вещества, т. е. частот колебаний, момента инерции и потенциалов возбуждения молекулы, которые, в свою очередь, находят из спектроскопических, электронографических и других данных, относящихся к молекуле каждого участника реакции. [c.88]

    Наша теория объясняет также и тот факт, что мы ощуш,аем запах только в том случае, если воздух движется через носовую полость. Когда вдыхание прекраш,ается, ощущение запаха исчезает. Если считать, что молекула пахучего веш,ества, взаимодействуя с молекулой обонятельного пигмента, снимает электронное возбуждение, соскок электрона с возбужденного уровня на основной был бы с молекулярной точки зрения весьма значительным событием в энергетике процесса. При этом, вероятно, молекулу пахучего вещества довольно сильно оттолкнуло бы от поверхности клетки. Если воздух не движется, то молекула сможет найти обратный путь к поверхности только за счет медленной и беспорядочной диффузии, но если воздух движется, то молекулы пахучего вещества многократно сталкиваются с чувствительной поверхностью. [c.207]

    Превращение первоначально образующегося состояния 81,пр в состояние 81,01 путем внутримолекулярного переноса электрона осуществляется очень быстро, причем между скоростью этого превращения и временем диэлектрической релаксации растворителя существует определенная (но не линейная) зависимость это связано с тем, что окружение молекулы АНС в возбужденном состоянии отличается от окружения молекулы растворителя [120, 340]. Иными словами, внутримолекулярный перенос заряда в существенной степени определяется процессами диэлектрической релаксации молекул растворителя, окружающих молекулу АНС. Вообще представляется весьма вероятным, что именно переориентация молекул растворителя является тем фактором, который определяет возникновение и затухание возбужденных состояний с ВПЗ молекул АНС и других бихромофорных органических соединений [120, 340]. Недавно на базе двух упрощенных молекулярно-микроскопических моделей, описывающих роль молекул растворителя, Косовер [340] предложил детальный механизм быстрого внутримолекулярного переноса электрона в АНС и 4-(Ы,Ы-диметил-а мино)бензонитриле. [c.440]

    Полимеризация - цепная реакция, при которой мономеры, содержащие кратные связи или неустойчивые циклы, путем последовательного присоединения к активному центру образуют макрочюлекулы. Молекулярная масса полученного полимера равна сумме молекулярных масс мономеров, вступивших в реакцию. Процесс полимеризации, имея цепной механизм, включает три основные стадии (реакции) обра ование активного центра - инициирование или возбуждение молекул мономера рост цепи обрыв или передача цепи. Эти стадии цепной 1юлнмсри шции можно представить следующей схемой [c.19]


Смотреть страницы где упоминается термин Пути молекулярного возбуждения: [c.183]    [c.190]    [c.32]    [c.36]    [c.347]    [c.593]    [c.176]    [c.176]    [c.69]    [c.183]    [c.113]    [c.1968]    [c.433]    [c.264]   
Смотреть главы в:

Молекулярная фотохимия -> Пути молекулярного возбуждения




ПОИСК





Смотрите так же термины и статьи:

Молекулярное возбуждение



© 2025 chem21.info Реклама на сайте